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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Förderung der wissenschaftlichen Forschung

El. Math. Band 26 Heft 6 Seiten 121-144 10. November 1971

Zur ebenen hyperbolischen Kinematik

Herrn Professor Dr. G. Bol zum 65. Geburtstag gewidmet

R. Garnier behandelt in seinen Cours de Cmematique III (siehe [4]) die ebenen

hyperbolischen Bewegungen. Hier soll erneut eine Darstellung dieses Gegenstandes
gegeben werden, die den differentialgeometrischen Aspekt stärker berücksichtigt.
Dabei wird ein handlicher Kalkül entwickelt, der es gestatten soll, Fragen höherer
Differentiationsordnung in übersichtlicher Weise zu behandeln. Dementsprechend
werden ausser den bei Garnier zu findenden Ergebnissen eine Reihe weiterer
angegeben.

Wir gehen vom projektiven Modell der hyperbolischen Ebene aus. Mit jeder
eigentlichen Polbahn einer hyperbolischen Bewegung, die den absoluten Masskegelschnitt

nicht treffen soll, ist ein bewegliches Koordinatendreieck invariant verknüpft.
Auf diese Schar von Basisdreiecken wird die Darstellung der hyperbolischen Bewegung
bezogen. Dann folgen durch einfache Betrachtungen in §1 und §2 die bekannten
Eigenschaften einer hyperbolischen Bewegung.

In §3 werden erste Eigenschaften von Bahnkurven und von Hüllkurven der
Bahngeradenscharen abgeleitet. Insbesondere wird der Ort der Wendepunkte von
Bahnkurven untersucht, der von demjenigen in der euklidischen Kinematik sehr
verschieden ist.

Bei der Behandlung der Frage nach den Krümmungsmittelpunkten der
Bahnkurven werden wir wie in der euklidischen Kinematik auf quadratische Cremona-
transformationen geführt. Wir erhalten dann den Satz von Bobillier und einen für die
Konstruktion der Krümmungsmittelpunkte einfacheren Projektionssatz. Zum
Schluss werden noch der Ort der Scheitelpunkte von Bahnkurven, die sogenannte
Kreispunktkurve und die dazugehörige Mittelpunktkurve betrachtet.

§ 1 Hyperbolische Kurventheorie.

Die Punkte einer reellen projektiven Ebene E können wir durch Koordinaten-
tripel beschreiben, die wir zu Vektoren
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zusammenfassen. In der Ebene E sei ein nichtentarteter nichtnullteiliger Kegelschnitt
K durch die Gleichung

<V>V>-Z*ikPiPk 0, aik aki*) (2)
i,k~l

gegeben, die wir uns durch die Forderung

k,J l (3)

an die Determinante eindeutig normiert denken.
Wir können K als absoluten Kegelschnitt einer hyperbolischen Geometrie

auffassen. Für die Punkte im Innengebiet von K ist dann <p, p> > 0, für diejenigen im
Aussengebiet ist <p, p> < 0.

Dementsprechend werden wir im folgenden zwei Fälle unterscheiden, die wir
parallel zueinander behandeln werden. Zu einem Kurvenstück

t(t), das ganz im Innengebiet von K
liegt, gehört nach [2] ein begleitendes
Polardreieck r, t, n mit der Produkttabelle:

<•> r t n

r 1 0 0

t 0 -1 0

n 0 0 -1

t(t), das ganz im Aussengebiet von K
liegt, gehört nach [2] ein begleitendes
Polardreieck r, px, p2 mit der Produkttabelle:

<•> r Pi P2

r -1 0 0

Vi 0 0 1/2 (4)

P2 0 1/2 0

Die Vektoren t, t, n sind dabei bis auf
das Vorzeichen fest normiert.

Dann sind noch die Basistransformationen:

mit k! 0 möglich.

Für diese Basisvektoren gelten Ableitungsgleichungen der Form:

r' at

t' a r 4- h n

r' 2 (o2 px + 2 cox p2

P_ <»i«

P2 co2 r

(5)

Weiterhin erhalten wir aus X' a t mit
<t,i> eunde= ±1:

a2 e 4 wx co2.

Es werden die Bezeichnungen aus Bol [3] benutzt. Für zwei beliebige Vektoren p,q ist
2

<P.4> £ tikPiik-

<B, <|> — 0 bedeutet, dass die Punkte pf q in Bezug auf K konjugiert liegen.
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Für

0

Demnach ist t genau dann innerer Punkt
von K, wenn cox und co2 gleiches
Vorzeichen aufweisen. Ist

cox 0 a>2 + 0 (6)

so hat die Kurve eine isotrope Tangente.
Für

a)x eo2 0 (7)

entartet die Kurve in einen festen Punkt.
Zu einer Kurve t(t), die nicht in einen Punkt entartet und keine isotrope Tangente

besitzt, lässt sich ein invarianter Kurvenparameter definieren durch:

s /a. 2ff\ a>! CO 21 (8)

Den Parameter s nennen wir die hyperbolische Bogenlänge der Kurve2), die durch (8)
bis auf das Vorzeichen und eine additive Konstante eindeutig bestimmt ist. Als
hyperbolische Krümmung2) können wir die absolute Invariante

e
2\/\coxco2\

mit At l/2(lncot)'

[A2~AX) (9)

bezeichnen. Dann heisst der Punkt

hyperbolischer Krümmungsmittelpunkt der Kurve,

wobei

n

ist.

(10)

ft>2

VÜoi
Pl +

y\coxco2\
P2

§ 2. Hyperbolische Bewegungen

Unter einer ebenen hyperbolischen Transformation verstehen wir eine projektive
Abbildung der Ebene E auf sich, bei welcher der absolute Kegelschnitt K in sich übergeht.

Eine einparametrige Schar hyperbolischer Transformationen nennen wir eine

hyperbolische Bewegung. In einer Basis lässt sich eine solche Bewegung als einparametrige

Schar von Matrizen B(t) darstellen, die wir so normieren können, dass gilt:

<BiB9> <9,9>. (12)

Die Darstellung der hyperbolischen Bewegung ist dann bis auf das Vorzeichen fest
normiert.

a) Siehe Bol [2]!
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Differenzieren wir

9-B9. (13)

so erhalten wir:

r)'^Cx) + By' (14)
mit

B' C B (15)

Zu jeder hyperbolischen Bewegung gibt es daher eine Schar von Abbildungen C(t)
mit der Eigenschaft:

<n,Ct)> 0. (16)

Die letzte Bedingung folgt aus der Differentiation von (12).
Zu einer Matrizenschar C(t) gehört aber auch eine hyperbolische Bewegung,

wenn sie die Bedingung (16) erfüllt, da dann der absolute Kegelschnitt festbleibt.
Durch C 0 sind die konstanten Bewegungen gekennzeichnet, die wir von der
Betrachtung ausschliessen wollen.

Wir können uns die Punkte t) einer Ebene E zugeschrieben denken, die gegen
eine feste Ebene E derart bewegt wird, dass die in E und E festen Kegelschnitte K
bzw. K immer zur Deckung kommen. Ist t) ein fester Punkt in E, den wir immer in
der normierten Form

r/ o mit <t),i)> ±l (17)

vorgeben können, so stellt

9(<) B(<)9, o (18)

eine parametrisierte Kurve der festen Ebene E dar. Diese Kurve nennen wir Bahnkurve

der hyperbolischen Bewegung.
Für eine Bahnkurve gilt nach (14):

r/ Ct). (19)

Die Matrix C(t) definiert demnach für jeden Parameterwert t eine Abbildung, die
jedem Bahnkurvenpunkt einen Punkt seiner Bahntangente zuordnet. Nach (16) ist
die Normierung der Bewegung so gewählt, dass der Bahntangentenpunkt n' immer
zum Bahnkurvenpunkt n konjugiert in Bezug auf K liegt.

Ein Punkt t in E heisst momentaner Fixpunkt oder Pol der hyperbolischen
Bewegung an der Parameterstelle t, wenn die durch ihn hindurchgehende Bahnkurve
stationär ist. Die momentanen Fixpunkte sind daher gekennzeichnet durch

C x X x. (20)

Auf einem geeigneten Parameterintervall werden sich die momentanen
Fixpunkte x(t) zu einer Kurve zusammenschliessen, die wir Polbahn der hyperbolischen
Bewegung nennen. Im folgenden wollen wir eine Polbahn immer als glattes Kurvenstück

voraussetzen.



H. Frank: Zur ebenen hyperbolischen Kinematik 125

Jeder Polbahn x(t) in E kann in eindeutiger Weise eine Polbahn x(t) in E
zugeordnet werden durch:

x(t) B(t) i(t) (21)

Für die Geraden einer hyperbolischen Ebene können wir eine Dualbasis durch die
Produkttabelle einführen:

Pi
P2

P3

% % %
<Pi.Pi>
<Pi.Ps>
<Pi,Ps>

<P1.P«>

<p2> p2>

<p2, p3>

<Pi. Ps>

<p2, p3>

<Ps. Ps>

(22)

wenn px, p2, p3 eine Basis für die Darstellung der Punkte von E ist. Dann ist die
Polare zum Punkt p px px 4- p2 P2 + ^3 Vs i*1 Bezug auf i£ die Gerade ^ß

ft % + p2^ + Pz %3)-
Das Inzidenzprodukt des Punktes q und der Geraden ^ß ist nun:

q <ß <q, p> <a, ^J> (23)

Wegen der Erhaltung der Inzidenz induziert eine hyperbolische Bewegung in der
Dualebene der Geraden eine duale Bewegung. Diese duale Bewegung ist wegen (22)
und (23) gleich der vorgegebenen. Insbesondere ist die Polare eines momentanen Ftx-
punktes in bezug auf K eine momentane Fixgerade.

Existiert daher ein momentaner Fixpunkt, der nicht auf dem absoluten
Kegelschnitt K liegt, so gibt es zwei weitere voneinander verschiedene uneigentliche
Fixpunkte auf K, die reell oder konjugiert komplex sind. Liegen alle momentanen
Fixpunkte auf K, so gibt es genau einen Fixpunkt, und die Tangente in diesem an K ist
momentane Fixgerade. Diesen letzten Fall bezeichnen wir wie in der euklidischen
Kinematik als Fernpolstellung.

Schhessen wir für das Folgende die Fernpolstellung von der Betrachtung aus,
so sind die zwei Fälle zu behandeln:

Die eigentliche Polbahn r(t) einer
hyperbolischen Bewegung liegt ganz im
Innern von K.

Die eigentliche Polbahn r(t) einer
hyperbolischen Bewegung liegt ganz im
Äußeren von K.

Zu der Polkurve r(2) gehört dann ein bewegliches Dreieck (4) mit den
Ableitungsgleichungen (5). Verwenden wir dieses als Bezugssystem in der Ebene E, so hat die
Matrix C aus (15) wegen (16) die Gestalt:

C= 0

0

0

-y

1° 0 0>

c p 0 0
\o 0 -o->

(24)

Definieren wir für zwei Vektoren p, q noch ein Vektorprodukt so, dass p A C| der Pol der Geraden

(p, q) in bezug auf K ist, dann erhalten wir einen handlichen Kalkül für die Behandlung
der hyperbolischen Bewegungen. Ein solches Vektorprodukt wird bereits von R. Garnier in
[4] und M. Barner in [1] benutzt.
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In den Ebenen E und E seien die durch gleiche Parameterwerte aufeinander
bezogene Kurven x(t) und x(t) gegeben, die beide im

Inneren von K bzw. i£4) Äußeren von K bzw. K*)

liegen mögen. Wir untersuchen nun die Frage, wann x(t) und x(t) zueinander gehörige
Polbahnen einer hyperbolischen Bewegung sind.

Nach (21) können wir den Ansatz machen:

t(t) B(t) i(t) (25)

Differenzieren wir diese Gleichung und beachten die Beziehungen (5), (15), (24), (12)
und (4), so erhalten wir die Bedingungen:

und

y x _ x

co, a>2 (ox co25)

a - (In/*)'

(Ox
mit U -___—

0JX

(26)

(27)

0J2

Wo

und die Darstellung der hyperbolischen Bewegung:

Bx x

Bn n

BVi V>Vi>lu>

B p2 ju-1 p2

COi

ft>2

0)2
(28)

Die Bedingung (26) ist aber auch hinreichend dafür, dass zu zwei parameterweise
aufeinander bezogenen Kurven eine eindeutig bestimmte hyperbolische Bewegung
existiert, so dass diese Kurven als Polkurvenpaar auftreten. Für zwei Kurven in
gleicher Lage bezüglich K lässt sich durch eine Parametertransformation6) die

Bedingung (26) immer

erreichen. erreichen, wenn die Halbinvarianten6)
ojt co2 und cöx co2 gleiches Vorzeichen
haben, d.h. wenn auch die
Kurventangenten in Bezug auf K gleichartig
liegen.

Zu zwei ebenen Kurven ist stets eine hyperbolische Bewegung (bis auf die Parameterverteilung)

eindeutig bestimmt, wenn die beiden Kurven und ihre Tangenten in bezug

auf den Masskegelschnitt K gleichartig liegen.

4) Nur solche Kurven kommen als Polkurvenpaar in Frage, da eine hyperbolische Bewegung
das Innere bzw. das Äussere von K invariant lässt.

8) Die mit t (t) verbundenen Basisvektoren und Grössen sind mit Querstrichen zu versehen.
*) Das Transformationsverhalten ist in Bol [2], § 1 angegeben.
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Nach (26) und (28) gilt:

Bei einer hyperbolischen Bewegung rollen die eigentlichen Polbahnen gleitungslos
(d.h. längentreu) aufeinander ab.

Den Zusammenhang zwischen den hyperbolischen Krümmungen o und q der
Polbahnen und den Grössen der hyperbolischen Bewegung finden wir aus (9) und (27):

y -e-e. (29)
2f\o)x

Durch

y 0 | (7 0 (30)

sind die konstanten Bewegungen gekennzeichnet. Daher erhalten wir aus (29) für
q 0 den bekannten Satz (siehe [5], §6):

Eine ebene hyperbolische Kurve ist durch Vorgabe ihrer hyperbolischen Krümmung

als Funktion der hyperbolischen Bogenlänge bis auf ihre Lage eindeutig
bestimmt.

Gilt:

a 0 I
a>x co2 0 (31)

so entartet nach (5) die Polbahn in einen festen Punkt. Die hyperbolische Bewegung
ist eine hyperbolische Drehung, wobei in der Matrix C aus (24) eine beliebige Funktion
auftritt.

§ 3. Eigenschaften von Bahnkurven

Für eine Bahnkurve p(t) gilt nach (19) und (24):

V' Y (-Pt t + ^in)7). | V' * (px px - p2 p2)') (32)

Bezeichnen wir die durch (22) definierte Dualbasis mit

X,X,M, | X,%,%2, (33)

so ist die Polare zu p' in bezug auf K:

-p2% + px%. | *>i$i-£2$2. (34)

Diese Gerade ist hyperbolisch senkrecht8) zur Bahntangente und geht durch r und p.

Die Bahnkurvennormalen treffen den eigentlichen momentanen Fixpunkt.

7) Mit dem Vektorprodukt aus 3) lautet (32):

p' pa (yt). |p' p a (*r).
Die hier definierten Fixpunkte sind also mit denen in [4] identisch.

8) Zwei Geraden heissen hyperbolisch senkrecht, wenn sie in bezug auf K konjugiert liegen.
Nach (23) bedeutet dies, dass der Pol der einen Geraden bezüglich K die zweite Gerade trifft.
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Höhere Ableitungen der Bahnkurvenpunkte p(t) erhalten wir aus (32) durch
Differenzieren, wenn wir dabei die Rastbedingungen in 1? beachten:

Po~Ap0^ -a-px

P[-Xp1= -0Lpo+xp2

Pa - X p2 - x px

Po - % Po -0>1 Pl - <*>2 P2

p[-Xpx^ -2co2p0 (35)

p'2 - X p2 *= - 2 cox p0

Für einen Wendepunkt p einer Bahnkurve muss det(p, p', p") 0 gelten.
Daraus erhalten wir als Ort der Wendepunkte von Bahnkurven an der Parameterstelle

t eine Kurve dritter Ordnung mit der Gleichung:

A-rPotä + Pft

+ *tä-p\- Pl) P2

d (pX p2 - Pl) (-<*>! £l + Ö>2 £2)

+ 0* ^0 Pl P2 • (36)

Diese Kurve Zl wird Wendepunktskurve genannt.
Für eine momentane Drehung zerfällt A in die drei momentanen Fixgeraden.

Ausserdem zerfällt A in einen
Kegelschnitt und die Polbahntangente, falls
diese isotrop ist.

Die Wendepunktskurve A berührt die eigentliche Polbahn und durchsetzt den
absoluten Kegelschnitt K in den uneigentlichen Fixpunkten dreipunktig.

A hat keine reellen Schnittpunkte mit K
und besitzt keinen singulären Punkt.
Die Wendepunktskurve A besteht demnach

aus zwei Zweigen, von denen der

paare (d.h. das Oval) im Innern von K
liegt.

A hat genau dann einen singulären
Punkt, und zwar einen isolierten Doppelpunkt,

wenn

x a2 — 16 <*>! co2 0

ist. Nach § 1 schneidet in diesem Fall die

Polbahntangente den absoluten
Kegelschnitt K in reellen Punkten. Der
isolierte Doppelpunkt

$=-- fft 4-4<*>2p1-4ft)1p2

liegt im Aussengebiet von K. Seine

Polare bezüglich K ist die Inflexions-
achse von_4.

Für t > 0 hat A zwei reelle Zweige,
wobei der unpaare Zweig die eigentliche
Polbahn berührt und K in den

uneigentlichen Fixpunkten durchsetzt.
Für t < 0 ist A eine einteilige Kurve
dritter Ordnung.
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Unter den Hullkurven von Bahngeradenscharen - das smd Geradenscharen in E,
die durch feste Geraden von E erzeugt werden - gibt es solche, die fur einen
Parameterwert t Spitzen aufweisen Der Ort dieser Spitzen ist die Wendepunktskurve Ä
der inversen Bewegung9)

A -yp0(Pl + Pl)

+ *(Pt-p2i-Pl)p2>

A (Pl P2 - Po) (-Ol Px + OJ2 p2)

-0POP1P2, (37)

die wir Spitzenkurve nennen Die Spitzenkurve hat die gleichen Eigenschaften wie die
Wendepunktskurve

Die beiden Kurven A und A dritter Ordnung durchsetzen einander in den
uneigentlichen Fixpunkten dreipunktig und berühren sich im eigentlichen Pol Weiterhin
schneiden sie sich auf der momentanen Fixgeraden 36 in

tu t | tu co2 Vx + ojx p2 (38)

Dieser Punkt hegt ausserdem auf der Polbahntangente Nach dem B^zoutschen Satz
ist m der einzige von den momentanen Fixpunkten verschiedene Schnittpunkt von A
und2F

tu ist fur beide Kurven A und 2T Wendepunkt Die zu to gehörige harmonische
Polare m bezug auf A bzw A ist die Polbahnnormale

Die Wendetangenten m m an A

yX + oL^l | aX-2(o2($1 + 2a)1($2 (39)

und an A

-yX + *yi | -aX~2a)2^1 + 2oj1^2 (40)

liegen harmonisch zur momentanen Fixgeraden X und der Polbahntangente
Die Wendepunktskurve A und die Spitzenkurve A smd spiegelbildlich (im

hyperbolischen Sinn) bezüglich der Polbahntangente und m bezug auf den eigentlichen

momentanen Fixpunkt

§ 4. Cremonatransformation, Satz von Bobillier, Kreispunktkurve

Die Krummungsmittelpunkte q(t) einer Bahnkurve p(t) sind die Hüllkurvenpunkte

der Schar der Bahnkurvennormalen (siehe [2]) Die Normale einer Bahnkurve
p(t) geht für jeden Parameterwert t durch den momentanen Fixpunkt x(t) Sie wird
daher durch die Gleichung in q beschrieben

£2?i-£i?2 0 WD

Differenzieren wir (41) und beachten dabei die Rastbedingungen (35) in 2? fur p
und die entsprechenden Rastbedingungen in E fur q (d h in (35) smd die Querstriche

9) Dieses Ergebnis können wir der projektiven Kinematik in der Ebene entnehmen, da die
hyperbolischen Bewegungen spezielle projektive sind Siehe hierzu die Dissertation des
Verfassers, «Ebene projektive Kinematik» Karlsruhe 1968
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wegzulassen), so erhalten wir als weitere Bedingung für den Krümmungsmittelpunkt

q:

« (P% % - Pq fc) 2 <*>_ (/>0 ft - px q0)

+ 2oj2 (p2 q0 - p0 q2) (42)

Daraus erhalten wir zusammen mit (41) für die lokalen Koordinaten des

Krümmungsmittelpunktes q zum Bahnkurvenpunkt p:

?i Ä * & Pt

#0 £o (-<*>1 01 + W2 P2) -<*Plp2

qx & (- coj. #i 4- co2 p2) (43)

q2 p2(-a>iPiJr OJ2P2)

Auf jeder Geraden durch den eigentlichen Fixpunkt wird demnach durch eine

hyperbolische Bewegung eine quadratische Cremonatransformation induziert, die jedem
Bahnkurvenpunkt ihren Krümmungsmittelpunkt zuordnet.

Da bei der Zuordnung (43) die Wendepunktskurve in die Spitzenkurve
abgebildet wird, gilt:

Die hyperbolischen Krümmungsmittelpunkte derjenigen Bahnkurven,
die Wendepunkte durchlaufen, liegen auf der Spitzenkurve. (44)

Dabei geschieht die Abbildung von A auf 2f gemäss (43) derart, dass diejenigen
Punkte auf einer Geraden durch r ineinander übergeführt werden, die nicht
spiegelbildlich in bezug auf t liegen. Die Paare zueinandergehöriger Punkte p e A und
q eA werden daher durch den absoluten Kegelschnitt K getrennt.

Die Krümmungsmittelpunkte der Polbahnen in E und E bilden ein Paar zugeordneter
Punkte bei der Cremonatransformation (43).

Wir betrachten auf zwei verschiedenen Geraden durch den Fixpunkt r, von denen
keine auf die Polbahntangente fallen soll, je ein Paar zugeordneter Punkte p, q und
p, q. Dem Büschel der beiden Verbindungsgeraden (p, p) und (q, q) gehört dann die
Gerade:

2^~~ojxPxPx%

+ co2£2£2*P2 (45)

an. £ hängt aber nur von der Wahl der beiden Geraden durch r und nicht von der
Wahl der auf ihnen durch (43) definierten Punktepaare ab. Dies ist gerade die Aussage
des Satzes von Bobillier:

Die Verbindungsgerade von zwei beliebigen Punkten p und p, die auf verschiedenen

Geraden durch den eigentlichen Fixpunkt liegen, schneidet die Verbindungsgerade der

gemäss (43) zugeordneten Punkte q und q immer auf einer Achse, die nur von der Wahl
der Geraden durch den Fixpunkt abhängt.



H Frank Zur ebenen hyperbolischen Kinematik 131

Fallt eme der beiden Geraden durch r mit der Polbahnnormalen zusammen, so
wird £ m (45) die hyperbolische Senkrechte zur anderen Geraden Wegen (44) folgt
daraus der Projektionssatz

Die Paare zugeordneter Punkte p, q auf einer Geraden durch den eigentlichen Fix-
punkt sind die Projektionen der Polbahnkrummungsmütelpunkte rrt, m aus den Punkten
der hyperbolischen Senkrechten zur Geraden (p, q)

Differenzieren wir (42) wieder unter Beachtung der Rastbedingungen m E und E
fur q bzw p, so erhalten wir die Bedmgungsgleichung fur die stationären Krummungs-
mittelpunkte, d h fur die Scheitel der Bahnkurven. Zusammen mit (43) finden wir
daraus den Ort der Scheitel, auch Kreispunktkurve genannt, mit der Gleichung

Ü [(* - 2 y) px + (lny/a)' p2] (fi\ 4- Pl)

-3<zpoPxp2 0

Q _= co, [- (Ina)' + 2(At + a)] p\ p2

+ to2[(\no)'-2(A2-o)}p1pl

-3 Po (-cox px + (D2 p2) (tox px + co2 p2)

0 (46)

Die Krummungsmittelpunkte m den Scheiteln der Bahnkurven liegen auf einer
Kurve D, die als Mittelpunktkurve bezeichnet werden kann D ergibt sich als
Kreispunktkurve der inversen Bewegung und hat daher die gleichen Eigenschaften wie ß.

Ü und D gehen durch die momentanen Fixpunkte der hyperbolischen Bewegung
Im eigentlichen Fixpunkt haben sie einen gemeinsamen Doppelpunkt und die
Polbahntangente und die Polbahnnormale als gemeinsame Doppelpunktstangenten.
Dabei berühren sie sich längs der Polbahntangente von erster Ordnung und längs der
Polbahnnormalen von zweiter Ordnung In den uneigentlichen Fixpunkten schneiden
sich die beiden Kurven dritter Ordnung einfach

Durchlaufen die eigentlichen Polbahnen m E und E gleichzeitig Scheitelpunkte,
d h gilt q' o' 0, so zerfallt nach (29) die Kreispunktkurve (46) m die Polbahnnormale

und einen die eigentliche Polbahn berührenden Kegelschnitt

Hubert Frank, Universität Freiburg i Br.
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