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Kleine Mitteilungen

On Regulär Right Duo Semigroups

Let S be a semigroup1) We shall say that S is right duo if every right ideal R
of S is two-sided Analogously can be defined the left duo semigroup A semigroup
is said to be a duo semigroup if it is both left and right duo 5 is called regulär if to
every element a of S there exists an element xm S such that a a x a For example,
the füll transformation semigroup of a set of 2 elements is a regulär right duo
semigroup Another example is given by the following multiplication table

0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

In this short note some ideal-theoretic charactenzations of regulär right (and
left) duo semigroups will be proved

Theorem 1. A semigroup S is a regulär right duo semigroup if and only if the

condition

BDR=RB (1)

holds for every bi-ideal B of S and every right ideal R of S

Proof Let S be a regulär right duo semigroup Then every bi-ideal B of S can
be represented m the form

B= IL, (2)

where L is a left ideal and / is a two-sided ideal of 5 (cf [3]) Therefore (1) is implied
by (2) and the Kovacs-Is6ki regulanty criterion (see [1], p 34)

Conversely, suppose that S is a semigroup admittmg property (1) for every
bi ideal B and every right ideal R oi S Then, for any right ideal R of S (1) implied

Rn 5 SR (3)

Hence S is right duo But a right duo semigroup S is regulär if and only if i" O L IL
for every two-sided ideal I and every left ideal L of S, which is implied by (1)

The following entenon can similarly be proved

Theorem 2. A semigroup S is a regulär right duo semigroup if and only if the

relation

QHR^RQ (4)

holds for every quasi-ideal Q and every right ideal R of S

*) For the undefined notions and notations we refer to [1]
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Next we give necessary and sufficient conditions for a right duo semigroup S to
be a semilattice of groups

Theorem 3. For a right duo semigroup S the following conditions are pairwise
equivalent

(A) S is a semilattice of groups
(B) Bn I BI for every bi-ideal B and every two-sided ideal I of S

(C) in Q Ql for any quasi-ideal Q and any two-sided ideal I of S

(D) I n L LI for every left ideal L and every two-sided ideal I of S

Proof (A) implies (B) It is known (cf [2], [5]) that for any two bi-ideals Bx, B2
of a semigroup 5 that is a semilattice of groups, the condition

BxnB2=BxB2 (5)

holds This implies (B)
Evidently (B) implies (C) and (C) implies (D), because every left ideal is a quasi-

ldeal, and every quasi-ideal is a bi-ideal
(D) implies (A) In case of / S, (D) implies

LnS LS (6)

for every left ideal L of S, l e 5 is a left duo semigroup Therefore condition (D)
implies

L{a)HR(a) R(a) L{a) (7)

that is,

J(a) P(a) (8)

for every element a of 5 (8) implies a ea2 u^ S a (y a e S), whence S is regulär
Thus S is a regulär duo semigroup, that is a semilattice of groups (cf [4], Theorem 2)

S Lajos, Budapest, Hungarv
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A Contour for the Poisson Integral

A convenient contour for the direct evaluation of the Poisson Integral
oo

W

does not appear to have been considered in the literature. On the contrary (1) is

invariably borrowed from real variable theory to derive Fresnel's integrals by
integrating etz2 (or e~z%) along a sector. The Fresnel integrals, however, may be

obtained independently by the procedure for evaluating Gauss's sums [2] suggesting
that a suitable modification of this procedure should also yield (1). In fact, we integrate

/« «
e 2

e-***-l
along the parallelogram ABCDEFGA as shown in the diagram.

Za XtiX + iV??

F_ tv$f

* +tx

*
Cs r +

E 5 R+tR+iv^

Za R + lR+it

2)5 R + {_.

We have
vw

f(z) dz l-e-y»R
-Rt dt

.-ä1

R
0 (R ~> oo)

(2)

(3)
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Similarly, / f(z) dz also vanishes as R --> oo. Now,

R

/(*)_. + .•) / e^;rx_1dx
CD

and

AB

giving

R

j{z)dz={i+i) / e.ll+et)^x_1dx={i+t) / g(1+;j,_1 dx

/ /(_) & + / /(*) «fe - (1 + ») / «-*' «fe (4)

AB CD

Likewise, we have
R

f(z) dz+ f(z) dz =1(1 + i) I e~xt dx (5)

FE

Equating the integrals along AD and GE in the limit as r -> 0 and R -> oo and
taking into account the contribution i ]J7t from the indentation at the origin, we
obtain, from (4) and (5),

oo oo

(1 4- i) / e~* dx + i]/n i(l + i) / e~* dx

yielding (1).
More generally, by integrating

e% zx cos8 oc

A*) ^-^.coTaTTl (6)

along a parallelogram inclined at a to the real axis, 0 ^ a < n/2 so that

D =z R + i R tana E R + i R tana 4- * ]/— seca F i ]/—

we obtain, in exactly the same manner and with no more effort,

seca

oo

(7)

which evidently includes the integrals of Fresnel (a 0) and Poisson (a — tt/4) as

special cases. Here again, the usual proof [1] of the generalisation (7) depends on an

appeal to (1).
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Changmg the variable from x to o x where o > 0 is arbitrary and settmg a -=

q2 e21 a (7) assumes the more compact form

oo

/ e'ax' dx =-
1

~ 1/ * „4=0, Im« ^0, (8)
z, f l a

o

the principal value of ]/a bemg taken on the right

K N Srmivasa Rao, University of Mysore, India
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Aufgaben

Aufgabe 647. Fur eme streng monoton wachsende Folge (at) natürlicher Zahlen
seien A(n) J£l (n 1, 2, hm sup A(n)/n [n -> oo] die obere Dichte und - im

>i<n
Falle der Existenz - hm A (n)/n [n -> oo] die Dichte Man beweise

a) Jede streng monoton wachsende Folge naturlicher Zahlen mit oberer Dichte 1

besitzt eme unendliche Teilfolge, welche aus paarweise teilerfremden Zahlen besteht

b) Zu jedem e > 0 gibt es stets eine streng monoton wachsende Folge natürlicher
Zahlen mit Dichte > 1 — e derart, dass fur keine ihrer unendlichen Teilfolgen die
Glieder paarweise denselben grossten gemeinsamen Teiler haben

P Erdos, Budapest

Fur die Losung zu Teil a) vgl diesen Band, p 65

Losung zu Teil b) Zu jedem e > 0 wollen wir eme streng monoton wachsende

Folge (at) naturlicher Zahlen mit Dichte > 1 — e konstruieren derart, dass fur jede
natürliche Zahl d nur endlich viele verschiedene at paarweise den grossten gemeinsamen

Teller d haben
Es sei n0 n0(e) genügend gross Eme natürliche Zahl a gehöre nun genau dann

zur Folge (at), wenn gilt
1) Der kleinste Primfaktor von a ist < n0, und
2) ist pk\a undpk nicht der grosste Primfaktor von a, dann hat a im Intervall (pk, en° H)
einen Primfaktor

Ware aH < aH < eme unendliche Teilfolge mit (at at d fur rx 4= r2,

so wurde gelten at dsr, (sn, srs) 1 Also hatten die at beliebig grosse Primfaktoren,

daher hatten unendlich viele unter ihnen einen Primfaktor im Intervall
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