Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 27 (1972)
Heft: 3
Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Ungeloste Probleme — Kleine Mitteilungen 57
UngelGste Probleme

Nr. 55. Vermutlich gilt die folgende Aussage: Hat ein Polytop, also ein kom-
paktes konvexes Polyeder P, des n-dimensionalen euklidischen Raumes die Eigen-
schaft, dass sich zu jeder seiner Seitenflichen noch wenigstens eine andere mit ihr
disjunkte Seitenfldche aufweisen lédsst, so gilt fiir die Anzahl f der Seitenflichen von P
die Ungleichung f > 2 n. Offensichtlich gilt Gleichheit beim Hyperwiirfel, also beim
2 n-Zell. Demnach ist also 2 # die kleinste mogliche Seitenfldichenzahl fiir Polytope
der oben genannten Eigenschaft. — Fiir » = 1 und » = 2 ist unsere Aussage trivialer-
weise richtig. Im Falle » = 3 kann man die Polytope mit f < 6 leicht ausmustern.
Es gibt lediglich drei nicht isomorphe Typen, die durch das Tetraeder (f = 4), die
Pyramide mit quadratischer Grundfliche (f = 5) und durch das gerade Prisma mit
dreieckiger Grundfliche (f = 5) reprisentiert werden. Die aufgezidhlten Polytope
haben die verlangte Eigenschaft ersichtlich nicht, so dass die Aussage auch hier zu-
trifft.

Seltsamerweise scheint es, dass die Abklirung, ob unsere Vermutung fiir alle
Dimensionen 7 richtig ist oder nicht, viel schwieriger ist, als ein Konvexgeometer
bei erster Konfrontation mit der Frage anzunehmen geneigt ist. Bereits einige haben
sich vergeblich bemiiht. B. GRUNBAUM (Seattle) ldsst uns wissen (Brief vom 17.10.71),
dass die Aussage fiir n = 4 sicher noch stimmt. Dies ergibt die Kontrolle der Isomor-
phietypen mit f < 8 im vierdimensionalen Raum. Gilt dies fiir alle Dimensionen # ?

' H. Hadwiger
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Eine Kennzeichnung der sphirischen Trochoidenbewegung

1. Bekanntlich besitzt der Wendekreis in der ebenen euklidischen Kinematik
mehrere ihn kennzeichnende Eigenschaften, die in der sphirischen Kinematik auf
verschiedene geometrische Orte fithren!). Wir wollen uns hier mit dem erstmals von
Schoenflies betrachteten sphdrischen Kegelschnitt beschiftigen, welcher in der quadra-
tischen Verwandtschaft zwischen gegebenem Punkt und zugehérigem Kriimmungs-
mittelpunkt eine analoge Rolle spielt wie der Wendekreis in der ebenen Kinematik
(vgl. [4], S. 561.). Dieser (sphdrische) S-Wendekegelschnitt W, %) ist definitionsgemdss
der Ort der Punkte X, deren Kriimmungsmittelpunkte auf demjenigen Grosskreis
liegen, dessen Ebene zur Geraden O P normal ist. O bezeichnet dabei den Kugelmittel-
punkt und P den augenblicklichen Drehpol. Den Radius der Kugel nehmen wir wie
iiblich mit Eins an.

1) Vgl [4], S. 59, [5], S. 57 und [8], S. 348.
2) Das «$» soll an Schoenflies erinnern. In der Getriebetechnik ist statt §-Wendekegelschnitt
die Bezeichnung Aquatorialkegelschnitt ublich.
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2. Setzt man analog [1] fiir die infinitesimale Abbildungsmatrix B eines einpara-
metrigen Drehvorganges

0 q3 _q2
% = __q3 0 ql ]
q2 __ql 0

so gilt fiir den Drehpol P

—

OP=p=gqq, q:=¢q'¢;, ¢:=(q, q7"2, (1)

wobei {O; ¢;} das Gangsystem des Drehvorganges repréisentiert. Die Vektorkomponen-
—

ten von OX beziiglich {O; e¢;} fassen wir zum Spaltenvektor # zusammen. Mit (1)
ergibt sich damit als Gleichung des §-Wendekegelschnittes?)

(p. %) {(p.®) —qlp.p. 51} =1, #*=1. (2)

Fiir den Kriimmungsvektor von Y4, im Drehpol P berechnet man hieraus
. 2 ;
— PP+ *‘q‘ p-pP,

d.h. der S-Wendekegelschnitt oskuliert den sphdrischen Wendepunktortt) im Drehpol
und seinem Gegenpunki.

Nach [6] versteht man unter §™-Drehvorgingen solche, bei denen die geodétische
Kriimmung der Rast- bzw. Gangpolbahn beim sphirischen Bewegungsablauf das
konstante Verhidltnis m + 1 haben. Somit lassen sich auf Grund des obigen Sach-
verhaltes alle Ergebnisse aus [6], die sich auf die Schmiegebene des sphérischen
Wendepunktortes in P beziehen, unmittelbar so formulieren, dass sie sich auf die
Schmiegebene des §-Wendekegelschnittes Y9, in P beziehen. So folgt z. B. wegen [6]
(Satz 7) der
Satz 1. Bet $™-Dyehvorgingen hat das Verhdltnis der geoditischen Kriimmung in P der
Gangpolbahn bzw. des S-Wendekegelschnittes den konstanten Wert 1/2 (1 — m).

Die die Bahntangenten der Punkte des $-Wendekegelschnittes beriithrenden
Grosskreise gehen sidmtlich durch den Punkt

wo=upu(p+qg-p-~p), ui=(1+gp3H-12 (3)

und seinen Gegenpunkt. Wir nennen den auf W, gelegenen Punkt W, den §-Wende-
pol?).

3) Vgl. hierzu auch [7], 2. Abschnitt.

4) Far den spharischen Wendepunhktort siehe [2], S. 171,

8) In der Biindelgeometrie wurde die Gerade OW erstmals von Schoenflies betrachtet. Der
S-Wendepol liegt somit wie die Wendepole nach H. R. Miller ([3], S. 34) auf der spharischen
Polbahnnormalen.
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3. Als nichstes fragen wir nach der Einhiillenden der Schar der §-Wendekegel-
schnitte auf der Gangkugel beim zugrundeliegenden Drehvorgang. Differentiation
von (2) liefert (¥ = 0)

2(p, %) (P, %) + [p, P, %] (g(P, %) + ¢(P, %)) + ¢(p, %) [P, P, 5] = 0. (4)

Die vom Drehpol und seinem Gegenpunkt verschiedenen Schnittpunkte von WY, mit
seiner Einhiillenden wollen wir analog zur ebenen Kinematik die sphéirischen §-Ball-
schen Punkte nennen.

Mit dem Ansatz

ﬁ=o-p—ﬁ2-p+}iq"—9pAb (5)
und (3) ergibt sich der
Satz 2. Die Drehvorginge mit o + (q/q) = O sind unter den allgemeinen dadurch gekenn-
zeichnet, dass der S-Wendepol stets ein S-Ballscher Punkt ist.
Mit dem in [6] bewiesenen Lemma folgt daraus das
Korollar. Unter den S"-Drehvorgingen sind die sphirischen Trochoidenbewegungen
dadurch gekennzeichnet, dass der S-Wendepol stets ein S-Ballscher Punkt ist.
Differentiation von (3) liefert mit (5)

w,o=pq (0+ %) (p-P—pug-p*w}—puep

und somit denS$)

Satz 3. Unter den einparametrigen Drehvorgingen sind die sphirischen Zykloiden-

bewegungen dadurch gekemmzeichnet, dass der S-Wendepol eine Bahnkurve beschreibt.
Fiir Drehvorginge mit o + (¢/g) = 0 zerfillt (4) in zwei Grosskreise, namlich in die

sphirische Polbahnnormale und

(1—p) ®p)+ql*p pl=0, #2=1. (6)

Nennen wir analog zur ebenen euklidischen Kinematik eine sphirische Trochoiden-
bewegung mit m = 1/2 (vgl. [6]) eine sphdrische Ellipsenbewegung, so folgt der
Satz 4. Der Drehpol ist genau dann stets Doppelpunkt von (4), wenn eine sphirische
Ellvpsenbewegung vorliegt.

J. Tolke, Universitdt Stuttgart
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Die Losung der Matrizengleichung X — AXB = C durch Integration

Es seien X und C (nX m)-Matrizen, 4 eine (nX #n)- und B eine (m X m)-Matrix.
Wir bezeichnen die Eigenwerte von A mit 4;, ..., A, und die Eigenwerte von B mit
Uy, -+ B Mit Hilfe des Kroneckerproduktes [2] kann man leicht die folgenden Sétze
iiber die Gleichung

X—-AXB=C (1)
beweisen.
Satz 1: Die Gleichung (1) hat genau dann fiir beliebiges C eine eindeutige Losung,
wenn

Aip; =1 fiar i=1,...,n; 7=1,...,m. (2)

Satz 2: Wenn die Eigenwerte von 4 und B alle dem Betrag nach kleiner als 1 sind,
so ist (1) eindeutig losbar in der Form

X= ) ACB". (3)
%n=0
(3) fuhrt mit Hilfe der z-Transformation auf eine Losung durch Kurvenintegrale
Durch die z-Transformation wird einer Folge {f,} eine Funktion F(z) = [{f,}] zuge-
ordnet,

{7.3] = ;: faz ™.

Dabei wird |z| > 1/p angenommen, wenn g der Konvergenzradius der Potenzreihe ist.
Fiir zwei Folgen {f,} und {4,} und ihre z-Transformierten F(z) und H(2) gilt ([1],
S. 155)

iad 1
3 =5 / p= F(p) H(p™ dp, ()
r

n''n

vorausgesetzt, dass die Reihe auf der linken Seite konvergiert. Der Integrationsweg I’
schliesst alle Pole von p—1 F(p) ein. Setzt man f, = a” und %, = ¢ b* und nimmt man
la] <1lund |b| <1 an, so ist fiir

Bl21 [ =
Aus (4) folgt

o
2 ar = —1 / - c ! az . (5)
~— nt ) z—a zb—1
l2]=1

Es gilt nun fiir Matrizen.
Satz 3: Ist (2) erfiillt, dann gibt es eine positiv orientierte emfachgeschlossene Kurve
T, die alle Eigenwerte von A4 einschliesst und keine der Zahlen 1/u; (die Reziproken
der von Null verschiedenen Eigenwerte von B), und es ist

L / (2E — A)-1C (E — zB)-1 dz (6)

und [{hn}] = Zj

271
r

die Losung der Gleichung (1).
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Beweis: Wir fiigen auf der linken Seite von (1) 4- 2X B ein, wobei 2z ein Punkt von I’
ist.

X(E — 2B) + (:E — A)XB=C.

Die Inversen in der folgenden Zeile existieren wegen der Wahl von I

(#E — A)* X + XB(E — z2B)'= (zE — A)"* C(E — 2B)"!. (7)
Wir dividieren durch 2 z ¢ und integrieren lings I'. Es ist stets ([2], S. 188)
1
e E—A)1ldz=E, 8
2mi / (B — ) dz (8)

4

wenn / eine positiv orientierte Kurve ist, in derem Inneren alle Eigenwerte von A
liegen. (2 B — E)~! ist holomorph im Inneren von I', das Integral des zweiten Sum-
manden in (7) ist Null, der erste Term gibt wegen (8) den Wert X. Fiir den speziellen
Fall B = A* findet man (6) mit einem anderen Beweis auch bei [3].

Wir geben nun noch eine weitere Darstellung der Lésung von (1). Transformiert
man in (n X n)-Matrix 4 mit den verschiedenen Eigenwerten 4,, ..., 4, auf die Jordan-

Form, dann erkennt man, dass sich A eindeutig in der folgenden Form schreiben ldsst
([2], S. 175 oder [4]):

k
A=Y (AE+N) 9)
t=0

mit

P,P;—6,P,, N,P;=P,N,=6,N,, Z'P—E N*=0.

Man verifiziert leicht

n

(2E — A)! = (z— A E)-J-1NI P, . (10)

k
1=1 7=
Ist 4 in der Form (9) gegeben, dann gilt

Satz 4: Unter der Voraussetzung (2) hat die Lésung von (1) die Form

k n
X=) _,;(—1)"‘1N1- P,C (4B - E)-i-1.

Beweis: Man setzt (10) in (6) ein und berechnet das Integral mit dem Residuenkalkiil.

Harald Wimmer, TH Graz, und
Allen D. Ziebur, State University of New York at Binghamton

LITERATUR

[11 E. 1. Jury, Theory and Application of the z- Transform Method (Wiley, 1964).

[2] P.LANCASTER, Theory of Matrices (Academic Press, 1969).

[3] R. A. SMITH, Matrix Calculations for Liapunov Quadratic Forms, J. Diff. Eq. 2, 208-217
(1966).

[4] A. D. ZIEBUR, On Determining the Structure of A by Analysing e4t, SIAM Rev. 72, 98-102
(1970).



62 Kleine Mitteilungen

Eine Bemerkung zu einem Satz iiber riumliche Fiinfecke?)
I.

Der heute schon gut bekannte Satz?) von B.L. van der Waerden lautet: Ein
rdumliches Fiinfeck 4, 4, A; 4, 4;, in dem alle Seiten gleich a und alle Winkel gleich
« sind, ist eben.

Ich mochte hier einen Beweis mit Hilfe der Vektorrechnung geben.

Beweis. Bezeichnet man in einem raumlichen Fiinfeck 4; A, A3 A, A;den Vektor
A A; ,mita; (¢=1,...,5 zyklisch) und setzt man voraus, dass | a@; | = 1, so gilt

a,a,,,=c=cosw, (1)

wobei w den Winkel zwischen den Vektoren a,, a, ., bedeutet. Auf Grund der Ge-
schlossenheit erhilt man weiter die Bedingung

Zaj_—:O. (2)
=1

Durch Skalarmultiplikation von (2) mit dem Vektor a; ergeben sich die Beziehungen
a,8,.3+0,8,,=—2c—1
und hieraus folgt unmittelbar
1
0;0,,3=8;8;,3=—C— Ch (3)

Bilden wir nun die Gramschen Determinanten G, = G(a,, a,, a3, a,) und Gz =
G(a;, a;. 4, a,,,), so verschwindet G,. Wegen (1) und (3) erhidlt man

Die einfache Berechnung liefert dann die Gleichung
G4=§—(2c2+c~—~1—)2==0 (4)
4 2
mit den Wurzeln

_lfﬁ‘ | (5)

1) Mitteilung im Geometrischen Seminar CVUT Prag am 1. Juni 1971. ‘
?2) El Math. 25, 73-78 (1970). Vgl. dazu auch die Arbeit von J.D. Dunitz und J. Waser: The
Planarity of the Equilateral, Isogonal Pentagon, El. Math. 27, 25-32 (1972).
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Weiterhin gilt

3 1
Gy = c 1 c =—(C+E) (2c2+c—~—2—).
1
(——c——) c 1
2

Wegen (4) ist notwendig auch G4 = 0. Die Vektoren a,, a,, ,, @, , sind linear abhingig
und folglich liegen je vier Ecken des Fiinfecks in einer Ebene. Das betreffende Fiinfeck
liegt also in der Ebene. Wegen (1) und (5) fiihrt die Wurzel ¢ = (—1 + }/5)/4 auf das
konvexe reguldre Fiinfeck, die zweite Wurzel von (5) gibt das reguldre Sternfiinfeck.

II.

Der Beweis von B.L. van der Waerden hat seine besondere Eleganz. Dies kon-
statieren schon W. Liissy und E. Trost, die den Satz in dieser Zeitschrift3) auf andere
Weise bewiesen haben.

Die folgende Auskunft verdanke ich einer miindlichen Mitteilung von T. Jancar.
Der Satz wurde schon im Jahre 1961 in einer sowjetischen Zeitschrift4) veroffentlicht.
Die Verfasser A.P. Garber, V.I. Garvackij und V. Ja. Jarmolenko beantworten eine
Problemaufgabe, die im Jahre 1957 in derselben Zeitschrift5) von V.I. Arnold for-
muliert wurde: Fiir welches # existiert ein riumliches #-Eck, in dem alle Seiten gleich
a und alle Winkel gleich « sind ?

Die betreffenden Verfasser fiihren den Beweis dhnlich wie H. Irminger$®).

S. Smakal, Prag

3) El Math. 25, 82-83 (1970).

)
4) Proswjeschtschenie 6, 345-347 (1961).
%) Proswjeschtschenie 2, 268 (1957).

8) El. Math. 25, 135-136 (1970).

Nachtrag zu «Ein Satz iiber rdumliche Fiinfecke»
(Elemente der Math., Band 25. S. 73)

Der Satz, der in der oben zitierten Arbeit bewiesen wurde, lautet: Ewn rdum-
liches Fiinfeck ABCDE, in dewm alle Seiten gleich a und alle Winkel gleich o sind, ist eben.

Als ich die Separata meiner Arbeit verschickt hatte, erhielt ich nach wenigen
Tagen Briefe von G. Bol (Freiburg/Br.) und H. S. M. Coxeter (Toronto), die beide
einen viel einfacheren Beweis des Satzes enthielten. Der Beweis geht so:

Wenn die Seitenlinge a und der Winkel « gegeben sind, so sind alle Abstdnde
zwischen den 5 Punkten gegeben, also ist die Figur bis auf eine Bewegung oder Um-
legung bestimmt. Also gibt es eine Bewegung oder Umlegung S, die die Ecken A BCDE
zyklisch permutiert. Die fiinfte Potenz 5% ist die Identitit, also ist S keine Umlegung,
sondern eine Bewegung. Der Schwerpunkt der 5 Punkte bleibt bei S fest, also ist S
eine Drehung. Also liegen A BCDE in einer Ebene senkrecht zur Drehungsachse.

B.L. van der Waerden, Ziirich
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