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Die Polaritiaten, die einen Torus in sich tiberfiihren

Ordnung und Klasse des Torus sind gleich, nimlich 4. Man kann fragen, ob ein
Torus durch die Polaritdt an einer Flache 2. Ordnung in sich iibergefithrt werden
kann. In 1. wird gezeigt, dass dies beim Dorntorus nicht méglich ist. Beim Spindel-
torus hingegen evgeben sich vier veelle Quadriken (dvei einteilige und eine nullteilige),
besm Ringtorus vier komplexe Quadriken, durch deven Polaritit der Torus in sich iiber-
geht. Daraus folgen in 2. beim Spindeltorus und beim Ringtorus Eigenschaften des
Tangentenkomplexes, der Doppeltangentenkongruenz und der Haupttangentenkongruenz,
ferner in 3. Zusammenhinge zwischen ebenen Schnitten und Tangentialkegeln im all-
gemeinen Fall und in zahlreichen Sonderfillen. In 4. werden zwei jener Quadriken
als absolute Flidche einer nichteuklidischen Metrik (des Cayley-Kleinschen projektiven
Modells) gedeutet, so dass der (euklidische) Torus auch als Torus der nichteuklidischen
Metrik aufgefasst werden kann und durch die absolute Polaritdt in sich iibergeht.
In 5. wird die Transformation des Torus durch andere Polarititen untersucht und
dabei auch der Dorntorus behandelt.

1. Polarititen, die einen Spindel- oder Ringtorus in sich iiberfiihren

Bezeichnungen: Torus ¢, Achse a, Mittelpunkt O, Radius R, des Mittenkreises m
in der Mittenebene u, Meridiankreisradius 7, Knotenpunkte D;, D, auf @ im Abstand

Mittenebene x, = 0). In 1.-4. sei vorausgesetzt, dass ¢ ein Spindeltorus (d reell, = 0)
oder Ringtorus (4 rein imagindr, =* 0) sei; der Dorntorus (r = R) wird in 5. unter-
sucht.

Soll ¢ durch die Polaritdt an einer Quadrik ¢ in sich iibergehen, so muss ¢ wegen
der Symmetrie von ¢ beziiglich 4 und wegen der Drehsymmetrie von ¢ beziiglich a
offenbar eine Drehfliche mit der Achse a und dem Mittelpunkt O sein. ¢ habe die
Gleichung

x5+ x5 %
T K + B, (1)

o p
Bestimmung von «. In jeder Meridianebene, z. B. in x, = 0, miissen die beiden
Meridiankreise von ¢ durch Polaritit am Meridian von ¢ entweder je in sich iiber-

gehen oder vertauscht werden. In x, = 0 liegen die Meridiankreise m, (Mitte, (R, 0, 0))
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und m, (Mitte (— R, 0, 0)). Soll m; durch die Polaritit am Meridian von ¢ in sich
iibergehen, so muss dem Punkt (R + 7, 0, 0) von m, die Tangente im Punkt (R — 7,
0, 0) von m, entsprechen; daraus folgt « = R? — #2 = — d%. Dann entspricht auch
dem Punkt (R — 7, 0, 0) von m, die Tangente im Punkt (R + 7, 0, 0) von m,. Auch
entspricht jedem Schnittpunkt (— R 4 7, 0, 0) von m, mit der x,-Achse die Tangente
von m, im anderen Punkt. — Soll hingegen m,; durch die Polaritdt am Meridian von ¢
in m, (und umgekehrt) tibergehen, so muss dem Punkt (R + 7, 0, 0) von m, die
Tangente im Punkt (— R + 7, 0, 0) von m, entsprechen, daher muss &« = — R% + 72 =
d? sein. Dann entspricht dem Punkt (R — 7, 0, 0) von m, die Tangente im Punkt
(=R —7,0, 0) von m,.

Bestimmung von f. In jeder Meridianebene, z. B. in x, = 0, muss einem Schnitt-
punkt von m, und m, in der Polaritit am Meridian von ¢ eine gemeinsame Tangente
von m; und m, entsprechen, einerlei, ob m, und m, je in sich {ibergehen oder ver-
tauscht werden. Einem Knotenpunkt (0, 0, + d) von ¢ kann dabei, da ¢ zu a sym-
metrisch ist, nur die Schnittgerade einer Flachkreisebene x; = -+ » mit x, = O ent-
sprechen. Also ist f = 4 dr.

So ergeben sich die vier Quadriken ¢,

D )
x‘f+x§+ x5
e d? nar

=1 e=4+1,9=+1. (2)

Beim Ringtorus sind die ¢, komplex. Beim Spindeltorus (Abb.) ist ¢, ; ein Ellip-
soid, ¢—,,, ein zweischaliges Hyperboloid, ¢, -, ein einschaliges Hyperboloid, ¢—; —;
eine nullteilige Quadrik. Die Parameterdarstellung

%, = (R + 7 cosu) cosv, x,= (R -+ 7 cosu)siny, x3=7sinu (3)

von ¢ zeigt, dass dem Punkt (%, v) von ¢ in der Polaritit an ¢, die Tangentialebene
von ¢ im Punkt («,, v,) entspricht, wobei

. 7 dsinu R 4 7 cosu r-}—R
sinyy = ————, COSUy = ————— , -
' 74+ Rcosu ' 7+ Rcosu g2 g2 1 — R
und v, = v + 180°, wenn ¢ = 1, hingegen v, = v, wenn ¢ = — 1 ist.

Durch Polaritit an ¢, , oder ¢, ; geht D,(0, 0, d) in die Flachkreisebene x3 = »
iiber, durch Polaritit an ¢, —, oder ¢, —; in %3 = — 7; analog bei D, (0, 0, —4).
Durch Polaritit an ¢, ; oder ¢, -, vertauschen sich in jeder Meridianebene beide
Meridiankreise von ¢, durch Polaritdt an ¢, ; oder ¢_; —, gehen sie je in sich iiber.

Einem Schnittpunkt von m; mit ¢, ; oder ¢, -, entspricht eine Tangente von
m,, die mit dem Schnittpunkt inzidiert. Daher beriihren sich ¢ und ¢, ,, ebenso ¢ und
@—1, — ldngs zweier Parallelkreise; diese haben den Radius | R d/(d 4+ 7 7)| und sie

liegen in den Ebenen x, = + V272 d/(d + 7 7). Die Erzeugenden (beider Scharen) von
®-1,1 sind (komplexe) Doppeltangenten von ¢, ebenso die Erzeugenden von ¢, —;.

Ferner zeigt sich: a) Die Zusammensetzung der Polaritdten an zwei verschiede-
nen Quadriken ¢,, ergibt die Spiegelung an 4, wenn beide ¢,, dasselbe 7 besitzen,
hingegen die Spiegelung an u, wenn beide ¢, verschiedene 7 besitzen. b) Durch die
Polaritét an esner Quadrik ¢, , geht jede Quadrik ¢, , in sich iiber.



F. Hohenberg: Die Polarititen, die einen Torus in sich tiberfithren 99

2. Einfluss der Polarititen auf den Tangentenkomplex eines Torus

Durch die Polaritét an einer Quadrik ¢, geht jeder Punkt von ¢ in eine Tangen-
tialebene von ¢ iiber und umgekehrt. Daher gehen Tangenten in Tangenten iiber,
Doppeltangenten in Doppeltangenten, Haupttangenten in Haupttangenten. Der
Tangentenkomplex, die Doppeltangentenkongruenz und die Haupttangentenkongruenz
des Torus?') gestatten die Polarititen an den vier Quadriken ..

Die durch Drehung einer Doppeltangente bzw. Haupttangente von ¢ um a ent-
stehende Quadrik, 1. c. «d-Fliache» bzw. «h-Fliche» genannt, hat in jeder Meridian-
ebene von ¢ einen Meridian, der die Torusmeridiankreise in je zwei zu 4 symmetrisch
gelegenen Punkten beriihrt bzw. in je einem Punkt oskuliert. Durch die Polarititen
an @, gehen d-Flichen in d-Flichen, h-Flichen in h-Flichen iiber. Insbesondere wer-
den die Quadriken G, und G; (Abb.), deren Meridiane die Torusmeridiane in den
Schnittpunkten mit der Mittenebene hyperoskulieren, durch die Polarititen an den
@, miteinander vertauscht; G, und G, sind zugleich d-Flachen und h-Flichen von ¢.

Beim Spindeltorus sind die ¢, reell. Durch die Polarititen an den ¢, gehen
reelle Haupttangenten in reelle Haupttangenten tiber. Den Erzeugenden des Tan-
gentialkegels in einem Knotenpunkt entsprechen die Tangenten eines Flachkreises
von ¢.

3. Bemerkungen iiber ebene Schnitte und Tangentialkegel eines Torus

Durch die Polaritit an einer Quadrik ¢, geht die Schnittkurve ¢ von ¢ mit einer
Ebene y in den Tangentialkegel { aus einem Punkt Z an ¢ iiber, und umgekehrt.
Daher ergeben sich aus Eigenschaften der ebemen Schuitte von ¢ Eigenschaften der

1) Diese Strahlkongruenzen untersucht F. Hohenberg, Die Doppeltangenten und Haupttangen-
ten des Torus, Monatsh. f. Math. 74, 119-137 (1970). Bindelgrad und Feldgrad der Doppel-
tangentenkongruenz sind 4, wenn man die Geraden in den Flachkreisebenen und die Geraden
in den Minimalebenen durch die Torusachse nicht zur Kongruenz rechnet. Biindelgrad und
Feldgrad der Haupttangentenkongruenz sind 12,
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Tangentialkegel von ¢. { beriihrt ¢ lings des wahren Umrisses (Kontur) % von ¢ fiir
das Auge Z und schneidet eine (nicht durch Z gehende) Bildebene 7z im scheinbaren
Umriss k¢ von ¢ fiir das Auge Z. Bei allgemeiner Lage von y hat ¢ die Ordnung 4 und
die Klasse 8 und besitzt 2 Doppelpunkte auf dem absoluten Kegelschnitt, ferner 12
Wendepunkte; daher hat k¢ die Ordnung 8, die Klasse 4, das Geschlecht 1 und hat
8 Doppelpunkte (hochstens 4 reelle), 12 Spitzen (hichstens 4 reelle), 2 Doppeltangenten.

Besondere Lagen von vy fiithren zu besonderen Lagen von Z. Ist z. B. y parallel
zu a, so ist ¢ eine spirische Linie; Z liegt in u.

Geht y durch D,, so ist D, ein dritter Doppelpunkt von ¢, und ¢ hat die Klasse 6
und das Geschlecht 0. Dual liegt Z in einer Flachkreisebene, von k¢ spaltet sich das
Bild der Flachkreisebene (doppeltzdhlend) ab, daher hat ¢ die Ordnung 6 und das
Geschlecht 0. Wird ¢ von y in D, beriihrt, so ist D, Spitze von ¢, und ¢ hat die Klasse 5.
Dual liegt Z auf einem Flachkreis, und k¢ hat die Ordnung 5, das Geschlecht 0 und
besitzt eine Wendetangente.

Beriihrt y den Torus in einem Punkt allgemeiner Lage, so hat ¢ dort einen dritten
Doppelpunkt, daher die Klasse 6. Dual liegt Z auf ¢, und ¢ hat die Ordnung 6 und
besitzt drei Doppeltangenten.

Beriihrt y den Torus in einem Punkt der Mittenebene, so hat ¢ dort einen Doppel-
punkt mit Wendetangenten. Dual hat k¢, wenn Z auf einem Aquator oder Kehlkreis
von ¢ liegt, eine Spitzendoppeltangente. Ist ¢ eine andere Tangentialebene von G,
oder G,, so liegt Z auf G, bzw. G,, aber nicht in der Mittenebene; ¢ hat zwei Flach-
punkte, k¢ hat zwei Spitzpunkte?2).

Durch die Polaritét an ¢, vertauschen sich der absolute Kegelschnitt (Doppel-
kurve von ¢) und der Loxodromenkegel (Hiillkegel der Doppeltangentialebenen von
#). Ist y eine Doppeltangentialebene von ¢, so zerfillt ¢ in zwei Loxodromenkreise
von @. Dual zerfillt der Tangentialkegel von ¢ aus esnem Punkt Z des absoluten Kegel-
schnitts in zwei Zylinder 2. Ordnung, und k¢ zerfillt hier in zwer Kegelschnitte3).

4. Deutung im projektiven Modell der nichteuklidischen Raumgeometrie

Die Ergebnisse gestatten einfache Deutungen im Cayley-Kleinschen (projek-
tiven) Modell der nichteuklidischen Raumgeometrie. Um bei den iiblichen Bezeich-
nungen bleiben zu konnen, setzten wir ¢ als Spindeltorus voraus und verwenden als
absolute Fliache entweder ¢, ; oder ¢, ;.

1) Hyperbolische Metrik, absolute Fliche p—, 1. Da @, ; mit ¢, ; ein Erzeugenden-
vierseit (4 Minimalgeraden durch die Schnittpunkte mit a) gemein hat, ist ¢, ; eine
Cliffordsche Flidche. ¢y -, und ¢, —; beriithren ¢, ; lings je eines Kegelschnitts, sie
sind daher Kugeln bzw. Abstandsflichen der hyperbolischen Metrik; der hyper-
bolische Mittelpunkt von ¢, _, ist O, der von @, —, ist der euklidische Fernpunkt
von a.

2) Diese Bemerkungen kénnen eine direkte Untersuchung (F. Hohenberg, Uber den Zentralriss
des Torus, Monatsh. f. Math., 75, 123~135 (1971)) nicht ersetzen, denn sie sagen nichts tiber
den Dorntorus aus und sie lassen beim Ringtorus die Realitdtsverhdltnisse ausser acht.
Uberdies erhdlt man durch Polaritit nur projektive, nicht aber affine und metrische Ei-
genschaften der Umrisskurven.

3) F. Hohenberg, Projektion des Torus in isotroper Richtung, El. Math. 27, 73-76 (1972).
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Auch m,; und m, berithren @_, ; in je zwei Punkten, sie sind also in der hyper-
bolischen Metrik Kreise, und ¢ ist auch als Torus der hyperbolischen Metrik (mit der
Drehachse a und den Meridianen m,, m,) aufzufassen; als Mittenkreis gilt hier der
Kreis, der vom hyperbolischen Mittelpunkt M, von m, (absoluter Pol der Beriih-
rungssehne von ¢, ; und m, in der Meridianebene) durchlaufen wird.

2) Elliptische Metrik, absolute Fliche g, —;. Da g, —; mit ¢_, _; ein Erzeugenden-
vierseit (4 Minimalgeraden durch die Schnittpunkte mit ) gemein hat, ist ¢, _, eine
Cliffordsche Fliche. ¢, ; und @, ,; beriihren ¢_, _, lings je eines Kegelschnitts, sie
sind daher Kugeln der elliptischen Metrik; der elliptische Mittelpunkt von ¢, , ist O,
der von ¢_, , ist der euklidische Fernpunkt von a.

Auch m, und m, berithren ¢_, _,; in je zwei Punkten, sie sind also in der ellip-
tischen Metrik Kreise, und ¢ ist auch als Torus der elliptischen Metrik (Drehachse a,
Meridiane m,, m,) aufzufassen; der Mittenkreis entsteht durch Drehung des ellipti-
schen Mittelpunkts M, von m, (absoluter Pol der Berithrungssehne von ¢, —, und m,
in der Meridianebene) um a.

C sei die Masskonstante der nichteuklidischen Metrik. g sei der euklidische
Winkel, den die Tangenten von ¢ in D, bzw. D, mit a einschliessen. Dann ergibt sich
durch einfache Rechnungen:

Ist @y, oder ¢y, die absolute Fliche, so sind die sibrigen drei Quadriken @,
Kugeln bzw. Cliffordsche Flichen vom Radius Ci 7t/2. Der nichteuklidische Torus ¢ hat
den Meridiankreisvadius Ci (2 9 + m)[2; der Mittenkreisradius ist bet hyperbolischer
Metrik Ci (o + 7), bei elliptischer Metrik Cig. (Bes der elliptischen Metrik mit C = 1/23
sind diese Radien m[4 bzw. (2 9 + m)[4 bzw. 9/2.)

5. Transformation des Torus durch andere Polarititen

¢’ sei nun eine beliebige Drehquadrik mit der Achse @ und dem Mittelpunkt O.
Durch die Polaritit an ¢’ geht der Torus ¢ in eine Drehfliche 4. Ordnung ¢’ (Achse a,
Mittelpunkt O, Meridiane = Kegelschnitte, die zur Mittenebene symmetrisch sind)
iiber. Dem absoluten Kegelschnitt (Doppelkurve von ¢) entspricht dabei der von den
Doppeltangentialebenen von ¢’ eingehiillte Drehkegel (Spitze O, Achse ). Dem Loxo-
dromenkegel eines Ringtorus ¢ entspricht, wenn ¢’ reell (einteilig oder nullteilig) ist,
eine reelle Doppelkurve von ¢’, die in der Fernebene liegt. Den Flachkreisen von ¢
entsprechen Drehkegel (Achse a), die ¢’ in den konischen Knotenpunkten (auf a)
beriihren.

Ein Torus ist ¢' genau dann, wenn ¢ ein Spindel- oder Ringtorus und ¢’ eine der
vier zu ¢ gehdrenden Quadriken @, ist oder aus @, durch Streckung aus O hervorgeht
(denn die Streckung aus O ist mit der Polaritét an ¢, vertauschbar).

Im bisher ausgeschlossenen Fall des Dorntorus (r = R) ergibt sich durch Polaritat
an @' eine Drehfliche 4. Ordnung, die durch Drehung einer Parabel um eine Parallele
zu threr Scheiteltangente entsteht. Diese Fliche hat mit der Fernebene die (vierfach
zihlende) Ferngerade der Mittenebene gemein, und sie beriihrt sich langs dieser Geraden
selbst. (Hingegen entsteht eine zu sich selbst duale Drehfldche 4. Ordnung, wenn eine
Parabel um ihre Scheiteltangente rotiert; diese Flache hat einen biplanaren Knoten-
punkt wie ein Dorntorus.)

Fritz Hohenberg (Graz)
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