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Angeordnete affine Ebenen als Ebenen
mit einem System von Halbgeraden, und euklidische Ebenen,
die genau eine Anordnung besitzen

Einleitung: Unter einer affinen Ebene versteht man bekanntlich eine Punkt-
menge P ={4, B, ...} mit einem System ® ={a,d, ...} von Teilmengen — den
Geraden, das die drei folgenden Forderungen erfiillt: Zu je zwei verschiedenen
Punkten gibt es genau eine Gerade, die diese Punkte enthélt. Ist g eine Gerade und P
ein Punkt, so gibt es genau eine Parallele 4 zu g (d.h. eine Gerade 4 mit 4 = g oder
h 0 g = o), die P enthalt. Es gibt drei Punkte, die nicht ein und derselben Geraden
angehoren.

Eine affine Ebene heisst angeordnet, wenn eine dreistellige Relation — die
Zwischenrelation — auf der Punktmenge erklirt ist, die gewisse Axiome erfiillt (siehe
Hilbert [3]). Mehrere Kennzeichnungen der angeordneten Ebenen sind bekannt, bei
denen die Forderungen iiber die Zwischenrelation durch andere Axiome ersetzt sind
(siche z.B. Karzel und Ellers [4]).

Im folgenden wird eine Einfiihrung der Anordnung in affinen Ebenen gegeben,
die vom Begriff der Halbgeraden ausgeht und sich auf zwei Axiome stiitzt. Fiir eine
desarguessche angeordnete Ebene A wird ein Beweis des bekannten Satzes gefiihrt:
Die Anordnung von A induziert eine Anordnung des Koordinatenschiefkorpers F
von A. Dabei ergibt sich der Positivbereich F+ von F als Gruppe der richtungerhalten-
den Automorphismen der Translationsgruppe T von A?). Bemerkenswert ist vielleicht
noch, dass sich das Stetigkeitsaxiom allein mit Hilfe des Grundbegriffs « Halbgerade»
formulieren ldsst. Im letzten Paragraphen werden euklidische Ebenen (im Sinn von
Bachmann [2]) betrachtet. Durch metrische Eigenschaften wird eine Klasse euklidi
scher Ebenen ausgezeichnet, die genau eine Anordnung zulassen.

§ 1. Angeordnete affine Ebenen als Ebenen mit Halbgeradensystem

Definition: Eine affine Ebene (8, ®) heisst angeordnet, wenn zu jedem inzidenten
Paar P, g(P € B, g € ®) zwei Teilmengen g’(P), g"(P) von g mit einer Midchtigkeit > 1
so gegeben sind, dass g'(P) y g"(P) = g, g'(P) N g"(P) = {P} ist und die Gesamtheit
A der gegebenen Teilmengen den Axiomen 4,, 4, geniigt.

Bezeichnungen: Jede der beiden zum Paar P, g gehorigen Mengen aus U heisst
Halbgerade von g mit Randpunkt P oder kurz P-Halbgerade von g. Jedes geordnete
Paar (R, S) verschiedener Punkte legt die Verbindungsgerade g = RS und jene R-
Halbgerade von g, die S enthilt, eindeutig fest. Sie wird mit [RS) bezeichnet. Wenn
im folgenden das Zeichen [XY) auftritt, ist damit stets auch ausgesagt, dass X = Y
ist. Offenbar gilt: T € [RS), T = R < [RS) = [RT).

1) Dabei heisst ein Automorphismus a von T richtungerhaltend, wenn fiir jede Translation
% *+ v x und « x die gleichen Halbgeraden in sich abbilden.
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Axiome der Anordnung:

A,) Ist [RS) eine Halbgerade von g und o eine Parallelprojektion?) von g auf
eine Gerade 4, so ist o([RS)) eine Halbgerade von 4 mit Randpunkt oR.

A,) Sind o, T zwei Parallelprojektionen einer Geraden g auf eine Parallele % zu g
und g’ eine Halbgerade von g, so gilt:

o(g) Dt (g) oder o(g)Cr(g)

Eine angeordnete affine Ebene heisst stetig angeordnet, wenn sie das Stetigkests-
axiom erfiillt:

S) Ist H eine nichtleere Untermenge einer Halbgeraden [RS), so ist der Durch-
schnitt aller Halbgeraden, die in [RS) enthalten sind und H umfassen, wieder eine
Halbgerade.

Es ist leicht einzusehen, dass die obige Definition der angeordneten affinen
Ebenen dquivalent ist zu der von Karzel und Ellers in [4] angegebenen Definition.

Fiir den Beweis des in der Einleitung angekiindigten Satzes werden nun drei
Hilfssdtze bereitgestellt.

1. Ist [RS) eine Halbgerade von g und Peg, P ¢ [RS), so gilt [RS) C [PR).

Beweis: R’, S’ seien die Bilder von R bzw. S bei einer Parallelprojektion ¢ von g
auf eine Parallele # + g zu g. Mit der Parallelprojektion v von % auf g, die R in P
iiberfiihrt, gilt nach A,: [P S’) D [RS). Dies fithrt zu R e [Pt S"), also wegen R + P
zu [Pt S’y = [PR) und damit zur Behauptung.

2. Aus [PQ) = [RS) folgt P = R. Mit andern Worten: jede Halbgerade hat
genau einen Randpunkt.

Beweis: Unter der Annahme R + P ergibt sich [PR) = [RP) aus [PQ) =[RS).
Fiir einen (nach der Definition der Halbgeraden existierenden) Punkt 7 ¢ [PR) von
g= PR ist [PT) N [PR) = {P} also R¢ [PT) und wegen 1 T € [RP) im Wider-
spruch zu [RP) = [PR). :

3. [PQ> 2 [OR)> impliziert P ¢ [QR>.

Beweis: Wegen P + ( fithrt die Annahme P € [QR) auf [QR) = [QP). Fiir die
von [PQ> verschiedene P-Halbgerade g’ von g = PQ gilt Q ¢ g’ und nach 1 [QP) D¢’
Dies ergibt [PQ)> D g’, was wegen [PQ) =+ g nicht moglich ist.

§ 2. Die richtungerhaltenden Automorphismen der Translationsgruppe T

Fiir alle weiteren Uberlegungen wird eine angeordnete affine Ebene zugrunde
gelegt, die zugleich Translationsebene ist. Es gibt dann zu je zwei Punkten P, Q genau
eine Translation q in der Gruppe T der Translationen mit a(P) = Q.

Definition: Zwei Translationen x, y € T* = T\{v} heissen parallel (in Zeichen
% || p), wenn sie die gleichen Spuren (d.h. Fixgeraden) haben. %, y € T* heissen gleich-
gerichtet (x ¢ 1), wenn fiir alle Punkte P gilt: [P x(P)) = [P y(P)).

Offensichtlich sind die Relationen ||und # Aquivalenzrelationen auf T*, und aus
x ¢ v folgt stets x || v.

2) Parallelprojektion von g auf # bedeutet hier stets eine Abbildung ¢: g — &, bei der P, g P
einer Parallelen zu einer festen Geraden » gehoren, die weder zu g noch zu A parallel ist.
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4. Ist Pe P und ae T*, so ist a([P a(P))) eine in [P a(P)>\{P} enthaltene
Halbgerade.

Beweis: Es seien g die Spur von a durch P, & =+ g eine weitere Spur von q,
Reh, S = a(R) und o, t die Parallelprojektionen von 4 auf g mit ¢(R) = P, 7(R) =

[AY AN h

I\ I\

I\ [N

I} \ / \

! ! \
ay ! \

! N \
L M AY g
P il 9

a(P) =: Q. Die Restriktion von a auf g stimmt offenbar mit 7 - ¢~ {iberein, so dass
a([PQ>) die Halbgerade 7([RS)) = [Q7 S) ist. Nach A, ist eine von den Halbgeraden
d([RS)), T([RS)) Obermenge der andern. Da [Q7S) nicht [PQ) enthalten kann
~ sonst wire [Qt S) = [QP) Obermenge von [PQ) entgegen 3 — ist [Q7S) C [PQ)
und nach 3 P ¢ [Q1S).

5.Sind a, x € T* und ist || a, sogilt genau einer der Beziehungen:x ¢ a,x # —a.

Bewers: Die zu a inverse Translation — q ist nicht mit a gleichgerichtet. Denn fiir
P ¢ P bildet — a die Teilmenge a([P a(P))) von [P a(P)>\{P} auf [P a(P)) ab, kann
also als Injektion den Punkt P nicht in einen Punkt von [P a(P)) tiberfiithren.
Es bleibt zu zeigen, dass wenigstens eine der angegebenen Beziehungen gilt. Dazu sei
P € P und g die Spur von a durch P. Da x(P) wegen z || a auf g liegt und damit einer
der beiden P-Halbgeraden [P a(P)), [P (—a)(P)) von g angehort, geniigt es zu
zeigen: Aus x(P) € [P a(P)) folgt ¥(Z) € [Z a(Z)) fiir alle Z. Sei & die Spur von a
durch Z und zunichst # + g. Dann fithrt die Parallelprojektion ¢: g - A mitgP = Z
den Punkt %(P)e [P a(P)) in den Punkt x(Z) iiber, und dieser liegt nach A, in
o([P a(P)>) = [Z a(Z)). Genauso kommt man im Fall 4 = g zum Ziel, wenn man
anstelle von P einen Punkt Z ¢ g verwendet.

Aus (4) folgt unmittelbar:

6.Sind x,ye T*und istx # n,soistx & x+v.

Definition: Ein Automorphismus « von T heisst spurerhaltend, wenn a x || %
fiir alle ¥, und richtungerhaltend, wenn o« x # x fiir alle xe T*.

Wie in [1] gezeigt wird, ist eine desarguessche affine Ebene isomorph einer
affinen Ebene iiber einem Schiefkérper F. Dabei ist die multiplikative Gruppe (F*, -)
von F = F* ) {0} die Gruppe der spurerhaltenden Automorphismen von T (mit dem
Hintereinanderausfithren der Abbildungen als Verkniipfung) und O der Endo-
morphismus T—>T, ¥ —v. Fiir «, § € Fist die Abbildung y(«, 8): T —> T, x >ax + fx
wieder in F, und man erhilt die additive Gruppe von F durch die Definition: « 4+ 8 =
¥( B)-

7. Ist (P, ®, A) eine angeordnete desarguessche affine Ebene, so ist die Klasse F+
der richtungerhaltenden Automorphismen der Translationsgruppe T ein Positiv-
bereich im Koordinatenschiefkérper F. Das heisst F+ hat die Eigenschaften:

a) 0 ¢ F*. Fiir jedes Element a € F*:= F\ {0} gilt entweder « € F+ oder —a € F*.

b) Aus «, B € Ft folgt stets: « + e Ffund « - g € F*.
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Beweis: Da t eine Aquivalenzrelation ist, folgt die erste der Bedingungen unter b)
aus 6 und die zweite aus der Definition von (F*, ).

Zu a). Es sei o € F* und a ein fester Vektor aus T*. Dann ist « a || a und nach 5
entweder a a # a oder (—a)a # a. Es geniigt also zu zeigen: Aus . a ¢ a fiir eine
Translation a € T* folgt a ¥ # x fiir alle x € T*.

Dazu seien P ein beliebiger Punkt und g bzw. % die Spuren von a bzw. ¥ durch P
und zunidchst %2 + g. Von den zueinander parallelen Translationen x — a, « (¥ — a)

(xa)(P) L.

a(P)

P

fithrt die erste a(P) in x(P) und die zweite (x a) (P) in (« x) (P) iiber. Nach A, liegen
also ¥(P) und (« x) (P) auf der gleichen P-Halbgeraden von %, da a(P) und (« a) (P)
auf der gleichen P-Halbgeraden von g sind. Daher gilt «  # . Ist 4= g, so kommt
man auf den eben behandelten Fall, wenn man a ersetzt durch eine Translation
o’ € T* mit o’ _||” a.

Bemerkungen: Der Positivbereich F*+ bestimmt eine Anordnung des Schief-
korpers F: Auf F wird die Relation < definiert: « < f <= f — « € F+. < hat die Eigen-
schaften einer Ordnungsrelation:

a) Fiir «, B € F gilt stets genau eine der Beziehungen: « < 8, a = §, f < a.

bja <, f<y=>a<y.

(F, <) ist ein angeordneter Schiefkorper, das heisst ausser a) und b) gilt fiir «, 5,y € F
stets:

Ja<fB=>a+y <pf+yund

dja<fund0<y=ay <fyundya <yp.

Ein angeordneter Schiefkorper heisst vollstindig, wenn gilt:

V) Jede nach oben beschriankte Teilmenge H =+ s von F hat eine obere Grenze
(Vollstdndigkeitsaxiom). Ein angeordneter Schiefkorper F heisst archimedisch ange-
ordnet, wenn es zu a € F stets eine Summe 1+ 1+ 1+ ...+ 1=:#% gibt mit « < #.
Jeder archimedisch angeordnete Schiefkorper ist kommutativ (siehe Artin [1],
Theorem 1.18). Geniigt ein angeordneter Schiefkérper dem Vollstindigkeitsaxiom,
so ist er (wie leicht zu sehen) archimedisch angeordnet, folglich kommutativ und er-
fiillt somit alle Axiome des reellen Zahlkérpers.

8. Ist A eine stetig angeordnete desarguessche affine Ebene, so ist ihr Koordinaten-
schiefkorper F isomorph zum Korper der reellen Zahlen.

Beweis: Nach den Vorbemerkungen geniigt es zu zeigen, dass F aufgrund des
Stetigkeitsaxioms vollstdndig ist. Dazu wird fiir eine durch 0 nach unten beschriankte
Teilmenge B + ¢ von F die Existenz der unteren Grenze nachgewiesen. (Eine durch ¢
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nach oben beschrankte Teilmenge H + ¢ von F hat genau dann eine obere Grenze,
wenn die durch 0 nach unten beschrinkte Menge H':= {o — a | « € H} eine untere
Grenze hat.)

Es sei [P x(P)) eine Halbgerade in A. Dann gilt ¢ + B':= {(f %) (P) | f € B}
C [P x(P)), weil B B = 0 < f. Weil S) gilt, ist der Durchschnitt aller Halbgeraden,
die in [P x(P)) enthalten sind und B’ umfassen, eine Halbgerade [RS>. Wegen
(RS> C [P x(P)) gibt es ein 7 >> 0 mit (r x) (P) = R, und es gilt:

[RS) = {((z + @) %) (P) | « = 0} > B".

Dies zeigt, dass v untere Schranke von B ist. Fiir jede untere Schranke y von B ist
y < 7, weil die Halbgerade {((y + «) (x) (P) | « > 0} die Menge B’ enthilt und des-
halb nicht echte Teilmenge von [RS) sein kann.

Bemerkung: Eine affine Ebene iiber einem angeordneten Schiefkorper ldsst sich
anordnen durch Vorgabe der Mengen {(« x) (4) |« > 0} (x € T*) als Halbgeraden.

§ 3. Euklidische Ebenen, die genau eine Anordnung zulassen

Der Begriff euklidische Ebene wird hier im Sinn von Bachmann [2] verwendet
und kann folgendermassen erklirt werden. (B, ®) sei eine affine Ebene. Es sei eine
symmetrische Relation | C® x & — die Orthogonalitidtsrelation — gegeben. Fiir
(g, h) € | wird g | h geschrieben und g heisst dann senkrecht zu % oder auch ein Lot
von h. Das Tripel [P, ®, | ] heisst euklidische Ebene, wenn die folgenden vier Axiome
erfiillt sind:

0,) Ist g e ®, so bilden die Lote von g ein Parallelbiischel. dem g nicht angehort.

O,) Parallele Geraden haben die gleichen Lote.

S;) Zu jeder Geraden g gibt es genau eine involutorische Bijektion g: B — P
— die Spiegelung an g — die g punktweise fest ldsst, Geraden in Geraden iiberfiithrt und
die Orthogonalitit erhilt.

S,) Haben drei Geraden a, b, ¢ einen Punkt oder ein Lot gemein, so ist die
Produktabbildung ¢ - b - 4 wieder eine Geradenspiegelung 43).

In [2], Kapitel IV, finden sich die folgenden Ergebnisse, an die die weiteren Uber-
legungen ankniipfen. In einer euklidischen Ebene E gelten der affine Satz von Pappus
und das Axiom von Fano. E hat daher (als affine Ebene) einen kommutativen Ko-
ordinatenkorper K mit einer von 2 verschiedenen Charakteristik. Es werden unter
anderm euklidische Ebenen betrachtet, die das folgende Zusatzaxiom iiber die
Existenz von «Winkelhalbierenden» erfiillen:

W) Zu je zwei Geraden a, b gibt es eine Gerade w mit w(a) = b.

Wenn eine euklidische Ebene die Bedingung W) erfiillt, ist der zugehorige
Koordinatenkorper pythagoreisch (d.h. fiir jede Summe ¢ von Quadraten in K:
a) ¢ ist Quadrat und b) ¢ + — 1), daher formal-reell%) und folglich (siehe [5], 3. Aufl.,,
§ 72) anordnungsfihig. Jede euklidische Ebene, die dem Axiom W) geniigt, kann also
auf mindestens eine Weise angeordnet werden.

Dafiir, dass eine euklidische Ebene hochstens eine Anordnung besitzt, ldsst sich
nun eine hinreichende Bedingung rein metrischer Art angeben. Fiir die Formulierung

3) 4, b, ¢, ... bezeichnen hier stets die Geradenspiegelungen an a, b, c, ... .
4) So heissen kommutative Korper, in denen —1 nicht als Quadratsumme darstellbar ist.
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dieses Zusatzaxioms Z) ist es vorteilhaft, den zu einem Paar P, g eindeutig bestimmten
Fusspunkt des Lotes von P auf g mit P, zu bezeichnen.

Z) Sind P, X Punkte einer Geraden g und % ein Lot von g mit P, X ¢ A, so geht
durch genau einen der Punkte X, 4(X) eine Gerade x mit P, € A.

9. Wenn eine euklidische Ebene E dem Axiom Z) geniigt, gilt fiir jedes Element
f + 0 des Koordinatenkorpers K von E: Entweder f oder — f ist in K als Quadrat
darstellbar.

Beweis: Es seien H, P verschiedene Punkte, g:= HP und % das Lot von gin H.
Da fiir eine Gerade z durch P stets P, = P also P, ¢ h gilt, gibt es durch den Spiegel-

punkt ;(P) =: A eine Gerade y mit P, € k. Sei nun « € K*, a:= HA die Translation
mit a(H) = A und X := (x a) (H). Wir zeigen: Dann und nur dann ist « Quadrat,
wenn durch (« a) (H) eine Gerade x geht mit P, € A. Dann: Die Parallele zu y durch P,
schneidet g in einem Punkt (4 a) (H) = : Q. Nach dem Hohensatz5) ist Q P, eine Hohe
im Dreieck PQ P, und folglich Q P, zu x parallel. Es sei A’ die Dilatation mit Zentrum

H, die A nach (4 a) (H) =: Q bringt. Identifiziert man die Punkte mit ihren Orts-
vektoren beziiglich H, so ist A’ die Abbildung ¥ - A%. Da y zu QP, und QP, zu x
parallel ist, gilt A’(Q) = X, also A’ 0A’(4) = A'(Q) = X, das heisst A2a = a a und
o= A%

Nur dann: Ist & = A? % 0, so definiert man Q:= (4 a) (H). Die Dilatation A’ mit
AN(H) = H, A'(4) = Q fithrt dann QP, in eine Gerade der gesuchten Art iiber.

Ist « € K, so geht nach Z) entweder durch («x a) (H) oder durch (—a a) (H) eine
Gerade x mit P, € A, und folglich ist genau eines der Elemente a, —a Quadrat.

8) Der Hohenschnittpunktsatz fir Dreiecke gilt in jeder euklidischen Ebene.
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10. Gilt in einer euklidischen Ebene E das Axiom Z), so hat E hochstens eine
Anordnung. Gelten W) und Z) in E, so lasst sich E auf genau eine Weise anordnen.

Beweis: Ein Positivbereich eines Korpers enthilt alle Korperelemente der Form
o2 (¢ # 0) und kein Element der Gestalt —a«2. Der Koordinatenkérper einer euklidi-
schen Ebene, die Z) erfiillt, kann also wegen 9 keine von der Menge {«? | x € K*} ver-
schiedene Teilmenge zum Positivbereich haben.

Der Koordinatenkdorper einer stetig angeordneten euklidischen Ebene ist wegen 8
der reelle Zahlkorper. Die reelle euklidische Ebene ldsst sich auch kennzeichnen als
euklidische Ebene, die die Axiome W) und Z) erfiillt und deren (wegen 10 eindeutig
bestimmtes) Halbgeradensystem dem Stetigkeitsaxiom S) geniigt.

Alfred Uhl, Universitit Karlsruhe
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On a Problem of W. Sierpinski

Let a, b be fixed coprime positive integers and let p(a, b) denote the least prime
in an arithmetic progression {a x + b}. Linnik [3] has proved that there exists an
absolute constant L such that p(a, b) < a*. Pan-Cheng-Tun [5] has calculated tha;
L <104

Let C denote an absolute constant such that p(a, b) < a®. Cheng-Jing-Run [1]
has proved that p(a, b) € a". The best estimate for C to be found in literature is the
result C <550 of Jutila [2]. The Extended Riemann Hypothesis implies that
pla, b) < a+.

A positive integer # is called a pseudoprime if # | 2" — 2 and #» is composite.
In [7] (see also [8]) I proved that if 4, b are fixed coprime positive integers then there
exist infinitely many pseudoprimes of the foomax + b (x =0, 1, 2, 3, ...).

In 1965 (during a seminar which the author attended) W. Sierpinski put forward
the following problem: What estimate can we give for the least pseudoprime of the
formax+b6(x=0,1,2,3,...)°?

Here we shall prove the following.

Theorem. Let P(a, b) denote the least pseudoprime = b (moda) and let L and C
be absolute constants such that p(a, b) < a*, p(a, b) << a® respectively; then

1. log,P(a,b) <a****L for a>2,

2. logPa,b) La*?*c** for £>0.
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