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Some Trigonometric Inequalities

1. Introduction

Let o4, o, and oy be the angles of some triangle with perimeter 2 s, inradius » and
circumradius R. The identities
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in each case, equality holds if and only if a; = oty = a3 = 7/3.
Another way of writing this chain of inequalities is

[/3 ]/3 o 1 ]
M(smz) 5 M, tn—i 3 M, cos—i §2~
5 3 S
< e M, (sec %) < e M, (cot ) (cosec ———)
where M, (x) denotes the mean of order  of the positive numbers (x) = (x;, %5, . . . , %,,),
defined by
[ min(¥) for 7= —oco, max(x¥) for 7= +oo,
" 1/n
x; for =0,
- | (1)

1 n 1/r
(—— § x,.’) otherwise .
n 5
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M, (x) is a continuous function of 7 for —co <7 < 400, and a strictly increasing
function of 7 on the same interval unless all the x; are equal ([3], pp. 12, 15 and 26).

In this note, we propose to show how several of the inequalities in (1) can be
extended to other values of ». Our main tool will be an inequality for convex functions
due to Hardy, Littlewood and Pélya ([3], p. 45 and 89), rediscovered by Karamata [5].
Other applications of this inequality to elementary geometry may be found in [1]
and [7].

2. Preliminaries

We state the inequality to which we have just alluded as

Theorem A (Hardy, Littlewood, Pdlya). Let (x) = (%, . . ., %,) and (¥) = (¥, - . . ,
V) be real. A necessary and sufficient condition for the inequality

) + -+ dx) < I3+ -+ S,

to hold for every real function ¢ continuous and convex tn some interval containing all
the numbers (x) and (y) is that

xléxgg---gx,,y yléygg...gyn,
2+ Fx, <y, +--+V,,v=23...,n,
x1++xn:y1++yn

If ¢"(t) > O for y, < t <1y, equality holds if and only if (x) = (y).
We require only the case #» = 3 of this inequality. In order to apply it, we need
the following lemma.

Lemmal. If0 <oy < ay < oy <7 and oy + ay + g = 7, then

sin%l < V—j—sec %, (2)
Zcos% < cotgz—l— and 2 cos%i > cot %, (3)
B oo < sin % < V2 an %, “)
—‘-/icos%”—>smz >1/—§—tan°; (5)

with equality if and only if ag = 7/3.

Proof. Clearly, (2), (3) and the right-hand inequalities of (4) and (5) follow at once
from «; < @/3 < og. For the left-hand side of (4), we first note that since a3 >
(g + 3)/2 = (7 — ay)/2, we have sinag > cosa,/2 if also a3 < (7@ + «;)/2. Then, as
sin ag = 2 COS ay/2 Sinag/2 < /3 sinay/2, we have the desired inequality. And if

> (7 + o;)/2, then 7/2 > as/2 > n[4, so that sinay/2 > y2/2 > V3/3 > V33
cos oy [2.
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The left-hand side of (5) is established similarly. The case of equality is obvious.

In § 8, we require the case n = 3 of the following result ([8], §4).

Theorem B. If (x) = (x, ..., x,) and (y) = (yy, - - ., ¥,) are positive, and if the
function F(r) = M, (x) — M,(y) has more than n — 1 real zeros, then F(r) = 0.

In all that follows, we assume 0 < a; < oy < a3 < 7w and oy + x5 + o3 = 7. Any
identities not proved in the paper can be deduced from those in [4], §150-154.

3. Sines and cosines

We shall extend the inequality |3 M, (sine/2) < M, (cosa/2) by proving the
existence of a number s, 0 <<'s < 2, such that

o

V3 M, (sin %) < M, (COS ?) for 7 <s,
(6)

V3 M, (sin%) > M, (cos %—) for 7>s;

the inequalities are strict unless a; = o, = a3 = 7/3, when equality holds for all 7.
Indeed, we have

3 .
M, (cos%) < / < V3 M, (Sin%) ; 7
since ) 'cos?a;/2 = (¥ + 4R)[2R and R = 27. Now M, (cos ap) — /3 M, (sina/2)is a

continuous function of 7; since it is positive for » = 0 and negative for » = 2, there
exists a number s, 0 < s < 2, for which

o — o

M — ) =V3 M, (sin—]. 8

s(cosz) 13 S(sz) (8)
We can write (8) as
cos? %1— + cos® % + cos¢ EZE = (/3)* (Sin‘% + sinsi.;—2 + sin¢ %) . 9)
Since 0 < a; <y < o4g <7 and s > 0, we have
cos? % > cos® %2 > cost —gﬁ, sinsg > sin® %g > sin’%. (10)

Further, by (4),
coss 2 < (/3)* sin* % (11)
2 - 2

while (5) and (9) together give

cos‘% + coss%z— < (Y3)s (sin’%z— + sins%) : (12)
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Now (9), (10), (11) and (12) are precisely the conditions of the Hardy-Little-
wood-Poélya inequality (in the case n = 3). We may now affirm that

2 "S(C"S’Ezi) = Z "5(3“ sin’ %) (13)

for all real functions ¢ continuous and convex on an interval containing (cos® «/2)
and (342 sin® a/2).
In particular, taking successively for ¢ the functions defined by

dx)=2a" fr<Oorr>s,
dx)=—a if 0 <r <s,

$(x) = —log x,

which are convex for x > 0, we obtain (6). It follows from the case of equality in
Theorem A that for any 7, equality holds in (6) if and only if the triangle is equilateral.
In other terms, M, (cos a/2) — V3 M, (sin «/2), as function of 7, is either identically
zero, or has exactly one zero, situated in the interval 0 <r < 2.

The exact value of s in (8) will depend on (a); for instance, s > 1 for («) =
(10°, 10°, 160°), but s < 1 when (x) = (30°, 70°, 80°).

4. Cosines and tangents
Since
(21 + %5 + %3)2 = 3 (%1 %5 + ¥p %3 + X3 %y) (14)

for any real numbers x;, %,, x5, and since

&y Ao &g Ag xg oy
tan— tan— + tan-—tan— 4+ tan—tan—~ =1, 15
2 2 + 2 2 T 2 2 (15)

we have |3 M, (tan «/2) > 1. This, together with the left-hand side of (7) and the
fact that M, (x) is a non-decreasing function of 7, shows that

2M, (cos%) <V3 <3M, (tan —;) .

Reasoning as in § 3, we deduce the existence of a number ¢, 0 < ¢ << 1, with the prop-
erty that

3M, (tang—) <2M, (cos%) for r<t,
(16)

3M,(tan%)22M,(cosg~) for r>¢;

the case of equality is the same as for (6).
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5. Cosines and cotangents

We have
&;
COS—é‘
o;—1q o +1 .
tan ——~ + tan—— = , =123,
2 %i—1 %i+1
cos cos
2 i

/

&
COS —
2

X1 X Xg X, X3 X
(._!_,3) + (E-ﬁ) + (31) > 2+ %+ %
%3 %1 X2

when x, x, x3 > 0, with equality if and only if x; = x, = 3.

Consequently,
3 o 3 o -1
2 tan — > ity
£ an— _i;l'(cos 2)
or
M_, (Cot %—) <2M_ <cos %) . (17)

As before we conclude from Theorem A, using (1), (3) and (17) that unless the
triangle is equilateral, the function M, (cot a/2) — 2 M, (cos «/2) has a single zero,
situated in the interval — 1 < 7 << 0. In other words, there existsa #, — 1 <u < 0,

such that

M, (cot%) <2M, (COS%) for r <wu
(18)

M, (cot%) >2M, (cosg—) for 7> u,
with equality as in (6).

6. Sines and tangents

From (1) we have

2 M, (sin i'z‘_) < V3 M, (tan i;i) ,
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and we shall show presently that

2M_, (sin %) > V3 M, (tan _;‘_) . (19)

/

Hence, using (4) and (5), we can prove the existence of a number v, — 1 < v <0,
with the following property:

V3 M, (tan%) <2M, (sin%) for 7 <uw,

V3 M, (tan-?zi) >2M, (sin%) for r>wv;

equality holds under the same condition as in (6).
To prove (19), we first observe that this inequality is equivalent to

i=1 1=1
But since
*;
COS “2—
cot Fi1 + cot Lt J ,
2 2 St S L |
sin sin
2 2
(21) is in turn equivalent to
_ 3
2Y3 sin 2% sm—~— sin ;. (22)
Now
sinai sin 2 1 a; a; t oc‘camOc e
— AP an— — ,
2 2 4R J 2 2

where a; denotes the length of the side opposite angle «;. And by Cauchy’s inequality
and (15),

Z (a a tan——z— tan —~) (Za aj) :
1<j i<y
as a; = 2 R sin a;, this gives us
( 25m——~ sin — ) 2 sin a; sin &,
1<f 1<y

a stronger inequality than (22), by (14).
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7. Sines and secants

In attempting to extend the inequality 4 M, (sin «/2) < y3 M, (sec «/2), we
meet a different type of problem. We will establish this result: Assume «; + n/3 for
some . Then,

A M, (sin %) <V3 M, (sec %) (23)

for all real 7, if ay > 27/3. If ay < 27/3, there is a number 7, > 1 such that (23)
holds for » < 7y, and is reversed for 7 > 7,.

Proof. Firstly, if ag > 27/3, then o; < ay < 7/3, whence sina; < }/3/2, or
4sino;/2 < )3 seca;/2, 4 =1, 2, 3; and at least two of these inequalities are strict.
Hence (23) holds for all real 7.

Secondly, note that (23) holds for » = 1, whatever («). For f(x) = sin«/2 is convex
on 0 < x < &, so by Jensen's inequality ([3], §3.6), M, (sina/2) < 1/2. And we deduce
from (7) that /3 M, (sec «/2) = }/3 [M_, (cos «/2)]"1 > 2.

Now if (7/3) < a3 << 27:/3, we have

)

2

o3
P |

3
>V sec—

4 sin (24)
that is, 4 M, (sin «/2) > /3 M, (sec «/2). This and (23) for » = 1 establish the exis-
tence of a zero, say 7 = #,, of 4 M, (sin a/2) — /3 M, (sec «/2), with 7, > 1. Then, as
usual, it follows from (2) and (24) that this function has no other zero.

8. Other inequalities

In trying to extend the inequality 3 M, (tane«/2) < M, (cota/2), we find a
situation quite different from the one which we met in §§ 3 through 7, where the
functions under consideration always had at most one real zero. Indeed, since
tana;/2 cot «;/2 = 1, the inequalities

3M, (tan %) < M, (cot %) and 3M_, (tan %) <M._, (cot—g)

are equivalent (for a similar argument in another setting, see Makowski [6]). Hence,
g(r): = 3 M, (tana/2) — M, (cota/2) has an even number of real zeros (possibly none),
unless it vanishes identically. In fact, it has no zeros for certain choices of («), as the
following proposition shows:

In order that

o «
3M, (tan?) < M, (cot—z—) (25)

for all v, it is necessary and sufficient that tan o;/2 tan ag/2 < 1/3. If r & + oo, equality
holds when oy = oy = a3 = 7/3, and only then.
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Proof. The condition is necessary because it is equivalent to the necessary
condition 3 M, (tan «/2) < M, (cot a/2).

To prove its sufficiency we consider g(r), defined as above. By (1), g(0) < O
unless «; = oy = ag. And if tan o, /2 tan ag/2 << 1/3, then g(4-o0c) < 0. But then if g
has any zeros on (0, o0), it has at least two, hence at least 4 on (— oo, 00); by Theorem B
this can occur only if &, = oy = a5 Further, if tan«,/2 tanay/2 = 1/3 then tana,/2 =
(1/3) cotay/2and tanag/2 = (1/3) cota,/2, so that if equality held in (25) for somer =+ +o0
we would also have tan ay/2 = J/3/3. And then we would have M, (tan «/2) = }/3/3,
whence a; = ay = a5, by the condition of equality in (1). This concludes the proof.

Now we shall show that in any triangle,

3M, (tan %) < M, (cot %‘) for |r|<1, (26)

with equality in the usual case. Indeed, it is clear from the preceding discussion that
it suffices to prove (26) for » = 1. Since

L o; (r+ 4 R) 3 o; s
S tan % = VHEER) g ¢S
an— an iéco 5

i=1 S 4
we must show that s? > 37 (r + 4R); and this inequality is known ([2], § 5.6).

In a like manner, one can show that the condition sin /2 sin ay/2 < 1/4 is neces-
sary and sufficient in order that 4 M, (sin «/2) < M, (cosec «/2) for all r, and that

4 M, (cos a/2) < 3 M, (sec a/2) for all 7 if and only if cos a,/2 cos az/2 < 3/4. One can
also show that in any non-equilateral triangle,

4 M, (sin %—) <M, (cosec %) for |r| <1 (27)
and
-] o
4 M, (cos —2—) <3M, (sec 5—) for |r| <2. (28)

For instance, (28) follows from (7): 4 M, (cos «/2) < 2)/3, whence M, (sec a/2) =
[M_, (cos /2)]~1 > [M, (cos a/2)]~1 > 2)/3, so that (28) holds for » = 2, and there-
fore for | | < 2. The proof of (27) is similar.

Finally, if g * 7/3, A(r): = M, (cot «/2) — 2)/3 M, (sin «/2) is positive at r = 0,
and can have two zeros, or one, or none, depending on («). For instance, if () = (10°,
40°, 130°), A(r) has exactly one zero, situated somewhere on (—oo, 0). On the other
hand, if we choose «y, = 60° and «,, a4 arbitrary (but «; # o5 and o; + oy = 120°) we
get a triangle such that A(r) > O for all ». And if («) = (50°, 50°, 80°), then A(r) has
two real zeros. By comparing (20) and (26) in the range 0 < » < 1, we see that in any
non-equilateral triangle,

2V§M,(sin%)<M,(cot;—) for 0<r<1.

J. Steinig, Genéve
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Uber hebbare Unstetigkeiten

In [1] wurde die Menge F{a, b] derjenigen in [a, b] definierten Funktionen be-
trachtet, die in jedem Punkt von [a, b] unstetig sind.

Fiir f € F[a, b] bezeichne wiederum H[f] die Menge derjenigen Punkte von [a, 5],
in denen die Unstetigkeit von f hebbar ist, und Y[f] die Menge derjenigen Punkte von
[, b], in denen die Unstetigkeit von f nicht hebbar ist.

In [1] wurde nun einerseits gezeigt, dass fiir jedes f € F[a, b] U[f] dicht in [a, b] ist;
andererseits wurden Funktionen f € F[a, b] konstruiert, fiir die H[f] «sehr umfassend »
ist. Daran anschliessend wurde die Frage aufgeworfen, ob fiir ein f e Fa, b] H[f]
sogar dicht sein kann. Wir werden in dieser Note beweisen, dass dies nicht méglich
ist. Damit ist dann gleichzeitig gezeigt, dass die Beispiele aus [1] fiir Funktionen f mit
«sehr umfassendem» H[f] «gut» sind.

Bei gegebenem f € F[a, b] definieren wir noch die «abgednderte» Funktion f*:

lim /() fir xeH[f]
f(x) fir xeUI[f].

Die Menge derjenigen Punkte aus [a, b], in denen f* stetig ist, bezeichnen wir mit

S[f*].

Hilfssatz 1
Fiir jedes f € F[a, b] ist H[f] abzihlbar.

*(x) =

Beweis
Sei f € F[a, b). Fiir beliebiges ¢ > 0 bilden wir die Punktmenge

W1 ={xeUH[)]I1*x — x| = ¢}.
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