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10. Gilt in einer euklidischen Ebene E das Axiom Z), so hat E höchstens eine

Anordnung. Gelten W) und Z) in E, so lässt sich E auf genau eine Weise anordnen.

Beweis: Ein Positivbereich eines Körpers enthält alle Körperelemente der Form
a2 (a 4= 0) und kein Element der Gestalt — a2. Der Koordinatenkörper einer euklidischen

Ebene, die Z) erfüllt, kann also wegen 9 keine von der Menge {a2 | aG K*}
verschiedene Teilmenge zum Positivbereich haben.

Der Koordinatenkörper einer stetig angeordneten euklidischen Ebene ist wegen 8

der reelle Zahlkörper. Die reelle euklidische Ebene lässt sich auch kennzeichnen als
euklidische Ebene, die die Axiome W) und Z) erfüllt und deren (wegen 10 eindeutig
bestimmtes) Halbgeradensystem dem Stetigkeitsaxiom S) genügt.

Alfred Uhl, Universität Karlsruhe
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On a Problem of W. Sierpinski

Let a, b be fixed coprime positive integers and let p(a, b) denote the least prime
in an arithmetic progression {a x + b}. Linnik [3] has proved that there exists an
absolute constant L such that p(a, b) < aL. Pan-Cheng-Tun [5] has calculated thaj
L < 104.

Let C denote an absolute constant such that p(a, b) <^ ac. Cheng-Jing-Run [1]
has proved that p(a, b) < a777. The best estimate for C to be found in literature is the
result C < 550 of Jutila [2]. The Extended Riemann Hypothesis implies that
p(a,b)<*a* + e.

A positive integer n is called a pseudoprime if n \ 2n — 2 and n is composite.
In [7] (see also [8]) I proved that if a, b are fixed coprime positive integers then there
exist infinitely many pseudoprimes of the form a x 4- b (x 0, 1, 2, 3,

In 1965 (during a seminar which the author attended) W. Sierpinski put forward
the following problem: What estimate can we give for the least pseudoprime of the
form a x 4- b (x 0, 1, 2, 3,

Here we shall prove the following.
Theorem. Let P(a, b) denote the least pseudoprime b (moda) and let L and C

be absolute constants such that p(a, b) < aL, p(a, b) <^ ac respectively; then

1. \og2P(a,b) <a6L1+2L for a^2,
2. logP(a, b) < a4C,+c*8 for e > 0
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For any positive integer n, let fn(x) denote the n-th. cyclotomic polynomial
defined by

/.(*) i7(«--1)"l"w.
d/n

where /u is the Mobius function, and write fn fn(2).
We can assume without any loss of generality that a is even > 2, and hence

that b is odd.
The following Lemma holds.
Lemma. Let q, qx be any two distinct odd primes satisfying the conditions

qx 4 a q 1 (moda qx <p(a qx)

and let m be any (odd) integer such that

m b (moda) m 1 -{- qx (modql) m 1 (modq2)

If p m (moda q2 ql), p prime, then one of the numbers

P fp-l > P f(p-Dl2 > P f(p-Dlq

is a pseudoprime b (moda).
This Lemma was proved in [4].
Proof of the Theorem. Since L > 1 we have 4 L2 4- 2 L > log2 log2 108 and for

a < 30 our Theorem can easily be verified by using the tables of Poulet [6]. With
the help of Dr. Glyn Roberts using the tables of Poulet and Computers in Cambridge,
I found that for every a ^ 100 and b coprime with a there exists a pseudoprime fr

(moda) ess than 10M
Now let a > 30 and let q1 be the least prime number such that qx 4 a. Then

qx < ]ja and qx < ae for any e > 0 and sufficiently large a. We have

a Qi <p{a Qx) < aVa (a — 1) j/# < #3

for a > 30 and

a qx (p(a qx) < a • ae • a • a* a2 + 2e

for any e > 0 and sufficiently large a.
Let q denote the least prime 1 (moda qx <p(a qx)). We have

q < (a*)L a3L

for a > 30 and

?<(a2+2e)c==a2C+2Ce

for any s > 0 and sufficiently large a, hence

aq2fx<a(aZL)2a a6L+2

for a > 30 and

aq2 q2x <a(a2C+2Cef a2e aiC+1+*Ce+2e
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for e > 0 and sufficiently large a. Thus we have

p p(a q2 ql m) < (aQL+2)L =- a6L^2L

for a > 30 and

P(a q2 q\, m) < (a4C + 1 ^s+2e)C aic> + c + e{tc>+2C)
#

But by our Lemma one of the numbers

Php-W Pfp-i> P hp-i)lqi

is a pseudoprime of the form a x 4- b. Denote this number by P(a,b). We have

P(a, b) | 2* - 2 2 (2*-1 - 1)

hence

P(a,b) <2*>, \og2P(a,b) <p
Thus

log2P(a, b) < a6L' + 2L for a > 2

and

logP(a, fr)<a4C2 + C41

for any e > 0

This completes the proof of our Theorem Thus from the result of Jutila it
follows that

P(a, b) < a4(550)2 f 550 + e a1210M0H e

and the Extended Riemann Hypothesis implies that logP(a, b) <^ a18 + e

A. Rotkiewicz, Warszawa
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