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Ungelöste Probleme

Nr. 55. Vermutlich gilt die folgende Aussage Hat em Polytop, also em
kompaktes konvexes Polyeder P, des n-dimensionalen euklidischen Raumes die
Eigenschaft, dass sich zu jeder seiner Seitenflächen noch wenigstens eme andere mit ihr
disjunkte Seitenflache aufweisen lasst, so gilt fur die Anzahl / der Seitenflächen von P
die Ungleichung / > 2 n Offensichtlich gilt Gleichheit beim Hyperwurfel, also beim
2 w-Zell Demnach ist also 2 n die kleinste mögliche Seitenflachenzahl fur Polytope
der oben genannten Eigenschaft - Fur n 1 und n 2 ist unsere Aussage trivialerweise

richtig Im Falle n 3 kann man die Polytope mit / < 6 leicht ausmustern
Es gibt lediglich drei nicht isomorphe Typen, die durch das Tetraeder (/ 4), die
Pyramide mit quadratischer Grundflache (/ 5) und durch das gerade Prisma mit
dreieckiger Grundflache (/ 5) repräsentiert werden Die aufgezahlten Polytope
haben die verlangte Eigenschaft ersichtlich nicht, so dass die Aussage auch hier
zutrifft

Seltsamerweise scheint es, dass die Abklärung, ob unsere Vermutung fur alle
Dimensionen n richtig ist oder nicht, viel schwieriger ist, als em Konvexgeometer
bei erster Konfrontation mit der Frage anzunehmen geneigt ist Bereits einige haben
sich vergeblich bemuht B Gruisbaum (Seattle) lasst uns wissen (Brief vom 17 10 71),
dass die Aussage fur n 4 sicher noch stimmt Dies ergibt die Kontrolle der Isomor-
phietypen mit / < 8 im vierdimensionalen Raum Gilt dies fur alle Dimensionen n

H Hadwiger

Kleine Mitteilungen

Eine Kennzeichnung der sphärischen Trochoidenbewegung

1 Bekanntlich besitzt der Wendekreis in der ebenen euklidischen Kinematik
mehrere ihn kennzeichnende Eigenschaften, die m der sphärischen Kinematik auf
verschiedene geometrische Orte fuhren1) Wir wollen uns hier mit dem erstmals von
Schoenfhes betrachteten sphärischen Kegelschnitt beschäftigen, welcher in der quadratischen

Verwandtschaft zwischen gegebenem Punkt und zugehörigem Krummungsmittelpunkt

eine analoge Rolle spielt wie der Wendekreis m der ebenen Kinematik
(vgl [4], S 56f Dieser (sphärische) $-Wendekegelschnitt Ws2) ist defmitionsgemass
der Ort der Punkte X, deren Krummungsmittelpunkte auf demjenigen Grosskreis
liegen, dessen Ebene zur Geraden OP normal ist 0 bezeichnet dabei den Kugelmittelpunkt

und P den augenblicklichen Drehpol Den Radius der Kugel nehmen wir wie
üblich mit Eins an

*) Vgl [4], S 59 [5] S 57 und [8], S 348
2) Das «$» soll an Schoenfhes erinnern In der Getriebetechnik ist statt $-Wendekegelschnitt

die Bezeichnung Äquatorlalkegelschnitt üblich
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2 Setzt man analog [1] fur die infinitesimale Abbildungsmatrix 23 eines empara-
metngen Drehvorganges

0 qs -q*

» -qz 0 q1

q2 -q1 0

gilt fur c en Drehpol P

OP V-^qq, q =<re,, <7 (q. q) 1/2
> (1)

wobei {Ö, ei} das Gangsystem des Drehvorganges repräsentiert Die Vektorkomponenten

von OX bezuglich {0, cj fassen wir zum Spaltenvektor x zusammen Mit (1)

ergibt sich damit als Gleichung des S-Wendekegelschnittes3)

(p,x){(p,x)-q[p,p,x]} l, „2=1 (2)

Für den Krummungsvektor von Ws im Drehpol P berechnet man hieraus

2
-P2p + —P~P,

d h der S-Wendekegelschmtt oskuhert den sphärischen Wendepunktort*) im Drehpol
und seinem Gegenpunkt

Nach [6] versteht man unter $im)-Drehvorgangen solche, bei denen die geodätische
Krümmung der Rast- bzw Gangpolbahn beim sphärischen Bewegungsablauf das
konstante Verhältnis m 4= 1 haben Somit lassen sich auf Grund des obigen
Sachverhaltes alle Ergebnisse aus [6], die sich auf die Schmiegebene des sphärischen
Wendepunktortes m P beziehen, unmittelbar so formulieren, dass sie sich auf die
Schmiegebene des $-Wendekegelschnittes Ws m P beziehen So folgt z B wegen [6]
(Satz 7) der
Satz 1. Bei S^-Drehvorgangen hat das Verhältnis der geodätischen Krümmung in P der
Gangpolbahn bzw des S-Wendekegelschnittes den konstanten Wert 1/2 (1 — m)

Die die Bahntangenten der Punkte des $-Wendekegelschnittes berührenden
Grosskreise gehen samthch durch den Punkt

w, /«(P + PP), li =(l4-?2i>2)-1/2 (3)

und seinen Gegenpunkt Wir nennen den auf Ws gelegenen Punkt Ws den S-Wende-

pol*)

8) Vgl hierzu auch [7] 2 Abschnitt
4) Für den sphärischen Wendepunktort siehe [2], S 17 f
5) In der Btindelgeometrie wurde die Gerade OWs erstmals von Schoenfhes betrachtet Der

S-Wendepol hegt somit wie die Wendepole nach H R Müller ([3] S 34) auf der sphärischen
Polbahnnormalen



Kieme Mitteilungen 59

3 Als nächstes fragen wir nach der Einhüllenden der Schar der $-Wendekegelschnitte

auf der Gangkugel beim zugrundeliegenden Drehvorgang Differentiation
von (2) liefert (i 0)

2(P, *) (P, *) + [p. P, *] (q(p, x) 4- q(p, *)) + q(p, x) [p, p, *] 0 (4)

Die vom Drehpol und seinem Gegenpunkt verschiedenen Schnittpunkte von Ws mit
seiner Einhüllenden wollen wir analog zur ebenen Kinematik die sphärischen S-Bauschen

Punkte nennen
Mit dem Ansatz

i> a i>-i>2 P +—~PP (5)

und (3) ergibt sich der
Satz 2. Die Drehvorgange mit a 4- (q/q) 0 sind unter den allgemeinen dadurch
gekennzeichnet, dass der S-Wrendepol stets ein %-Ballscher Punkt ist

Mit dem m [6] bewiesenen Lemma folgt daraus das

Korollar. Unter den Sim)-Drehvorgangen sind die sphärischen Trochoidenbewegungen
dadurch gekennzeichnet, dass der S-Wendepol stets ein $-Ballscher Punkt ist

Differentiation von (3) liefert mit (5)

ws pq (<*+—) {P ~ P-M P2w>}-VQP

und somit den6)
Satz 3. Unter den emparametrigen Drehvorgangen sind die sphärischen Zykloiden-
bewegungen dadurch gekennzeichnet, dass der %-Wendepol eine Bahnkurve beschreibt.

Fur Drehvorgange mit a 4- (q/q) — 0 zerfallt (4) in zwei Grosskreise, namhch m die
sphärische Polbahnnormale und

(i-e)(*,p) + *[*.p,p] o, *2==i (6)

Nennen wir analog zur ebenen euklidischen Kinematik eme sphärische Trochoiden-
bewegung mit m 1/2 (vgl [6]) eme sphärische Elhpsenbewegung, so folgt der
Satz 4. Der Drehpol ist genau dann stets Doppelpunkt von (4), wenn eine sphärische
Elhpsenbewegung vorliegt

J Tolke, Universität Stuttgart
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6) Ein analoger Sachverhalt gilt natürlich auch für die sphärischen Kreisevolventenbewegungen
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Die Lösung der Matrizengleichung X — AXB C durch Integration
Es seien X und C (nx m)-Matrizen, A eine (nx n)- und B eine (mx w)-Matrix.

Wir bezeichnen die Eigenwerte von A mit Xx,... ,Xn und die Eigenwerte von B mit
/Wi» • • • > Pm • Mit Hilfe des Kroneckerproduktes [2] kann man leicht die folgenden Sätze
über die Gleichung

X - AXB C (1)
beweisen.
Satz 1: Die Gleichung (1) hat genau dann für beliebiges C eine eindeutige Lösung,
wenn

At jüij 4= 1 für i 1, n; j 1, m (2)

Satz 2: Wenn die Eigenwerte von A und B alle dem Betrag nach kleiner als 1 sind,
so ist (1) eindeutig lösbar in der Form

oo

x EAnCßn • (3)
w 0

(3) führt mit Hilfe der ^-Transformation auf eine Lösung durch Kurvenintegrale.
Durch die ^-Transformation wird einer Folge {/„} eine Funktion F(z) [{/„}]
zugeordnet,

[{/„}] _£/„*"" ¦

» 0

Dabei wird | z | > 1/q angenommen, wenn o der Konvergenzradius der Potenzreihe ist.
Für zwei Folgen {/„} und {hn} und ihre ^-Transformierten F(z) und H(z) gilt ([1],
S. 155)

ELK=^ f P-1 HP) mp'1) dp (4)

r
vorausgesetzt, dass die Reihe auf der linken Seite konvergiert. Der Integrationsweg _T

schliesst alle Pole von p~x F(p) ein. Setzt man /„ an und hn cbn und nimmt man
| a | < 1 und | b \ < 1 an, so ist für

|*| _> 1 [{/_}] =-i_ und [{*_}] c —L-
z — a z — o

Aus (4) folgt
00 — i r i iY ancon ^ _ / c fa t (5)

^T0 2^r^ / j? — a zb — 1

M-i
Es gilt nun für Matrizen.
Satz 3: Ist (2) erfüllt, dann gibt es eine positiv orientierte einfachgeschlossene Kurve
F, die alle Eigenwerte von A einschliesst und keine der Zahlen 1/^ (die Reziproken
der von Null verschiedenen Eigenwerte von B), und es ist

2m J
X ——r / (zE - A)-1 C (E - zB)-1 dz (6)

2nt Jr
die Lösung der Gleichung (1).
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Beweis: Wir fügen auf der linken Seite von (1) ± zXB ein, wobei z ein Punkt von _T

ist.

X(E - zB) 4- (zE - A)XB C

Die Inversen in der folgenden Zeile existieren wegen der Wahl von _T.

(zE - A)-1 X + XB(E - zB)-1 (zE - A)-1 C(E - zB)-1. (7)

Wir dividieren durch 2ni und integrieren längs _T. Es ist stets ([2], S. 188)

—L [ (zE-A)-idz=E, (8)
2tii J

A

wenn A eine positiv orientierte Kurve ist, in derem Inneren alle Eigenwerte von A
liegen, (z B — E)-1 ist holomorph im Inneren von _T, das Integral des zweiten
Summanden in (7) ist Null, der erste Term gibt wegen (8) den Wert X. Für den speziellen
Fall B _4* findet man (6) mit einem anderen Beweis auch bei [3],

Wir geben nun noch eine weitere Darstellung der Lösung von (1). Transformiert
man in (n x n) -Matrix A mit den verschiedenen Eigenwerten Xx, ,Xk auf die Jordan-
Form, dann erkennt man, dass sich A eindeutig in der folgenden Form schreiben lässt

([2], S. 175 oder [4]):

A-EfoE + NJP,, (9)
t 0

mit

P,P} dvPt, N,P, ?,#, _„_*,, ZPt=E, N: 0.
.-1

Man verifiziert leicht

(zE - /l)-i £ 2> - K E)-;-i Nl P, (10)
t=l 7=0

Ist A in der Form (9) gegeben, dann gilt
Satz 4: Unter der Voraussetzung (2) hat die Lösung von (1) die Form

X=£ ZJi-lV-1 N[ P, C (k,B - E)->-*.
* 1 7 0

Beweis: Man setzt (10) in (6) ein und berechnet das Integral mit dem Residuenkalkül.

Harald Wimmer, TH Graz, und
Allen D. Ziebur, State University of New York at Binghamton
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Eine Bemerkung zu einem Satz über räumliche Fünfecke1)

Der heute schon gut bekannte Satz2) von B.L. van der Waerden lautet: Ein
räumliches Fünfeck _41_42_43_44_45, in dem alle Seiten gleich a und alle Winkel gleich
a sind, ist eben.

Ich möchte hier einen Beweis mit Hilfe der Vektorrechnung geben.

Beweis. Bezeichnet man in einem räumlichen Fünfeck Ax A2 A3 A±Ab den Vektor
At At+X mit at (i 1, 5 zyklisch) und setzt man voraus, dass | at \ 1, so gilt

ai ÖHl C C0SC0 » (1)

wobei co den Winkel zwischen den Vektoren avat + x bedeutet. Auf Grund der
Geschlossenheit erhält man weiter die Bedingung

j> 0- (2)
; l

Durch Skalarmultiplikation von (2) mit dem Vektor at ergeben sich die Beziehungen

ötfl! + 3+ötflt + 2= -2c ~ 1

und hieraus folgt unmittelbar
1

Bilden wir nun die Gramschen Determinanten G4 G(ax, a2, az, a4) und G3

G(at, al+1, at + 2), so verschwindet G4. Wegen (1) und (3) erhält man

(3)

G4

1

• (-4)
(-4) •

Die einfache Berechnung liefert dann die Gleichung

G4=|(2c*+c_!)2 0

mit den Wurzeln

-l±l/5

(4)

(5)

*) Mitteilung im Geometrischen Seminar CVUT Prag am 1. Juni 1971.
2) El. Math. 25, 73-78 (1970). Vgl. dazu auch die Arbeit von J.D. Dunitz und J. Waser. The

Planarity of the Equilateral, Isogonal Pentagon, El. Math. 27, 25-32 (1972).
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Weiterhin gilt

G*

(-4)

(-4)
-H)("+-j)

Wegen (4) ist notwendig auch Gs 0 Die Vektoren al,al + x,at + 2 smd linear abhangig
und folglich liegen je vier Ecken des Fünfecks in einer Ebene Das betreffende Fünfeck
hegt also in der Ebene Wegen (1) und (5) fuhrt die Wurzel c (•—1 4-1/5)/4 auf das
konvexe reguläre Fünfeck, die zweite Wurzel von (5) gibt das reguläre Sternfunfeck

II.
Der Beweis von B L van der Waerden hat seine besondere Eleganz Dies

konstatieren schon W Lussy und E Trost, die den Satz m dieser Zeitschrift3) auf andere
Weise bewiesen haben

Die folgende Auskunft verdanke ich einer mündlichen Mitteilung von T Jancar
Der Satz wurde schon im Jahre 1961 m einer sowjetischen Zeitschrift4) veröffentlicht
Die Verfasser A P Garber, V I Garvacki] und V Ja Jarmolenko beantworten eme

Problemaufgabe, die im Jahre 1957 in derselben Zeitschrift5) von V I Arnold
formuliert wurde Fur welches n existiert em räumliches n-Eck, m dem alle Seiten gleich
a und alle Winkel gleich a smd

Die betreffenden Verfasser fuhren den Beweis ahnlich wie H Irmmger6)
S Smakal, Prag

3) El Math 25 82-83 (1970)
4) Proswjeschtschenie 6 345-347 (1961)
5) Proswjeschtschenie 2 268 (1957)
•) El Math 25 135-136 (1970)

Nachtrag zu «Ein Satz über räumliche Fünfecke»
(Elemente der Math Band 25 S 73)

Der Satz, der m der oben zitierten Arbeit bewiesen wurde, lautet Em räumliches

Fünfeck ABCDE, in dem alle Seiten gleich a und alle Winkel gleich a sind, ist eben

Als ich die Separata meiner Arbeit verschickt hatte, erhielt ich nach wenigen
Tagen Briefe von G Bol (Freiburg/Br) und H S M Coxeter (Toronto), die beide
einen viel einfacheren Beweis des Satzes enthielten Der Beweis geht so

Wenn die Seitenlange a und der Winkel a gegeben smd, so smd alle Abstände
zwischen den 5 Punkten gegeben, also ist die Figur bis auf eine Bewegung oder
Umlegung bestimmt Also gibt es eine Bewegung oder Umlegung S, die die Ecken A BCDE
zyklisch permutiert Die fünfte Potenz S5 ist die Identität, also ist S keine Umlegung,
sondern eine Bewegung Der Schwerpunkt der 5 Punkte bleibt bei S fest, also ist S

eme Drehung Also liegen ABCDE in einer Ebene senkrecht zur Drehungsachse
B L van der Waerden, Zürich


	Kleine Mitteilungen

