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Angeordnete affine Ebenen als Ebenen
mit einem System von Halbgeraden, und euklidische Ebenen,

die genau eine Anordnung besitzen

Einleitung: Unter einer affinen Ebene versteht man bekanntlich eine Punktmenge

^5 {A, B, ...} mit einem System © {«,&,...} von Teilmengen - den
Geraden, das die drei folgenden Forderungen erfüllt: Zu je zwei verschiedenen
Punkten gibt es genau eine Gerade, die diese Punkte enthält. Ist g eine Gerade und P
ein Punkt, so gibt es genau eine Parallele h zu g (d.h. eine Gerade h mit h g oder
h O g 0), die P enthält. Es gibt drei Punkte, die nicht ein und derselben Geraden
angehören.

Eine affine Ebene heisst angeordnet, wenn eine dreistellige Relation - die
Zwischenrelation - auf der Punktmenge erklärt ist, die gewisse Axiome erfüllt (siehe
Hilbert [3]). Mehrere Kennzeichnungen der angeordneten Ebenen sind bekannt, bei
denen die Forderungen über die Zwischenrelation durch andere Axiome ersetzt sind
(siehe z.B. Karzel und Ellers [4]).

Im folgenden wird eine Einführung der Anordnung in affinen Ebenen gegeben,
die vom Begriff der Halbgeraden ausgeht und sich auf zwei Axiome stützt. Für eine

desarguessche angeordnete Ebene A wird ein Beweis des bekannten Satzes geführt:
Die Anordnung von A induziert eine Anordnung des Koordinatenschiefkörpers F

von A. Dabei ergibt sich der Positivbereich F+ von F als Gruppe der richtungerhaltenden

Automorphismen der Translationsgruppe T von A1). Bemerkenswert ist vielleicht
noch, dass sich das Stetigkeitsaxiom allein mit Hilfe des Grundbegriffs «Halbgerade»
formulieren lässt. Im letzten Paragraphen werden euklidische Ebenen (im Sinn von
Bachmann [2]) betrachtet. Durch metrische Eigenschaften wird eine Klasse euklidi
scher Ebenen ausgezeichnet, die genau eine Anordnung zulassen.

§ 1. Angeordnete affine Ebenen als Ebenen mit HalbgeradenSystem

Definition: Eine affine Ebene (*ß, ©) heisst angeordnet, wenn zu jedem inzidenten
Paar P, g(P ety, ge (5) zwei Teilmengen g'(P), g"(P) von g mit einer Mächtigkeit > 1

so gegeben sind, dass g'(P) u g"(P) g> g'(P) ° g"(P) {P} ist und die Gesamtheit
91 der gegebenen Teilmengen den Axiomen Ax, A2 genügt.

Bezeichnungen: Jede der beiden zum Paar P, g gehörigen Mengen aus 21 heisst

Halbgerade von g mit Randpunkt P oder kurz P-Halbgerade von g. Jedes geordnete
Paar (R, S) verschiedener Punkte legt die Verbindungsgerade g — RS und jene R-
Halbgerade von g, die 5 enthält, eindeutig fest. Sie wird mit [RS} bezeichnet. Wenn
im folgenden das Zeichen [XY} auftritt, ist damit stets auch ausgesagt, dass X 4= Y
ist. Offenbar gilt: Te[RS}, T 4= R <=> [RS} [RT}.

1) Dabei heisst ein Automorphismus a von T richtungerhaltend, wenn für jede Translation
X =# v % und a X die gleichen Halbgeraden in sich abbilden.



78 A. Uhl: Angeordnete affine Ebenen als Ebenen mit einem System von Halbgeraden

Axiome der Anordnung:

Ax) Ist [RS} eine Halbgerade von g und a eine Parallelprojektion2) von g auf
eine Gerade h, so ist a([RS}) eine Halbgerade von h mit Randpunkt aR.

A2) Sind er, t zwei Parallelprojektionen einer Geraden g auf eine Parallele h zu g
und g' eine Halbgerade von g, so gilt:

«rfeODTte') oder ex (£') C r (£')•

Eine angeordnete affine Ebene heisst stetig angeordnet, wenn sie das Stetigkeitsaxiom

erfüllt:
S) Ist H eine nichtleere Untermenge einer Halbgeraden [RS}, so ist der Durchschnitt

aller Halbgeraden, die in [RS} enthalten sind und H umfassen, wieder eine

Halbgerade.
Es ist leicht einzusehen, dass die obige Definition der angeordneten affinen

Ebenen äquivalent ist zu der von Karzel und Ellers in [4] angegebenen Definition.
Für den Beweis des in der Einleitung angekündigten Satzes werden nun drei

Hilfssätze bereitgestellt.
1. Ist [RS} eine Halbgerade von g und P e g, P <ß [RS}, so gilt [RS} C [PR}.
Beweis: R', S' seien die Bilder von R bzw. S bei einer Parallelprojektion a von g

auf eine Parallele h 4= g zu g. Mit der Parallelprojektion r von h auf g, die R' in P
überführt, gilt nach A2: [PrS'} D [RS}. Dies führt zu R e [PrS'}, also wegen R 4= P
zu [PrS'> [PR} und damit zur Behauptung.

2. Aus [PQ} - [RS} folgt P R. Mit andern Worten: jede Halbgerade hat
genau einen Randpunkt.

Beweis: Unter der Annahme R 4= P ergibt sich [PR} [PP> aus [P<?> [RS}.
Für einen (nach der Definition der Halbgeraden existierenden) Punkt T $ [PR} von
g PR ist [PP> O [PR} {P} also P £ [PP> und wegen 1 T e [PP> im Widerspruch

zu [PP> [PP>.
3. [PQ} D [QR} impliziert P$[QR}.
Beweis: Wegen P 4= Q führt die Annahme P e [<?P> auf [<?P> [QP}. Für die

von [P(>> verschiedene P-Halbgerade g' von g PQ gilt @ £ g' und nach 1 [@P> D g'.
Dies ergibt [P@> D g', was wegen [P(?> 4= g nicht möglich ist.

§ 2. Die richtungerhaltenden Automorphismen der Translationsgruppe T

Für alle weiteren Überlegungen wird eine angeordnete affine Ebene zugrunde
gelegt, die zugleich Translationsebene ist. Es gibt dann zu je zwei Punkten P, Q genau
eine Translation a in der Gruppe T der Translationen mit a(P) Q.

Definition: Zwei Translationen at, X) e T* T\{v} heissen parallel (in Zeichen
X || i)), wenn sie die gleichen Spuren (d.h. Fixgeraden) haben. i,^eT* heissen

gleichgerichtet (x it X))t wenn für alle Punkte P gut: [P x(P)} [P t)(P)}.
Offensichtlich sind die Relationen || und ft Äquivalenzrelationen auf T*, und aus

x ft 9 folgt stets x || X).

%) Parallelprojektion von g auf h bedeutet hier stets eine Abbildung CT: g ~> h, bei der P, aP
einer Parallelen zu einer festen Geraden r gehören, die weder zu g noch zu h parallel ist.
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4. Ist Pe<ß und ae T*, so ist a([P ct(P)>) eine in [P a(P)>\{P} enthaltene
Halbgerade.

Beweis: Es seien g die Spur von a durch P, h 4= g eine weitere Spur von a,
R e h, S a(R) und a, r die Parallelprojektionen von h auf g mit a(R) P, r(P)

R S

-ft JT
/ \ / \
/ \ / \

/ \ / \
U v, ^

a(P) =: Q. Die Restriktion von a auf g stimmt offenbar mit t • <r-1 überein, so dass

a([PQ}) die Halbgerade r([RS}) [Qr S} ist. Nach A2 ist eine von den Halbgeraden
a([RS}), t([RS}) Obermenge der andern. Da [QrS} nicht [PQ} enthalten kann

- sonst wäre [QrS} [QP} Obermenge von [PQ} entgegen 3 - ist [QrS} C [PQ}
und nach 3 P$[QrS}.

5. Sind a,ieP und ist 3t || et, so gilt genau einer der Beziehungen: x ft a, x ft — a.

Beweis: Die zu a inverse Translation — et ist nicht mit a gleichgerichtet. Denn für
Pety bildet - a die Teilmenge a([P a(P)>) von [P a(P)>\{P} auf [P a(P)> ab, kann
also als Injektion den Punkt P nicht in einen Punkt von [P ct(P)> überführen.
Es bleibt zu zeigen, dass wenigstens eine der angegebenen Beziehungen gilt. Dazu sei

P e?ß und g die Spur von a durch P. Da x(P) wegen x || ct auf g liegt und damit einer
der beiden P-Halbgeraden [P et(P)>, [P (— a) (P)> von g angehört, genügt es zu
zeigen: Aus x(P) e [P a(P)} folgt x(Z) e [Z a(Z)} für alle Z. Sei h die Spur von et

durch Z und zunächst h 4= g. Dann führt die Parallelprojektion o: g -+h mit aP Z
den Punkt x(P) e [P a(P)> in den Punkt x(Z) über, und dieser liegt nach Ax in
or([P et(P)>) [Z a(Z)}. Genauso kommt man im Fall h g zum Ziel, wenn man
anstelle von P einen Punkt Z $ g verwendet.

Aus (4) folgt unmittelbar:
6. Sind x,t)eT* und ist x ft t), so ist x ft x + t).

Definition: Ein Automorphismus a von T heisst spurerhaltend, wenn <x.x\\x
für alle x, und richtungerhaltend, wenn a at ft x für alle x E T*.

Wie in [1] gezeigt wird, ist eine desarguessche affine Ebene isomorph einer
affinen Ebene über einem Schiefkörper F. Dabeiist die multiphkative Gruppe (F*, •)

von F F* \j {0} die Gruppe der spurerhaltenden Automorphismen von T (mit dem
Hintereinanderausführen der Abbildungen als Verknüpfung) und 0 der Endo-

morphismus T -> T, x -> v. Für a, ß e F ist die Abbildung y(<x, ß): T -> T, x -* a x 4- ßx
wieder in F, und man erhält die additive Gruppe von F durch die Definition: a 4- ß

y(a, ß).

7. Ist (Sß, ©, 91) eine angeordnete desarguessche affine Ebene, so ist die Klasse F+

der richtungerhaltenden Automorphismen der Translationsgruppe T ein Positivbereich

im Koordinatenschiefkörper F. Das heisst F+ hat die Eigenschaften:
a) 0 $ F+ Für jedes Element a e F*: F\{0} gilt entweder a e F+ oder — a e F+.

b) Aus a, ß e F+ folgt stets: a 4- ß e F+ und a • ß e F+.
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Beweis: Da ft eine Äquivalenzrelation ist, folgt die erste der Bedingungen unter b)
aus 6 und die zweite aus der Definition von (F+, •).

Zu a). Es sei aeF* und et ein fester Vektor aus T*. Dann ist a a || a und nach 5

entweder ao II a oder (—a) a ft a. Es genügt also zu zeigen: Aus aa ft a für eine
Translation a g T* folgt a at ft x für alle at g T*.

Dazu seien P ein beliebiger Punkt und g bzw. h die Spuren von et bzw. x durch P
und zunächst h 4= g. Von den zueinander parallelen Translationen x — a, ol (x — et)

(«a)(P)

ocxMP)

aP

TP

führt die erste a(P) in at(P) und die zweite (a a) (P) in (a 3t) (P) über. Nach Ax liegen
also at(P) und (a at) (P) auf der gleichen P-Halbgeraden von h, da et(P) und (a a) (P)
auf der gleichen P-Halbgeraden von g sind. Daher gilt a at ft at. Ist h g, so kommt
man auf den eben behandelten Fall, wenn man et ersetzt durch eine Translation
a' g T* mit a' /||x et.

Bemerkungen: Der Positivbereich F+ bestimmt eine Anordnung des
Schiefkörpers F: Auf F wird die Relation < definiert: ol < ß <=> ß — a e F+. <hat die
Eigenschaften einer Ordnungsrelation:

a) Für ol, ß e F gilt stets genau eine der Beziehungen: a < ß, ol ß, ß < a.

b) a < ß, ß < y => a < y.
(F, <) ist ein angeordneter Schiefkörper, das heisst ausser a) und b) gilt für a, ß, y G F

stets:

c)a<ß=>a4-y<|84-y und
d) ol < ß und 0 <y => OLy < ßy und yoi<yß.
Ein angeordneter Schiefkörper heisst vollständig, wenn gilt:
V) Jede nach oben beschränkte Teilmenge H 4= 0 von F hat eine obere Grenze

(Vollständigkeitsaxiom). Ein angeordneter Schiefkörper F heisst archimedisch
angeordnet, wenn es zu a G F stets eine Summe l4-l+l4-...-fl=:tt gibt mit a < n.
Jeder archimedisch angeordnete Schiefkörper ist kommutativ (siehe Artin [1],
Theorem 1.18). Genügt ein angeordneter Schiefkörper dem Vollständigkeitsaxiom,
so ist er (wie leicht zu sehen) archimedisch angeordnet, folglich kommutativ und
erfüllt somit alle Axiome des reellen Zahlkörpers.

8. Ist A eine stetig angeordnete desarguessche affine Ebene, so ist ihr Koordinaten-
schiefkörper F isomorph zum Körper der reellen Zahlen.

Beweis: Nach den Vorbemerkungen genügt es zu zeigen, dass F aufgrund des

Stetigkeitsaxioms vollständig ist. Dazu wird für eine durch 0 nach unten beschränkte
Teilmenge B 4= 0 von F die Existenz der unteren Grenze nachgewiesen. (Eine durch a
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nach oben beschränkte Teilmenge H 4= 0 von F hat genau dann eine obere Grenze,
wenn die durch 0 nach unten beschränkte Menge H' := {er — a |aeH} eine untere
Grenze hat.)

Es sei [Pat(P)> eine Halbgerade in A. Dann gilt 04= B': {(ßx)(P) \ ße B}
C [P at(P)>, weil ß e B => 0 < ß. Weil S) gilt, ist der Durchschnitt aller Halbgeraden,
die in [P at(P)> enthalten sind und B' umfassen, eine Halbgerade [RS}. Wegen
[RS} C [P x(P)} gibt es ein r > 0 mit (r x) (P) R, und es gilt:

[RS} {((r 4- oc) at) (P) | a > 0} D B'.

Dies zeigt, dass r untere Schranke von B ist. Für jede untere Schranke y von B ist
y < r, weil die Halbgerade {((y 4- a) (at) (P) | a > 0} die Menge B' enthält und
deshalb nicht echte Teilmenge von [RS} sein kann.

Bemerkung: Eine affine Ebene über einem angeordneten Schiefkörper lässt sich
anordnen durch Vorgabe der Mengen {(a at) (^4) | a > 0} (3t G T*) als Halbgeraden.

§ 3. Euklidische Ebenen, die genau eine Anordnung zulassen

Der Begriff euklidische Ebene wird hier im Sinn von Bachmann [2] verwendet
und kann folgendermassen erklärt werden, (*ß, ©) sei eine affine Ebene. Es sei eine

symmetrische Relation J_ C © x © - die Orthogonalitätsrelation - gegeben. Für
(g, h) G J_ wird g J_ h geschrieben und g heisst dann senkrecht zu h oder auch ein Lot
von h. Das Tripel [*ß, ©, JJ heisst euklidische Ebene, wenn die folgenden vier Axiome
erfüllt sind:

Ox) Ist g g ©, so bilden die Lote von g ein ParallelbüscheL dem g nicht angehört.
02) Parallele Geraden haben die gleichen Lote.
Sx) Zu jeder Geraden g gibt es genau eine involutorische Bijektion g: *ß -> *ß

- die Spiegelung an g - die g punktweise fest lässt, Geraden in Geraden überführt und
die Orthogonalität erhält.

S2) Haben drei Geraden a, b, c einen Punkt oder ein Lot gemein, so ist die
Produktabbildung c • b • a wieder eine Geradenspiegelung 23).

In [2], Kapitel IV, finden sich die folgenden Ergebnisse, an die die weiteren
Überlegungen anknüpfen. In einer euklidischen Ebene E gelten der affine Satz von Pappus
und das Axiom von Fano. E hat daher (als affine Ebene) einen kommutativen
Koordinatenkörper K mit einer von 2 verschiedenen Charakteristik. Es werden unter
anderm euklidische Ebenen betrachtet, die das folgende Zusatzaxiom über die
Existenz von «Winkelhalbierenden» erfüllen:

W) Zu je zwei Geraden a, b gibt es eine Gerade w mit w(a) b.

Wenn eine euklidische Ebene die Bedingung W) erfüllt, ist der zugehörige
Koordinatenkörper pythagoreisch (d.h. für jede Summe a von Quadraten in K:
a) a ist Quadrat und b) a 4= — 1), daher formal-reell4) und folglich (siehe [5], 3. Aufl.,
§ 72) anordnungsfähig. Jede euklidische Ebene, die dem Axiom W) genügt, kann also
auf mindestens eine Weise angeordnet werden.

Dafür, dass eine euklidische Ebene höchstens eine Anordnung besitzt, lässt sich

nun eine hinreichende Bedingung rein metrischer Art angeben. Für die Formulierung

3) a,b,c, bezeichnen hier stets die Geradenspiegelungen an a, b, c,
4) So heissen kommutative Körper, in denen -1 nicht als .Quadratsumme darstellbar ist.
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dieses Zusatzaxioms Z) ist es vorteilhaft, den zu einem Paar P, g eindeutig bestimmten
Fusspunkt des Lotes von P auf g mit Pg zu bezeichnen.

hX

Z) Sind P, X Punkte einer Geraden g und h ein Lot von g mit P, X $ h, so geht
durch genau einen der Punkte X, h(X) eine Gerade x mit Px e h.

9. Wenn eine euklidische Ebene E dem Axiom Z) genügt, gilt für jedes Element
ß 4= 0 des Koordinatenkörpers K von E: Entweder ß oder — ß ist in K als Quadrat
darstellbar.

Beweis: Es seien H, P verschiedene Punkte, g: HP und h das Lot von g in H.
Da für eine Gerade z durch P stets Pz= P also P2$h gilt, gibt es durch den Spiegelpunkt

h(P) —: A eine Gerade y mit Py gh. Sei nun ae K*, et: HA die Translation
mit a(H) _4 und X:= (aa) (#). Wir zeigen: Dann und nur dann ist a Quadrat,
wenn durch (a et) (H) eine Gerade x geht mit Px e h. Dann: Die Parallele zu y durch Px
schneidet gin einem Punkt (A et) (H) : Q. Nach dem Höhensatz5) ist QPy eine Höhe
im Dreieck PQPX und folglich (^Py zu x parallel. Es sei X die Dilatation mit Zentrum

^^n

t '
_*

_¥, die A nach (A a) (H) =: bringt. Identifiziert man die Punkte mit ihren
Ortsvektoren bezüglich H, so ist A' die Abbildung at -> A at. Da y zu QPX und QPy zu *
parallel ist, gilt A'(0 X, also X oX(A) A'(0 - X, das heisst A2 a a a und
a A2.

Nur dann: Ist a A2 4= 0, so definiert man Q: (A et) (H). Die Dilatation A' mit
A'(^) If, A'(_4) führt dann QPy in eine Gerade der gesuchten Art über.

Ist a e K, so geht nach Z) entweder durch (a a) (H) oder durch (—a a) (H) eine
Gerade x mit Px e Ä, und folglich ist genau eines der Elemente a, — a Quadrat.

5) Der Höhenschnittpunktsatz für Dreiecke gilt in jeder euklidischen Ebene.
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10. Gilt in einer euklidischen Ebene E das Axiom Z), so hat E höchstens eine

Anordnung. Gelten W) und Z) in E, so lässt sich E auf genau eine Weise anordnen.

Beweis: Ein Positivbereich eines Körpers enthält alle Körperelemente der Form
a2 (a 4= 0) und kein Element der Gestalt — a2. Der Koordinatenkörper einer euklidischen

Ebene, die Z) erfüllt, kann also wegen 9 keine von der Menge {a2 | aG K*}
verschiedene Teilmenge zum Positivbereich haben.

Der Koordinatenkörper einer stetig angeordneten euklidischen Ebene ist wegen 8

der reelle Zahlkörper. Die reelle euklidische Ebene lässt sich auch kennzeichnen als
euklidische Ebene, die die Axiome W) und Z) erfüllt und deren (wegen 10 eindeutig
bestimmtes) Halbgeradensystem dem Stetigkeitsaxiom S) genügt.

Alfred Uhl, Universität Karlsruhe
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On a Problem of W. Sierpinski

Let a, b be fixed coprime positive integers and let p(a, b) denote the least prime
in an arithmetic progression {a x + b}. Linnik [3] has proved that there exists an
absolute constant L such that p(a, b) < aL. Pan-Cheng-Tun [5] has calculated thaj
L < 104.

Let C denote an absolute constant such that p(a, b) <^ ac. Cheng-Jing-Run [1]
has proved that p(a, b) < a777. The best estimate for C to be found in literature is the
result C < 550 of Jutila [2]. The Extended Riemann Hypothesis implies that
p(a,b)<*a* + e.

A positive integer n is called a pseudoprime if n \ 2n — 2 and n is composite.
In [7] (see also [8]) I proved that if a, b are fixed coprime positive integers then there
exist infinitely many pseudoprimes of the form a x 4- b (x 0, 1, 2, 3,

In 1965 (during a seminar which the author attended) W. Sierpinski put forward
the following problem: What estimate can we give for the least pseudoprime of the
form a x 4- b (x 0, 1, 2, 3,

Here we shall prove the following.
Theorem. Let P(a, b) denote the least pseudoprime b (moda) and let L and C

be absolute constants such that p(a, b) < aL, p(a, b) <^ ac respectively; then

1. \og2P(a,b) <a6L1+2L for a^2,
2. logP(a, b) < a4C,+c*8 for e > 0
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