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10. Gilt in einer euklidischen Ebene E das Axiom Z), so hat E hochstens eine
Anordnung. Gelten W) und Z) in E, so lasst sich E auf genau eine Weise anordnen.

Beweis: Ein Positivbereich eines Korpers enthilt alle Korperelemente der Form
o2 (¢ # 0) und kein Element der Gestalt —a«2. Der Koordinatenkérper einer euklidi-
schen Ebene, die Z) erfiillt, kann also wegen 9 keine von der Menge {«? | x € K*} ver-
schiedene Teilmenge zum Positivbereich haben.

Der Koordinatenkdorper einer stetig angeordneten euklidischen Ebene ist wegen 8
der reelle Zahlkorper. Die reelle euklidische Ebene ldsst sich auch kennzeichnen als
euklidische Ebene, die die Axiome W) und Z) erfiillt und deren (wegen 10 eindeutig
bestimmtes) Halbgeradensystem dem Stetigkeitsaxiom S) geniigt.

Alfred Uhl, Universitit Karlsruhe
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On a Problem of W. Sierpinski

Let a, b be fixed coprime positive integers and let p(a, b) denote the least prime
in an arithmetic progression {a x + b}. Linnik [3] has proved that there exists an
absolute constant L such that p(a, b) < a*. Pan-Cheng-Tun [5] has calculated tha;
L <104

Let C denote an absolute constant such that p(a, b) < a®. Cheng-Jing-Run [1]
has proved that p(a, b) € a". The best estimate for C to be found in literature is the
result C <550 of Jutila [2]. The Extended Riemann Hypothesis implies that
pla, b) < a+.

A positive integer # is called a pseudoprime if # | 2" — 2 and #» is composite.
In [7] (see also [8]) I proved that if 4, b are fixed coprime positive integers then there
exist infinitely many pseudoprimes of the foomax + b (x =0, 1, 2, 3, ...).

In 1965 (during a seminar which the author attended) W. Sierpinski put forward
the following problem: What estimate can we give for the least pseudoprime of the
formax+b6(x=0,1,2,3,...)°?

Here we shall prove the following.

Theorem. Let P(a, b) denote the least pseudoprime = b (moda) and let L and C
be absolute constants such that p(a, b) < a*, p(a, b) << a® respectively; then

1. log,P(a,b) <a****L for a>2,

2. logPa,b) La*?*c** for £>0.
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For any positive integer =, let f,(x¥) denote the #-th cyclotomic polynomial
defined by

) = [ (* — )09,

din

where yu is the Mobius function, and write £, = f,(2).

We can assume without any loss of generality that a is even > 2, and hence
that b is odd.

The following Lemma holds.

Lemma. Let q, g, be any two distinct odd primes satisfying the conditions

¢1ta, ¢=1(modag paq),
and let m be any (odd) integer such that

m =b(moda), m =1+ ¢, (modg?), m =1 (modg? .
If p = m (moda g2 ¢3), p prime, then one of the numbers |

pfp—-l’ pf(p—l)&’ pf(p—l)lq

is a pseudoprime = b (moda).

This Lemma was proved in [4].

Proof of the Theorem. Since L > 1 we have 4 L2 4+ 2 L > log, log, 10® and for
a < 30 our Theorem can easily be verified by using the tables of Poulet [6]. With
the help of Dr. Glyn Roberts using the tables of Poulet and computers in Cambridge,
I found that for every a <{ 100 and b coprime with a there exists a pseudoprime =)
(moda) ess than 108.1

Now let 2 > 30 and let ¢, be the least prime number such that ¢, + a. Then
¢: < Vaand ¢; < a° for any & > 0 and sufficiently large a. We have

aqi9aq) <aya(a—1)ya<a
for a > 30 and
& 2+2e

agpaq) <a-a°-a-a°=a

for any ¢ > 0 and sufficiently large a.
Let ¢ denote the least prime = 1 (moda ¢, ¢(a ¢;)). We have

g < (@)t = a®t

for a > 30 and
g < (@2*2)C = g2C+2Cs

for any ¢ > 0 and sufficiently large a, hence
4@ < a(a®l)? a = abL+?

for a > 30 and

2 2 2 2
aqz q? <a(a C+ Ce) a2s= a4C+1+4Cs+ €
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for ¢ > 0 and sufficiently large a. Thus we have
p — ﬁ(ﬂ q2 q‘.]l’ m) < (a6L+2)L — a6L2+2L
for a > 30 and
P(“ q2 q%’ m) < (u4C+1+4Cs+2e)C — a4C’+C+e(4C2+2C) .
But by our Lemma one of the numbers

Plo-ve, Plo-rs Plo—wia

is a pseudoprime of the form a x + b. Denote this number by P(«¢, d). We have
P(a,b) |20 —-2=2(2r"1-1),

hence

P(a, b) < 2¢, log,Pa,b) < p.
Thus

log, P(a, b) < a®***2L for a =2
and

log P(a, b) < a“C”C*;
for any ¢ > 0.

This completes the proof of our Theorem. Thus from the result of Jutila it
follows that

Pla, b) < g4(550)? +550 +¢ __ 12105504
and the Extended Riemann Hypothesis implies that log P(a, b) < a'®**.
A. Rotkiewicz, Warszawa
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