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Uber hebbare Unstetigkeiten

In [1] wurde die Menge F{a, b] derjenigen in [a, b] definierten Funktionen be-
trachtet, die in jedem Punkt von [a, b] unstetig sind.

Fiir f € F[a, b] bezeichne wiederum H[f] die Menge derjenigen Punkte von [a, 5],
in denen die Unstetigkeit von f hebbar ist, und Y[f] die Menge derjenigen Punkte von
[, b], in denen die Unstetigkeit von f nicht hebbar ist.

In [1] wurde nun einerseits gezeigt, dass fiir jedes f € F[a, b] U[f] dicht in [a, b] ist;
andererseits wurden Funktionen f € F[a, b] konstruiert, fiir die H[f] «sehr umfassend »
ist. Daran anschliessend wurde die Frage aufgeworfen, ob fiir ein f e Fa, b] H[f]
sogar dicht sein kann. Wir werden in dieser Note beweisen, dass dies nicht méglich
ist. Damit ist dann gleichzeitig gezeigt, dass die Beispiele aus [1] fiir Funktionen f mit
«sehr umfassendem» H[f] «gut» sind.

Bei gegebenem f € F[a, b] definieren wir noch die «abgednderte» Funktion f*:

lim /() fir xeH[f]
f(x) fir xeUI[f].

Die Menge derjenigen Punkte aus [a, b], in denen f* stetig ist, bezeichnen wir mit

S[f*].

Hilfssatz 1
Fiir jedes f € F[a, b] ist H[f] abzihlbar.

*(x) =

Beweis
Sei f € F[a, b). Fiir beliebiges ¢ > 0 bilden wir die Punktmenge

W1 ={xeUH[)]I1*x — x| = ¢}.
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Wegen
um=§ymm

geniigt es offenbar zu zeigen, dass #,[f] abzdhlbar ist. Dazu beweisen wir:
Zu jedem ¢ > 0 und zu jedem Punkt x, € H[f] existiert ein §(x,, ¢) derart, dass

| P4 — f(x) | <o far 0<|x—z| <0 (0. (1)
Wegen x, € H[f] gibt es vorerst zu jedem & > 0 ein 7(x,, &) mit der Eigenschaft
| /*(x) — (%) | <& fir 0 <|x— x| <7 (%8 - (2)

Wir setzen d(x,, £) = 7(x,, ¢/3) und priifen (1) filr x € H[f] nach; fir x € U[f] ist die
Aussage (1) ja trivial. Sei also x € H[f] und 0 << | x — %, | < 8(x,, €); zudem konnen
wir 0.B.d.A. x < x, annehmen. x € H[f] bedeutet %im f(&) = f*(x); und daraus folgt

wegen der Dichte von U[f] in [a, b] (vgl. [1]) die Existenz eines solchen &, € U[f],
dass

# <l <x und |00 —fE) | < - 3)

Bei den gemachten Annahmen {iiber x und &, folgt nun aus (2) und (3)
| 1*(2) = 1) | < [ 1*() — o) | + [ H(Eo) — F*(x0) | + [ F¥(x0) —/(2) | <&,
da jeder Summand Kkleiner % ist.

Aussage (1) besagt, dass die Menge H,[f] nur isolierte Punkte enthilt; eine solche
Menge ist aber abzdhlbar. q.e.d.

Bemerkung

Wir weisen darauf hin, dass aus obigem Beweis folgende Aussage direkt hervor-
geht: Die Funktion f* ist in jedem Punkt x, € H[f] stetig.
Beweis: Fiir x € #[f] und 0 < | x — x5 | << 8(x,, €) ist nach (2) und (3)

| F*(%o) — *¥(%) | < | f*(xg) — f(&o) | + | F(&o) — ¥ ) | < é‘ €,

fiir x € U[f]und 0 < | x — x4 | << 8(%,, &) ist nach (2)
| P*0r0) = 140 | = | ) — 1) | < 5 -

Hilfssatz 2
Fiir jedes f € F[a, b] ist §[f*] eine Menge erster Kategorie in bezug auf [a, b].

Beweis

Nach Hausdorff ([2], Kap. VIII, §9) heisst eine Teilmenge 4 von [a, b] eine «<Menge
erster Kategorie in bezug auf [a, b]», wenn A eine abzdhlbare Vereinigung von Mengen
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ist, die in [a, b] nirgends dicht sind. Sind 4 und B Mengen erster Kategorie in bezug
auf [a, b], so ist natiirlich 4 y B wiederum eine Menge erster Kategorie in bezug auf
[a, b].

Nach Hilfssatz 1 und der anschliessenden Bemerkung ist fiir jedes f € F[a, b]
H(/] eine Menge erster Kategorie in bezug auf [, b], und es ist H[f] C S[f*]. Es bleibt

also zu zeigen, dass S[f*] — H[f] = S[/*] O U[f] ebenfalls eine Menge erster Kategorie
ist.

Wir beweisen zuerst folgendes: Zu jedem x, € $[f*] O U[f] existiert ein ¢gy> 0
und eine Folge y, € H, [f] mit lim y, = %,.
#—-00

Aus x, € §[f*] folgt: Zu jedem ¢ > 0 existiert ein §(x,, &) derart, dass
| *(xg) — 1*(x) | <& fir [ x— %y [ <d(x, &) - (4)

Andererseits folgt aus x, € U[f]: Es gibt ein & > 0 und eine Folge vy, € [4, b] mit
limy, = %, derart, dass

| Fo) — FWa) | = | 1*(%0) — 1) | = &y (5)
Sei nun fiir #n > ny |y, — %, | <8 (%, &/2); dann folgt aus (4)
) — 1) | <

Dies ist aber nach (5) nur moglich, wenn y, € H[f] und

1) = 1) [>T =&

ist. Damit ist aber unsere Behauptung bewiesen.
Wir bilden nun fiir beliebiges ¢ > 0 die Punktmenge

3 eine Folge v, € H, [f]
K. (fl=<xeS[*10 U

mit lim y, = %
n—o0

Nach obigem ist

sproumn=U %0

Hilfssatz 2 ist also bewiesen, wenn wir gezeigt haben, dass X [f] nirgends dicht in
[a, b] ist. Aus der Definition von X,[f] folgt aber, dass jeder Punkt und jeder Hau-
fungspunkt von X,[f] Hiufungspunkt von 3 [f] ist; also (in der iiblichen Schreib-
weise)

X (1S M) C (HITD 6)

Andererseits kann nach (1) ein Haufungspunkt von H.[f] nicht aus H[f] sein; es ist
also

K OHI=¢. (7)



132 Kleine Mitteilungen

Nach (6) und (7) enthidlt X [f] keine inneren Punkte, d.h. X [f] ist nirgends dicht.
g.e.d.

Satz
Ist f € F[a, b], so ist H[f] nicht dicht in [a, b].

Beweis

Nach Hausdorff ([2] Kap. IX, § 3) gilt folgender Satz: Sei g eine auf [a, b] defi-
nierte Funktion und sei §[g] die Menge derjenigen Punkte, in denen g stetig ist. Ist
Slg] dicht in [a, b], so ist §[g] keine Menge erster Kategorie in bezug auf [a, b].

Wir nehmen nun an, fiir eine Funktion f € F[a, b] sei H[f] dicht in [a, b]. Wegen
H[f] C S[f*] ist somit auch §[/*] dicht in [a, b]. Nach dem oben zitierten Satz von
Hausdorff kann §[f*] keine Menge erster Kategorie sein. Dies fithrt aber zu einem
Widerspruch zu Hilfssatz 2. q.e.d.

Rita Jeltsch, Ziirich
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Kleine Mitteilungen

Remark on multiplicative functions

In this note we prove the following theorem.

- Theorem. If f is a multiplicative function and f(k) + O then

R = L)

In the case where f is the Euler totient function this theorem was established
by D.H. and E. Lehmer [1]. Their proof was based on the following property of the
function ¢: if all prime divisors of & divide & then g@(ab) = a ¢(b).

Since there are multiplicative functions which have not this property, the proof
given [1] is not valid for an arbitrary multiplicative function f.

Proof of the theorem. 1t is sufficient to prove that if (@, b) = 1 then f(k)f(kad) =
[(ka)f(kb). Define k, (resp. ky) as the greatest integer dividing % and all prime divisors
of which divide a (resp. b). Since (a, b) = 1, we have (k,, ky) = 1. Let kg = k/k,ky; kg
evidently is an integer, k= k,kyR3 and (g, k) = (ks k,) = 1. Further we have (%,a, k;0) =

is multiplicative, too.
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