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Die Polaritäten, die einen Torus in sich überführen

Ordnung und Klasse des Torus sind gleich, nämlich 4. Man kann fragen, ob ein
Torus durch die Polarität an einer Fläche 2. Ordnung in sich übergeführt werden
kann. In 1. wird gezeigt, dass dies beim Dorntorus nicht möglich ist. Beim Spindel-
torus hingegen ergeben sich vier reelle Quadriken (drei einteilige und eine nullteilige),
beim Ringtorus vier komplexe Quadriken, durch deren Polarität der Torus in sich übergeht.

Daraus folgen in 2. beim Spindeltorus und beim Ringtorus Eigenschaften des

Tangentenkomplexes, der Doppeltangentenkongruenz und der Haupttangentenkongruenz,
ferner in 3. Zusammenhänge zwischen ebenen Schnitten und Tangentialkegeln im
allgemeinen Fall und in zahlreichen Sonderfällen. In 4. werden zwei jener Quadriken
als absolute Fläche einer nichteuklidischen Metrik (des Cayley-Kleinschen projektiven
Modells) gedeutet, so dass der (euklidische) Torus auch als Torus der nichteuklidischen
Metrik aufgefasst werden kann und durch die absolute Polarität in sich übergeht.
In 5. wird die Transformation des Torus durch andere Polaritäten untersucht und
dabei auch der Dorntorus behandelt.

1. Polaritäten, die einen Spindel- oder Ringtorus in sich überführen

Bezeichnungen: Torus <f>, Achse a, Mittelpunkt 0, Radius R, des Mittenkreises m
in der Mittenebene /u, Meridiankreisradius r, Knotenpunkte Dx, D2 auf a im Abstand
d Vr2 ~ jR2 von 0. Wir verwenden kartesische Koordinaten xx, x2, xz (Ursprung 0,
Mittenebene xz 0). In 1.-4. sei vorausgesetzt, dass <f> ein Spindeltorus (d reell, 4= 0)
oder Ringtorus (d rein imaginär, 4= 0) sei; der Dorntorus (r R) wird in 5. untersucht.

Soll (f> durch die Polarität an einer Quadrik cp in sich übergehen, so muss <p wegen
der Symmetrie von <f> bezüglich /a und wegen der Drehsymmetrie von cf> bezüglich a

offenbar eine Drehfläche mit der Achse a und dem Mittelpunkt 0 sein, cp habe die

Gleichung

*+3+3 x. (i)
a p

Bestimmung von a. In jeder Meridianebene, z. B. in x2 0, müssen die beiden
Meridiankreise von <f> durch Polarität am Meridian von cp entweder je in sich
übergehen oder vertauscht werden. In x2 0 liegen die Meridiankreise mx (Mitte, (R, 0, 0))
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und m2 (Mitte (— R, 0, 0)) Soll mx durch die Polantat am Meridian von cp in sich
übergehen, so muss dem Punkt (R 4- r, 0, 0) von mx die Tangente im Punkt (R — r,
0, 0) von mx entsprechen, daraus folgt a R2 — r2 — d2 Dann entspricht auch
dem Punkt (R — r, 0, 0) von mx die Tangente im Punkt (R 4- r, 0, 0) von mx Auch
entspricht jedem Schnittpunkt (— R -±_r, 0, 0) von m2 mit der xx-Achse die Tangente
von m2 im anderen Punkt - Soll hingegen mx durch die Polarität am Meridian von cp

m m2 (und umgekehrt) übergehen, so muss dem Punkt (R 4- r, 0, 0) von mx die

Tangente im Punkt (— R 4- r, 0, 0) von m2 entsprechen, daher muss a — R2 4- r2

d2 sein Dann entspricht dem Punkt (R — r, 0, 0) von mx die Tangente im Punkt
(— R — r, 0, 0) von m2

Bestimmung von ß In jeder Meridianebene, z B m x2 0, muss einem Schnittpunkt

von mx und m2 m der Polarität am Meridian von cp eme gemeinsame Tangente
von mx und m2 entsprechen, einerlei, ob mx und m2 je in sich übergehen oder
vertauscht werden Einem Knotenpunkt (0, 0, ± d) von <f> kann dabei, da cp zu a
symmetrisch ist, nur die Schnittgerade einer Flachkreisebene xz ± r mit #2 0

entsprechen Also ist ß i dr
So ergeben sich die vier Quadriken cpe7}

xx ~y~ x2
+ —L=l, e=±l,i?=±l (2)

£ d2 .7 d r

Beim Ringtorus smd die cpe komplex Beim Spmdeltorus (Abb ist cpx x em Elhpsoid,

<p~\ x em zweischahges Hyperboloid, (pit-x em einschaliges Hyperboloid, cp-x ~x
eme nullteihge Quadrik Die Parameterdarstellung

xx (2? 4- f cosz/) cosz;, x2 — (R -r r cosu) smy, xs r smu (3)

von ^ zeigt, dass dem Punkt (u, v) von cf> in der Polarität an <pe^ die Tangentialebene
von <f> im Punkt (%, vx) entspricht, wobei

ri d smu R 4- r cosu u ux ]/r + R
smux cos^ —— tg— tg- r\\ —-1 r+Rcosu 1 r+Rcosu 62 62 'fr-R

und vx v + 180°, wenn e 1, hingegen t^ ?;, wenn e — 1 ist
Durch Polarität an cpx x oder <p~ltX geht Dx(0, 0, d) m die Flachkreisebene %3 r

uber, durch Polarität an 9^1,-1 oder <p-x -x in x^= — r, analog bei D2 (0, 0, — d)
Durch Polarität an cpx x oder cpx -x vertauschen sich m jeder Meridianebene beide
Meridiankreise von cf>, durch Polarität an <p~x x oder cp-x ~x gehen sie je in sich uber

Einem Schnittpunkt von mx mit cp~X)X oder cp~x-x entspricht eme Tangente von
mx, die mit dem Schnittpunkt mzidiert Daher berühren sich <f> und <p-ltl, ebenso <f> und

cp-x -t längs zweier Parallelkreise, diese haben den Radius | R d\(d 4- rj r) \ und sie

hegen in den Ebenen x2 ± 12 r2 d/(d 4- rj r) Die Erzeugenden (beider Scharen) von
<p-XiX sind (komplexe) Doppeltangenten von <f>, ebenso die Erzeugenden von cp~x ~x

Ferner zeigt sich a) Die Zusammensetzung der Polaritäten an zwei verschiedenen

Quadriken tpen ergibt die Spiegelung an a, wenn beide cperj dasselbe yj besitzen,
hingegen die Spiegelung an pt, wenn beide <peif verschiedene rj besitzen b) Durch die

Polarität an einer Quadrik (p€1} geht fede Quadrik cpe^ m sich uber
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2. Einfluss der Polaritäten auf den Tangentenkomplex eines Torus

99

Durch die Polarität an einer Quadrik (pe7j geht jeder Punkt von cf) m eme
Tangentialebene von <j> uber und umgekehrt Daher gehen Tangenten m Tangenten uber,
Doppeltangenten m Doppeltangenten, Haupttangenten in Haupttangenten Der
Tangentenkomplex, die Doppeltangentenkongruenz und die Haupttangentenkongruenz
des Torus1) gestatten die Polaritäten an den vier Quadriken cpe

Die durch Drehung einer Doppeltangente bzw Haupttangente von (f> um a
entstehende Quadrik, 1 c «d-Flache» bzw «h-Flache» genannt, hat in jeder Meridianebene

von cf> einen Meridian, der die Torusmendiankreise in je zwei zu pt symmetrisch
gelegenen Punkten berührt bzw. m je einem Punkt oskuhert Durch die Polaritäten
an cpev gehen d-Flachen in d-Flachen, h-Flachen in h-Flachen uber Insbesondere werden

die Quadriken Ga und Gx (Abb deren Meridiane die Torusmendiane in den

Schnittpunkten mit der Mittenebene hyperoskulieren, durch die Polaritäten an den

cpe7j miteinander vertauscht, Ga und Gt smd zugleich d-Flachen und h-Flachen von cf)

"h

Beim Spmdeltorus smd die cpe reell Durch die Polaritäten an den cpe gehen
reelle Haupttangenten m reelle Haupttangenten uber Den Erzeugenden des Tan-
gentialkegels m einem Knotenpunkt entsprechen die Tangenten eines Flachkreises
von cf>

3. Bemerkungen über ebene Schnitte und Tangentialkegel eines Torus

Durch die Polarität an einer Quadrik cpe7} geht die Schnittkurve c von cf) mit einer
Ebene y m den Tangentialkegel £ aus einem Punkt Z an cf) uber, und umgekehrt
Daher ergeben sich aus Eigenschaften der ebenen Schnitte von cf) Eigenschaften der

x) Diese Strahlkongruenzen untersucht F Hohenberg, Die Doppeltangenten und Haupttangenten
des Torus, Monatsh f Math 74, 119-137 (1970) Bündelgrad und Feldgrad der

Doppeltangentenkongruenz sind 4, wenn man die Geraden in den Flachkreisebenen und die Geraden

in den Minimalebenen durch die Torusachse nicht zur Kongruenz rechnet Bündelgrad und
Feldgrad der Haupttangentenkongruenz smd 12
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Tangentialkegel von <f) f berührt cf) längs des wahren Umrisses (Kontur) k von cj> fur
das Auge Z und schneidet eme (nicht durch Z gehende) Bildebene n im scheinbaren
Umriss kc von cf) fur das Auge Z Bei allgemeiner Lage von y hat c die Ordnung 4 und
die Klasse 8 und besitzt 2 Doppelpunkte auf dem absoluten Kegelschnitt, ferner 12

Wendepunkte, daher hat kc die Ordnung 8, die Klasse 4, das Geschlecht 1 und hat
8 Doppelpunkte (höchstens 4 reelle), 12 Spitzen (höchstens 4 reelle), 2 Doppeltangenten

Besondere Lagen von y fuhren zu besonderen Lagen von Z Ist z B y parallel
zu a, so ist c eme spinsche Linie, Z hegt m pi

Geht y durch Dx, so ist Dx em dritter Doppelpunkt von c, und c hat die Klasse 6

und das Geschlecht 0 Dual hegt Z in einer Flachkreisebene, von kc spaltet sich das

Bild der Flachkreisebene (doppeltzahlend) ab, daher hat kc die Ordnung 6 und das
Geschlecht 0 Wird <f) von y in Dx berührt, so ist Dx Spitze von c, und c hat die Klasse 5.

Dual hegt Z auf einem Flachkreis, und kc hat die Ordnung 5, das Geschlecht 0 und
besitzt eme Wendetangente

Berührt y den Torus m einem Punkt allgemeiner Lage, so hat c dort einen dritten
Doppelpunkt, daher die Klasse 6 Dual hegt Z auf cf), und kc hat die Ordnung 6 und
besitzt drei Doppeltangenten

Berührt y den Torus m einem Punkt der Mittenebene, so hat c dort einen Doppelpunkt

mit Wendetangenten Dual hat kc, wenn Z auf einem Äquator oder Kehlkreis
von cf) hegt, eme Spitzendoppeltangente Ist y eme andere Tangentialebene von Ga

oder Gt, so hegt Z auf Gt bzw Ga, aber nicht m der Mittenebene, c hat zwei
Flachpunkte, kc hat zwei Spitzpunkte2)

Durch die Polarität an cpe vertauschen sich der absolute Kegelschnitt (Doppelkurve

von cf>) und der Loxodromenkegel (Hullkegel der Doppeltangentialebenen von
cf)) Ist y eme Doppeltangentialebene von cf), so zerfallt c in zwei Loxodromenkreise
von cf) Dual zerfallt der Tangentialkegel von cfi aus einem Punkt Z des absoluten
Kegelschnitts in zwei Zylinder 2 Ordnung, und kc zerfallt hier in zwei Kegelschnitte*)

4. Deutung im projektiven Modell der nichteuklidischen Raumgeometrie

Die Ergebnisse gestatten einfache Deutungen im Cayley-Klemschen (projektiven)

Modell der nichteukhdischen Raumgeometrie Um bei den üblichen Bezeichnungen

bleiben zu können, setzten wir cf) als Spmdeltorus voraus und verwenden als

absolute Flache entweder cp~xx oder cp-x-x
1) Hyperbolische Metrik, absolute Flache cp- x> x Da cpxx mit cp-xx em Erzeugenden-

vierseit (4 Minimalgeraden durch die Schnittpunkte mit a) gemein hat, ist cpx x eine
Cliffordsche Flache cpx-x und cp~x-x berühren cp~ XtX längs je eines Kegelschnitts, sie
smd daher Kugeln bzw Abstandsflachen der hyperbolischen Metrik, der
hyperbolische Mittelpunkt von cpx-x ist 0, der von cp-x-x ist der euklidische Fernpunkt
von a

2) Diese Bemerkungen können eine direkte Untersuchung (F Hohenberg Über den Zentralnss
des Torus, Monatsh f Math 75, 123-135 (1971)) nicht ersetzen, denn sie sagen nichts über
den Dorntorus aus und sie lassen beim Ringtorus die Reahtatsverhaltnisse ausser acht
Überdies erhalt man durch Polarität nur projektive, nicht aber affine und metrische Ei
genschaften der Umrisskurven

3) F Hohenberg, Projektion des Torus m isotroper Richtung, El Math 27, 73-76 (1972)
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Auch mx und m2 berühren cp-x x in je zwei Punkten, sie sind also in der
hyperbolischen Metrik Kreise, und <f) ist auch als Torus der hyperbolischen Metrik (mit der
Drehachse a und den Meridianen mx, m2) aufzufassen; als Mittenkreis gilt hier der
Kreis, der vom hyperbolischen Mittelpunkt Mh von mx (absoluter Pol der
Berührungssehne von cp-xx und mx in der Meridianebene) durchlaufen wird.

2) Elliptische Metrik, absolute Fläche cp-x-x. Da 91,-1 mit 9-1,-1 ein Erzeugenden-
vierseit (4 Minimalgeraden durch die Schnittpunkte mit a) gemein hat, ist 9^,-1 eine
Cliffordsche Fläche. cpxx und 9-1,1 berühren 99-1,-1 längs je eines Kegelschnitts, sie
sind daher Kugeln der elliptischen Metrik; der elliptische Mittelpunkt von cpxx ist 0,
der von 9-1,1 ist der euklidische Fernpunkt von a.

Auch mx und m2 berühren 9-1,-1 in je zwei Punkten, sie sind also in der
elliptischen Metrik Kreise, und <f) ist auch als Torus der elliptischen Metrik (Drehachse a,
Meridiane mx, m2) aufzufassen; der Mittenkreis entsteht durch Drehung des elliptischen

Mittelpunkts Me von mx (absoluter Pol der Berührungssehne von 9-1,-1 und mx
in der Meridianebene) um a.

C sei die Masskonstante der nichteuklidischen Metrik, o sei der euklidische
Winkel, den die Tangenten von <f) in Dx bzw. D2 mit a einschliessen. Dann ergibt sich
durch einfache Rechnungen:

Ist 9-1,1 oder 9-1,-1 die absolute Fläche, so sind die übrigen drei Quadriken cpe

Kugeln bzw. Cliffordsche Flächen vom Radius Ci n\2. Der nichteuklidische Torus <f) hat
den Meridiankreisradius Ci (2 o 4- n)\2; der Mittenkreisradius ist bei hyperbolischer
Metrik Ci (o 4- tc), bei elliptischer Metrik Ciq. (Bei der elliptischen Metrik mit C — l\2i
sind diese Radien jr/4 bzw. (2 £ 4- 7t)jA bzw. q/2.)

5. Transformation des Torus durch andere Polaritäten

cp' sei nun eine beliebige Drehquadrik mit der Achse a und dem Mittelpunkt 0.
Durch die Polarität an cp' geht der Torus cf) in eine Drehfläche 4. Ordnung <f)' (Achse a,
Mittelpunkt 0, Meridiane Kegelschnitte, die zur Mittenebene symmetrisch sind)
über. Dem absoluten Kegelschnitt (Doppelkurve von <fi) entspricht dabei der von den

Doppeltangentialebenen von <f)' eingehüllte Drehkegel (Spitze 0, Achse a). Dem Loxo-
dromenkegel eines Ringtorus cf) entspricht, wenn cp' reell (einteilig oder nullteilig) ist,
eine reelle Doppelkurve von <f)', die in der Fernebene liegt. Den Flachkreisen von <f)

entsprechen Drehkegel (Achse a), die cf)' in den konischen Knotenpunkten (auf a)
berühren.

Ein Torus ist cf)' genau dann, wenn <f) ein Spindel- oder Ringtorus und cp' eine der
vier zu <f) gehörenden Quadriken cpe7j ist oder aus cperj durch Streckung aus 0 hervorgeht
(denn die Streckung aus 0 ist mit der Polarität an cpe7j vertauschbar).

Im bisher ausgeschlossenen Fall des Dorntorus (r R) ergibt sich durch Polarität
an cp' eine Drehfläche 4. Ordnung, die durch Drehung einer Parabel um eine Parallele
zu ihrer Scheiteltangente entsteht. Diese Fläche hat mit der Fernebene die (vierfach
zählende) Ferngerade der Mittenebene gemein, und sie berührt sich längs dieser Geraden
selbst. (Hingegen entsteht eine zu sich selbst duale Drehfläche 4. Ordnung, wenn eine
Parabel um ihre Scheiteltangente rotiert; diese Fläche hat einen biplanaren Knotenpunkt

wie ein Dorntorus.)
Fritz Hohenberg (Graz)
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