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Über hebbare Unstetigkeiten

In [1] wurde die Menge *3\_a, b] derjenigen in [a, b] definierten Funktionen
betrachtet, die in jedem Punkt von [a, b] unstetig sind.

Für / g J\a, b] bezeichne wiederum *H[f] die Menge derjenigen Punkte von [a, b],
in denen die Unstetigkeit von / hebbar ist, und 1i\f\ die Menge derjenigen Punkte von
[a,b], in denen die Unstetigkeit von / nicht hebbar ist.

In [1] wurde nun einerseits gezeigt, dass für jedes / e J[a, b] *U[f\ dicht in [a, b] ist;
andererseits wurden Funktionen / e J\at b] konstruiert, für die "U[f\ «sehr umfassend»
ist. Daran anschliessend wurde die Frage aufgeworfen, ob für ein / e 3[a, b] 'Ulf]
sogar dicht sein kann. Wir werden in dieser Note beweisen, dass dies nicht möglich
ist. Damit ist dann gleichzeitig gezeigt, dass die Beispiele aus [1] für Funktionen / mit
«sehr umfassendem» %l[f] «gut» sind.

Bei gegebenem / e J[a, b] definieren wir noch die «abgeänderte» Funktion /*:

flim/(|) für xElltf]
f*(x) *-**

\f(x) für xeUlfi.
Die Menge derjenigen Punkte aus [a, b], in denen/* stetig ist, bezeichnen wir mit

Hilfssatz 1

Für jedes / e 3[a, b] ist #[/] abzählbar.

Beweis
Sei / e 3{at b]. Für beliebiges e > 0 bilden wir die Punktmenge

#e[/] {*e#[/]/|/*(*)-/Ml >«}•
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Wegen

«[/] U %/*[/]
Ä-l

genügt es offenbar zu zeigen, dass Uelf] abzählbar ist. Dazu beweisen wir:
Zu jedem e > 0 und zu jedem Punkt x0 e Ulf] existiert ein d(x0, s) derart, dass

| /*(*) - /(*) \<e für 0 < | x - x0 |< 6 (x0, e) (1)

Wegen x0 e Ulf] gibt es vorerst zu jedem s > 0 ein rj(x0, s) mit der Eigenschaft

| f*(xQ) - f(x) \<e für 0 < | x - x0 |< rj (x0, s) (2)

Wir setzen d(x0, e) f](x0, e/3) und prüfen (1) für x e Ulf] nach; für x e K[/] ist die

Aussage (1) ja trivial. Sei also x e Ulf] und 0 < | x — x0 | < d(x0, e); zudem können
wir o.B.d.A. x < x0 annehmen, x e Ulf] bedeutet lim /(£) f*(x); und daraus folgt

wegen der Dichte von %l[f] in [a, b] (vgl. [1]) die Existenz eines solchen |0 E%l[f],
dass

x < So < H und | f*(x) - /(f0) l< y • (3)

Bei den gemachten Annahmen über x und |0 folgt nun aus (2) und (3)

| /*(*) - fix) I < I /*(*) - /(.o) I + I /(fo) - /*W I + I /*(*„) - /W I < e

da jeder Summand kleiner — ist.

Aussage (1) besagt, dass die Menge lie[f] nur isolierte Punkte enthält; eine solche

Menge ist aber abzählbar. q.e.d.

Bemerkung

Wir weisen darauf hin, dass aus obigem Beweis folgende Aussage direkt hervorgeht:

Die Funktion /* ist in jedem Punkt xQ e ?/[/] stetig.
Beweis: Für x e 'Ulf] und 0 < | x — x0 | < d(x0, e) ist nach (2) und (3)

l /* (*<>) - /*(*) l < l /*(*«¦) - /do) l + l /(fo) - /*W i< 4«;
für x e Ulf] und 0 < | x — x0 | < ö(^0, e) ist nach (2)

I /* (*o) ™ /*(*) I I /*W - /W l< | •

Hilfssatz 2

Für jedes / e #[#, 6] ist $[/*] eine Menge erster Kategorie in bezug auf [a, b].

Beweis

Nach Hausdorff ([2], Kap. VIII, §9) heisst eine Teilmenge A von \at b] eine «Menge
erster Kategorie in bezug auf [a, b]y>, wenn A eine abzählbare Vereinigung von Mengen
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ist, die in \a, b] nirgends dicht sind. Sind A und B Mengen erster Kategorie in bezug
auf [a, b], so ist natürlich A u B wiederum eine Menge erster Kategorie in bezug auf
la, b].

Nach Hilfssatz 1 und der anschliessenden Bemerkung ist für jedes / e *3\a, b]

Ulf] eine Menge erster Kategorie in bezug auf [a, b], und es ist UU] C $[/*]• Es bleibt
also zu zeigen, dass S[/*] — Ulf] S[f*] n U[f] ebenfalls eine Menge erster Kategorie
ist.

Wir beweisen zuerst folgendes: Zu jedem x0e $[/*] O K[/] existiert ein e0> 0

und eine Folge yn e UeJf] mit lim yn x0.

Aus x0 e $[/*] folgt: Zu jedem e > 0 existiert ein d(x0, e) derart, dass

I /*W - /*(*) \<eiür \x-x0\< ö(x0, e) (4)

Andererseits folgt aus x0 g *U[f]: Es gibt ein ex > 0 und eine Folge yn g [a, b] mit
limyn x0 derart, dass

n-*co

I /(*o) - /oü I I /*(*o) - /(y.) I s«_ • (5)

Sei nun für « > «0 | y„ — „0 | < d (x0, Si/2); dann folgt aus (4)

I /*(*„) - /* (Vn) l< f •

Dies ist aber nach (5) nur möglich, wenn yn e Ulf] und

I /*(y„) - Ay.) I > y =e»

ist. Damit ist aber unsere Behauptung bewiesen.

Wir bilden nun für beliebiges e > 0 die Punktmenge

OCelf]=<xeSinnUlf]

Nach obigem ist

oo

3 eine Folge yn e Ue If]

mit lim yn x

Hilfssatz 2 ist also bewiesen, wenn wir gezeigt haben, dass 3Ce[/] nirgends dicht in
[a, b] ist. Aus der Definition von XJf] folgt aber, dass jeder Punkt und jeder
Häufungspunkt von Xelf] Häufungspunkt von Ue[f] ist; also (in der üblichen Schreibweise)

X. W £ (W, Kl)'C (»[/])'• (6)

Andererseits kann nach (1) ein Häufungspunkt von Ue\f] nicht aus Ulf] sein; es ist
also

Xe [/] o U [/] </>. (7)
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Nach (6) und (7) enthält 3Ce[f] keine inneren Punkte, d.h. Xe[f] ist nirgends dicht.
q.e.d.

Satz
Ist / g J\a, b], so ist Ulf] nicht dicht in [a, b].

Beweis
Nach Hausdorff ([2] Kap. IX, § 3) gilt folgender Satz: Sei g eine auf [a, b]

definierte Funktion und sei S[g] die Menge derjenigen Punkte, in denen g stetig ist. Ist
$lg] dicht in [a, b], so ist Slg] keine Menge erster Kategorie in bezug auf [a, b].

Wir nehmen nun an, für eine Funktion / g J{a, b] sei Ulf] dicht in [a, b]. Wegen
*U\f]Q S[/*] ist somit auch S[/*] dicht in [a, b]. Nach dem oben zitierten Satz von
Hausdorff kann $[/*] keine Menge erster Kategorie sein. Dies führt aber zu einem
Widerspruch zu Hilfssatz 2. q.e.d.

Rita Jeltsch, Zürich
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Kleine Mitteilungen

Remark on multiplicative functions

In this note we prove the following theorem.

Theorem. // / is a multiplicative function and f(k) 4= 0 then

Fk(n) —-tt- is multiplicative, too.
/(*)

In the case where / is the Euler totient function this theorem was estabhshed

by D.H. and E. Lehmer [1]. Their proof was based on the following property of the
function cp: if all prime divisors of a divide b then cp(ab) a <p(b).

Since there are multiplicative functions which have not this property, the proof
given [1] is not valid for an arbitrary multiplicative function /.

Proof of the theorem. It is sufficient to prove that if (a, b) 1 then f(k)f(kab)
f(ka)f(kb). Define kx (resp. k2) as the greatest integer dividing k and all prime divisors
of which divide a (resp. b). Since (at b) 1, we have (kv k2) 1. Let kz kjk^, kB

evidently is an integer, k kxk%kz and (kZ) kt) (ks, kt) 1. Further we have (kxat k2b)
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