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senkrecht zu den Schenkeln im Gegenwinkelfeld ausgehenden und einander in D von
innen berithrenden Bogen, dann haben wir (in anderer Bezeichnung) Figur 1a vor uns.

Werden auch die Gegenbogen 2" und 3" zua’ und ¥’ hinzugefiigt, dann ist nunmehr a”
der umschliessende und b” der umschlossene Bogen hinsichtlich der beiden aneinander-

gefiigten Bogen 4D und DB. Entsprechend liessen sich auch hinsichtlich CD ein-
schliessende und umschliessende Kreise ermitteln. Alles bisherige kann ausserdem
auch auf sich von aussen berithrende Bogen angewendet werden.

Das Bisherige kann sinngemaiss auch auf Bogenvierecke auf der Kugel iiber-
tragen werden. Um dies einzusehen, iibertragen wir etwa Figur 2 ohne die Mittel-
punktvierecke stereographisch in der iiblichen Weise von der Aquatorebene auf die
Kugeloberfliche. Diese Ubertragung ist winkeltreu, zerstért jedoch jene Beziehungen,
die in der Ebene mit Umfangswinkeln und dergleichen zu tun haben. Deshalb kénnen
wir nicht mehr vom Mittelpunktviereck ausgehen, miissen uns vielmehr ausschliesslich
auf den Kreis U stiitzen. Die entsprechenden Bogenvierecke auf der Kugel liegen nun
natiirlich nicht mehr in einer Ebene, vielmehr in vier Ebenen, die als Seitenflichen
eines Vierflachs angesehen werden kénnen.

Mit diesen Andeutungen iiber Kreisbogenvierecke, die noch um zahlreiche weitere
Bemerkungen vermehrt werden kénnten, mag es sein Bewenden haben.

J. E. Hofmann, Ichenhausen

Eine Verschirfung der Bieberbachschen Ungleichung und einige
andere Abschitzungen fiir ebene konvexe Bereiche

1. Es seien p(9#) bzw. b(#) Stiitzfunktionen und Breite eines ebenen beschrankten
konvexen Bereiches B mit inneren Punkten. p(¢) ist also der Abstand der Stiitz-
geraden mit dem Neigungswinkel ¢ von einem Punkt P, den wir als inneren Punkt
von B annehmen. b(#) ist der Abstand zwischen den Stiitzgeraden mit den Neigungs-
winkeln & und & + n. 4 bzw. Ap sei der Flicheninhalt von B bzw. der Pedalkurve
bez. P. (Diese hat in Polarkoordinaten mit Pol P die Darstellung » = p(¢).) Wir
beweisen u.a. fiir

1
](w)=;—fb(0)b(0+¢)d0, 9l <=,
s :
die Ungleichungen
A<]Je)<4p.

Die linke dieser Ungleichungen kann man fiir ¢ = 7/2 folgendermassen interpretieren:
Der Mittelwert der Inhalte aller B umschriebenen Rechtecke ist grosser als der ent-
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sprechende Mittelwert bei einem flichengleichen Kreis, es sei denn, B ist ein Kreis.
Mit Hilfe einer dhnlichen Ungleichung ergibt sich eine Verschirfung der Bieberbach-
schen Ungleichung. Dabei konnen wir voraussetzen, dass p(¢), b(p) zweimal stetig
differenzierbar sind, da man andernfalls B durch konvexe Bereiche mit zweimal stetig
differenzierbaren Funktionen p(#), b(#) approximieren kann, wobei auch die Integrale
konvergieren.

2. Wir setzen

1 T
Ip(¢)=~—2—fzb(ﬁ)P(0+¢)d?9, lpl <=.

Dann ergibt sich aus b(#) = (@) + p (& + x) und der Periodizitit von p(J)

1

Jg) = — (Lplg) + Ip (g + 7)) - (1)

Entwickelt man p(:) in eine Fourier-Reihe

p@) = ) a e, a=a_y,

k=—00

so erhdlt man

o0

A=m|alP+27 3 |a|* (143, 2)
k=2
Ip(p) =7 |ag |2+ 27 D) |ag|2coskg. (3)
k=1

Beide Formeln werden von Chernoff [1] bewiesen. Sie finden sich in dhnlicher Form
bei Hurwitz [2], S. 373, 385. Setzt man (3) in (1) ein, so fillt a, heraus. Das l4sst sich
folgendermassen verstehen: Bei Anderung des Bezugpunktes P dndert sich nur q,.
J (@) ist aber von der Lage von P unabhingig (wie auch 4). Ist a; = 0, so ist P der
Steiner-Punkt von B (vgl. z.B. Su [3]). Fiir stetig gekriimmten Rand 0B ist der
Steiner-Punkt der Schwerpunkt, falls man 0B proportional zur Kriimmung mit Masse
belegt.

Aus (3) entnimmt man folgendes: Fiir |¢ | << a/2 ist Ip(p) minimal, wenn P der
Steiner-Punkt ist; fiir |¢ | = /2 ist Ip(p) unabhingig von P; fiirr n/2 < || < 7 ist
Ip(p) maximal, wenn P der Steiner-Punkt ist. Hierdurch wird eine Aussage von
Su [3], S. 198 berichtigt. Fiir ¢ = 0 ergibt sich, wie auch Su bemerkt, ein Satz von
Steiner: Die Pedalkurve hat genau dann minimalen Inhalt, falls P der Steiner-Punkt
ist. Denn es ist

0~ [ #4000 4. @
0
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Aus (1), (2) und (3) ergibt sich durch Vergleich der Koeffizienten
Satz 1: Es gilt

A<, (5)

und Gleichheit tritt genau fiir die Kreise ein.

Fiir ¢ = m/2 findet sich diese Aussage bei Radziszewski [4] (nach einer Ver-
mutung von Biernacki) und bei Chernoff [1]. Radziszewski benutzt eine andere
Beweismethode, die ohne Anderung sogar (5) ergibt. Wie auch Radziszewski bemerkt,
ergibt sich sofort die

Bieberbachsche Ungleichung: Ist D = mgxb(ﬂ) der Durchmesser von B, so gilt

b/ 4
A {—Z—Dz,

und Gleichheit tritt genau fiir die Kreise ein.
Aus (2) und (3) ergibt sich ebenso

Lemma 1: Es gilt

falls |@ | < #/2 oder falls #/2 < |@| < 7 und P Steiner-Punkt ist. Gleichheit gilt bei
|@ | < 7/2 genau fiir die Kreise um P, bei |@| = n/2 genau fiir die Kreise, und unter
der Voraussetzung, dass P Steiner-Punkt ist, bei n/2 < |¢| <= genau fiir die
Kreise um P.

3. Der Inhalt 4, der Pedalkurve ist eine obere Schranke fiir Ip(p) und J(p).
Aus der Cauchy-Schwarzschen Ungleichung oder aus

PO —p D@+ @) =0
ergibt sich ndmlich mit (4)

Iplp) < Ip(0) = 4p (7)
und entsprechend

J(g) < J(O).
Mit (1) und (7) wird

J(O) = 5 (15(0) + Iplm) < 4, ®)
also wird
Tie) < 4p. o)

Gleichheit tritt in (7) genau dann ein, wenn () die Periode @ hat, in (8), falls B das
Symmetriezentrum P hat, und in (9), falls beides der Fall ist. (8) gestattet iibrigens eine
bekannte Deutung: Symmetriesierung, d.h. Ubergang von p(8) zu (p(#) + ¢ (& + n))/2
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vermindert den Inhalt der Pedalkurve, wihrend der Inhalt von B nach der Minkowski-
schen Ungleichung (s. Nr. 5) vergrossert wird.

4. Wir leiten nun eine Verschirfung der Bieberbachschen Ungleichung her.
Es sei P der Steiner-Punkt von B. Dann ist nach (1), (4) und Lemma 1 firp ==

1 1
JO) = 5 Tp(0) + Ip(@)) = - (Ap+ 4), (10)

und Gleichheit tritt nur fiir Kreise um P auf. Daraus ergibt sich sofort die

Verschirfung der Bieberbachschen Ungleichung: Ist P Steiner-Punkt von B, so gilt

AP+A JT
et 2 pe
2 =4

Gleichheit tritt genau fiir die Kreise um P ein. (D Durchmesser, 4 Inhalt, Ap Inhalt
der Pedalkurve bez. P.)

Dass man links nicht etwa A4 p schreiben kann, zeigen die Orbiformen. Fiir sie gilt,
falls P Steiner-Punkt ist, nach (9) und (10)
und es ist b = D. Gleichheit tritt rechts aber nur fiir zentralsymmetrische Orbiformen,
also Kreise ein.

5. Es erhebt sich die Frage, ob sich die bewiesenen Ungleichungen aus bekannten
Ungleichungen ergeben. Fiir Orbiformen fillt (5) und die Bieberbachsche Ungleichung
mit der isoperimetrischen Ungleichung zusammen. Denn ihr Umfang ist L =z b
und man erhalt

94 L8
A< —b=
=4 47
Im allgemeinen kann man aber (5) und die isoperimetrische Ungleichung nicht in
Beziehung zueinander setzen. Fiir Rechtecke mit den Seiten 2 a,, 2 a, berechnet man
2, 2 L 2 2 8
J@)=ai+ a5+ a,a,7, E=;(al+u2)+—;a1a2.
Fiir Quadrate ist der zweite Ausdruck kleiner als der erste, die isoperimetrische Un-
gleichung also schirfer als (5), fiir 4, = 2 a, ist es umgekehrt.
Die Verschirfung der Bieberbachschen Ungleichung und damit auch (6) kénnen
ebenfalls schirfer sein als die isoperimetrische Ungleichung, wie die Orbiformen

zeigen.
Fiir zwei Kurven mit den Stiitzfunktionen $,(#) und $,($#) und den Inhalten 4,
und A4, heisst

2n

A=y [ 0000 50 Hio)

0
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gemischter Inhalt und es gilt die Minkowskische Ungleichung (s. z.B. [5])
4,4, < 45,
Fiir () und ¢ (& + @) gibt diese

1 2
a<y [@0rp0ra-rop0rao,

Da hierin Gleichheit auftritt, wenn ¢ eine Periode von p(#) ist, konnte man vermuten,
dass diese Ungleichung stets besser als (5) ist. Das ist jedoch nicht der Fall. Ist
ndmlich B eine Ellipse mit Zentrum P, dann ist

fi"(ﬁ) P (0 +=f2) d < O.
0

Das ergibt sich ohne Rechnung aus der Deutung von #'(#) als orientiertem Abstand
zwischen dem Punkt auf 0B mit dem Tangentenwinkel # und dem Fusspunkt des
Lotes von P auf diese Tangente.

6. Herrn R. Schneider verdanke ich neben anderen Bemerkungen und dem Hin-
weils auf die Arbeit [4] die folgenden Hinweise. Der Mittelwert der Umfinge aller B
umschriebenen Rechtecke ist gleich dem entsprechenden Mittelwert bei einem
flichengleichen Kreis, wihrend er, wie eingangs bemerkt, fiir die Inhalte grosser ist.
Diese Aussage ist auch fiir umschriebene gleichwinklige Polygone richtig. Dadurch
wird es nahegelegt, auch die Mittelwerte der Inhalte umschriebener gleichwinkliger
Polygone zu untersuchen. Auch die Ausdehnung dieser Untersuchungen auf den
Raum bietet sich an.

E. Heil, TH Darmstadt
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