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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare
Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El Math. Band 26 Heft 6 Seiten 121-144 10. November 1971

Zur ebenen hyperbolischen Kinematik
Herrn Professor Dr. G. Bol zum 65. Geburtstag gewidmet

R. Garnier behandelt in seinen Cours de Cinematique III (siehe [4]) die ebenen
hyperbolischen Bewegungen. Hier soll erneut eine Darstellung dieses Gegenstandes
gegeben werden, die den differentialgeometrischen Aspekt stirker beriicksichtigt.
Dabei wird ein handlicher Kalkiil entwickelt, der es gestatten soll, Fragen hoherer
Differentiationsordnung in iibersichtlicher Weise zu behandeln. Dementsprechend
werden ausser den bei Garnier zu findenden Ergebnissen eine Reihe weiterer ange-
geben.

Wir gehen vom projektiven Modell der hyperbolischen Ebene aus. Mit jeder
eigentlichen Polbahn einer hyperbolischen Bewegung, die den absoluten Masskegel-
schnitt nicht treffen soll, ist ein bewegliches Koordinatendreieck invariant verkniipft.
Auf diese Schar von Basisdreiecken wird die Darstellung der hyperbolischen Bewegung
bezogen. Dann folgen durch einfache Betrachtungen in §1 und §2 die bekannten
Eigenschaften einer hyperbolischen Bewegung.

In §3 werden erste Eigenschaften von Bahnkurven und von Hiillkurven der
Bahngeradenscharen abgeleitet. Insbesondere wird der Ort der Wendepunkte von
Bahnkurven untersucht, der von demjenigen in der euklidischen Kinematik sehr ver-
schieden ist.

Bei der Behandlung der Frage nach den Kriimmungsmittelpunkten der Bahn-
kurven werden wir wie in der euklidischen Kinematik auf quadratische Cremona-
transformationen gefiihrt. Wir erhalten dann den Satz von Bobillier und einen fiir die
Konstruktion der Kriimmungsmittelpunkte einfacheren Projektionssatz. Zum
Schluss werden noch der Ort der Scheitelpunkte von Bahnkurven, die sogenannte
Kreispunktkurve und die dazugehorige Mittelpunktkurve betrachtet.

§ 1 Hyperbolische Kurventheorie.

Die Punkte einer reellen projektiven Ebene E kénnen wir durch Koordinaten-
tripel beschreiben, die wir zu Vektoren

P = (Po, P1, P2) (1)
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zusammenfassen. In der Ebene E sei ein nichtentarteter nichtnullteiliger Kegelschnitt

K durch die Gleichung

2
€I :;aik Pit=0, a;=a")
k=1

gegeben, die wir uns durch die Forderung

la;l =1

(2)

(3)

an die Determinante eindeutig normiert denken.
Wir kénnen K als absoluten Kegelschnitt einer hyperbolischen Geometrie auf-
fassen. Fiir die Punkte im Innengebiet von K ist dann {p, p> > O, fiir diejenigen im

Aussengebiet ist (p, p> < 0.

Dementsprechend werden wir im folgenden zwei Fille unterscheiden, die wir
parallel zueinander behandeln werden. Zu einem Kurvenstiick

r(f), das ganz im Innengebiet von K
liegt, gehért nach [2] ein begleitendes
Polardreieck t, t, n mit der Produkt-
tabelle:

D T t n.

T 1 0 0
t 0 —1 0
n 0 0 —1

Die Vektoren t, t, n sind dabei bis auf
das Vorzeichen fest normiert.

r(¢), das ganz im Aussengebiet von K
liegt, gehoért nach [2] ein begleitendes
Polardreieck t, p,;, p, mit der Produkt-
tabelle:

<D T P P:
T -1 0 0
M 0 0 12 (4
Py 0 1/2 0

Dann sind noch die Basistransforma-
tionen:

f': =X, ﬁl—;kle ﬁ2=k_1p2
mit £’ = 0 moglich.

Fiir diese Basisvektoren gelten Ableitungsgleichungen der Form:

! =at
t=ar+xn

n=—xt

vV=2wy P+ 2w, Pp
p;=w1t (5)
Py =Wyt

Weiterhin erhalten wir aus t’ = « t mit
4,t)=eund e = 4 1:

o =¢4w w,.

1)  Es werden die Bezeichnungen aus Bol [3] benutzt. Fiir zwei beliebige Vektoren p,q ist

2
P, 9> = 2 ayd;4;
th=1

p.q) =0 bedeutet, dass die Punkte p, q in Bezug auf K konjugiert liegen.
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Demnachist t genau dann innerer Punkt
von K, wenn w, und w, gleiches Vor-
zeichen aufweisen. Ist

w1 = O » w2 =+ O » (6)
so hat die Kurve eineisotrope Tangente.

Fiir Fiir
=20 W =wy; =0 (7)

entartet die Kurve in einen festen Punkt.

Zu einer Kurve r(¢), die nicht in einen Punkt entartet und keine isotrope Tangente
besitzt, ldsst sich ein invarianter Kurvenparameter definieren durch:

s=/a. ! s=2[|/|—a71w—21. (8)

Den Parameter s nennen wir die hyperbolische Bogenlinge der Kurve?2), die durch (8)
bis auf das Vorzeichen und eine additive Konstante eindeutig bestimmt ist. Als
hyperbolische Kriimmung?) konnen wir die absolute Invariante

% B 1
T 2w, wg

mit 4; = 1/2(Inw;)’

(4 — 4,) (9

bezeichnen. Dann heisst der Punkt

m=n-+opt (10)
hyperbolischer Kriimmungsmittelpunkt der Kurve,
wobei
Wy Wy
n=- m P+ Vi ol P2
ist.

§ 2. Hyperbolische Bewegungen

Unter einer ebenen hyperbolischen Transformation verstehen wir eine projektive
Abbildung der Ebene E auf sich, bei welcher der absolute Kegelschnitt K in sich iiber-
geht. Eine einparametrige Schar hyperbolischer Transformationen nennen wir eine
hyperbolische Bewegung. In einer Basis ldsst sich eine solche Bewegung als einpara-
metrige Schar von Matrizen B(f) darstellen, die wir so normieren kénnen, dass gilt:

(By,By)=<1,1). (12)

Die Darstellung der hyperbolischen Bewegung ist dann bis auf das Vorzeichen fest
normiert.

%)  Siehe Bol [2]!
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Differenzieren wir

n=By, (13)
so erhalten wir:

»=Cp+ By (14)
mit

B'=CB. (15)

Zu jeder hyperbolischen Bewegung gibt es daher eine Schar von Abbildungen C(f)
mit der Eigenschaft:

<n,Cy>=0. (16)

Die letzte Bedingung folgt aus der Differentiation von (12).

Zu einer Matrizenschar C(f) gehdrt aber auch eine hyperbolische Bewegung,
wenn sie die Bedingung (16) erfiillt, da dann der absolute Kegelschnitt festbleibt.
Durch C =0 sind die konstanten Bewegungen gekennzeichnet, die wir von der
Betrachtung ausschliessen wollen.

Wir kénnen uns die Punkte 1y einer Ebene E zugeschrieben denken, die gegen
eine feste Ebene E derart bewegt wird, dass die in E und E festen Kegelschnitte K

bzw. K immer zur Deckung kommen. Ist y ein fester Punkt in E, den wir immer in
der normierten Form

9 =0 mit {p, 9> =41 (17)
vorgeben konnen, so stellt
) =B@l)y, v =o (18)

eine parametrisierte Kurve der festen Ebene E dar. Diese Kurve nennen wir Bahn-
kurve der hyperbolischen Bewegung.
Fiir eine Bahnkurve gilt nach (14):

y=Coy. (19)

Die Matrix C(#) definiert demnach fiir jeden Parameterwert ¢ eine Abbildung, die
jedem Bahnkurvenpunkt einen Punkt seiner Bahntangente zuordnet. Nach (16) ist
die Normierung der Bewegung so gewihlt, dass der Bahntangentenpunkt 1’ immer
zum Bahnkurvenpunkt 1 konjugiert in Bezug auf K liegt.

Ein Punkt t in E heisst momentaner Fixpunkt oder Pol der hyperbolischen Be-
wegung an der Parameterstelle ¢, wenn die durch ihn hindurchgehende Bahnkurve
stationdr ist. Die momentanen Fixpunkte sind daher gekennzeichnet durch

Cr=1Air. (20)

Auf einem geeigneten Parameterintervall werden sich die momentanen Fix-
punkte 1(¢) zu einer Kurve zusammenschliessen, die wir Polbakn der hyperbolischen
Bewegung nennen. Im folgenden wollen wir eine Polbahn immer als glattes Kurven-
stlick voraussetzen.
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Jeder Polbahn t(f) in E kann in eindeutiger Weise eine Polbahn ;‘(t) in E zu-
geordnet werden durch:

t(¢) = B(t) () . (21)

Fiir die Geraden einer hyperbolischen Ebene kénnen wir eine Dualbasis durch die
Produkttabelle einfiihren:

B, B, B
P . <p1: p1> <D1, p2> <plr p3> (22)
P2 {P1, P2 P2, P2 {Ps, P3
Ps {P1, Py (P2, Py (Ps, P3

wenn p;, Ps, ps eine Basis fiir die Darstellung der Punkte von E ist. Dann ist die
Polare zum Punkt p = p; p; + P2 Pa + P53 P; in Bezug auf K die Gerade P =

ﬁl %1 + p2 §B2 + 1)3 ‘333)‘
Das Inzidenzprodukt des Punktes q und der Geraden B ist nun:

qP=<aq,p =N B. (23)

Wegen der Erhaltung der Inzidenz induziert eine hyperbolische Bewegung in der
Dualebene der Geraden eine duale Bewegung. Diese duale Bewegung ist wegen (22)
und (23) gleich der vorgegebenen. Insbesondere ist die Polare eines momentanen Fix-
punktes in bezug auf K eine momentane Fixgerade.

Existiert daher ein momentaner Fixpunkt, der nicht auf dem absoluten Kegel-
schnitt K liegt, so gibt es zwei weitere voneinander verschiedene uneigentliche Fix-
punkte auf K, die reell oder konjugiert komplex sind. Liegen alle momentanen Fix-
punkte auf K, so gibt es genau einen Fixpunkt, und die Tangente in diesem an K ist
momentane Fixgerade. Diesen letzten Fall bezeichnen wir wie in der euklidischen
Kinematik als Fernpolstellung.

Schliessen wir fiir das Folgende die Fernpolstellung von der Betrachtung aus,
so sind die zwei Félle zu behandeln:

Die eigentliche Polbahn t(t) einer Die eigentliche Polbahn r(t) einer
hyperbolischen Bewegung liegt ganz im hyperbolischen Bewegung liegt ganz im
Innern von K. AuBeren von K.

Zu der Polkurve r(f) gehort dann ein bewegliches Dreieck (4) mit den Ableitungs-
gleichungen (5). Verwenden wir dieses als Bezugssystem in der Ebene E, so hat die

Matrix C aus (15) wegen (16) die Gestalt:
0 0 0
C=1{0 o O) (24)

0 0 0
C=|{0 0 y
0 —y 0 0 0 —o

3)  Definieren wir fiir zwei Vektoren p, g noch ein Vektorprodukt so, dass p A q der Pol der Gera-
den (p, q) in bezug auf K ist, dann erhalten wir einen handlichen Kalkiil fiir die Behandlung
der hyperbolischen Bewegungen. Ein solches Vektorprodukt wird bereits von R.Garnier in
[4] und M. Barner in [1] benutzt.
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In den Ebenen E und E seien die durch gleiche Parameterwerte aufeinander
bezogene Kurven T(¢) und r(f) gegeben, die beide im

Inneren von K bzw. K*) | AuBeren von K bzw. K%

liegen moégen. Wir untersuchen nun die Frage, wann t(¢) und ¥(f) zueinander gehorige
Polbahnen einer hyperbolischen Bewegung sind.
Nach (21) kénnen wir den Ansatz machen:

t(f) = B(f) t(t) . (25)

Differenzieren wir diese Gleichung und beachten die Beziehungen (5), (15), (24), (12)
und (4), so erhalten wir die Bedingungen:

« = ab) Wy Wy = Wy ®y) (26)
und
y=1%—x o = (Iny)’ (27)
mit u = =L ;(BE
W, Wy

und die Darstellung der hyperbolischen Bewegung:

Br=1t Br=r1

- - W, Wy
Bt= Bp, = U= = = —, 28
t=1t PL=ub,pu o o (28)
Bu=n Bpy=ulp,.

Die Bedingung (26) ist aber auch hinreichend dafiir, dass zu zwei parameterweise
aufeinander bezogenen Kurven eine eindeutig bestimmte hyperbolische Bewegung
existiert, so dass diese Kurven als Polkurvenpaar auftreten. Fiir zwei Kurven in
gleicher Lage beziiglich K lidsst sich durch eine Parametertransformation®) die
Bedingung (26) immer

erreichen. erreichen, wenn die Halbinvarianten?®)
w; w, und @, w, gleiches Vorzeichen
haben, d.h. wenn auch die Kurven-
tangenten in Bezug auf K gleichartig
liegen.

Zu zwes ebenen Kurven ist stets eine hyperbolische Bewegung (bis auf die Parameter-
verteilung) eindeutig bestimmt, wenn die beiden Kurven und ihre Tangenten in bezug
auf den Masskegelschnitt K gleichartig liegen.

4)  Nur solche Kurven kommen als Polkurvenpaar in Frage, da eine hyperbolische Bewegung
das Innere bzw. das Aussere von K invariant lisst. .

8)  Die mit¥(f) verbundenen Basisvektoren und Grdssen sind mit Querstrichen zu versehen.

%)  Das Transformationsverhalten ist in Bol [2], §1 angegeben.
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Nach (26) und (28) gilt:

Besv exner hyperbolischen Bewegung rollen die eigentlichen Polbahnen glettungslos
(@.h. lingentren) aufeinander ab.

Den Zusammenhang zwischen den hyperbolischen Kriimmungen ¢ und g der
Polbahnen und den Gréssen der hyperbolischen Bewegung finden wir aus (9) und (27):

Y g

o,z — = p—p. 29
L —e—e N 0—0 (29)
Durch

y=0 1 c=0 (30)

sind die konstanten Bewegungen gekennzeichnet. Daher erhalten wir aus (29) fiir
o = 0 den bekannten Satz (siehe [5], §6):

Eine ebene hyperbolische Kurve ist durch Vorgabe ihrer hyperbolischen Kriim-
mung als Funktion der hyperbolischen Bogenlinge bis auf ihre Lage eindeutig
bestimmt.

Gilt:

xa=20, W =w,=0, (31)

so entartet nach (5) die Polbahn in einen festen Punkt. Die hyperbolische Bewegung
ist eine hyperbolische Drehung, wobei in der Matrix C aus (24) eine beliebige Funktion
auftritt.

§ 3. Eigenschaften von Bahnkurven

Fiir eine Bahnkurve p(¢) gilt nach (19) und (24):

Pr=7y(=pat+pm)7). | P=o(piPi—ppd)?). (32
Bezeichnen wir die durch (22) definierte Dualbasis mit

xT,N, l X P Bs, (33)
so ist die Polare zu p’ in bezug auf K:

~5T+pHN. | p1B1 — 2 Ps (34)
Diese Gerade ist hyperbolisch senkrecht®) zur Bahntangente und geht durch r und p.

Die Bahnkurvennormalen treffen den eigentlichen momentanen Fixpunkt.

")  Mit dem Vektorprodukt aus ?) lautet (32):
P=pA@D-Ip=pA(0Y).
Die hier definierten Fixpunkte sind also mit denen in [4] identisch.

8)  Zwei Geraden heissen hyperbolisch senkrecht, wenn sie in bezug auf K konjugiert liegen.
Nach (23) bedeutet dies, dass der Pol der einen Geraden beziiglich K die zweite Gerade trifft.
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Hohere Ableitungen der Bahnkurvenpunkte p(f) erhalten wir aus (32) durch
Differenzieren, wenn wir dabei die Rastbedingungen in E beachten:

po—Apo=—ap,
ﬁ;“lﬁlz —o po + ;Pz
pr—Apy=—%xp;.

756“}»?0: ”‘512[’1“62752
?1"11’1: ”252% (35)
pr—Apa=—2a; py.

Fiir einen Wendepunkt p einer Bahnkurve muss det(p, p’, p”) = 0 gelten.
Daraus erhalten wir als Ort der Wendepunkte von Bahnkurven an der Parameter-
stelle ¢ eine Kurve dritter Ordnung mit der Gleichung:

Az?’f’o(ﬁf‘*‘?%)
+ o (pg — D5 — 13) ba -

A = (py pa — Pa) (— 0y 1 + Wy Do)
+ 0 PPy b (36)

Diese Kurve 4 wird Wendepunktskurve genannt.
Fiir eine momentane Drehung zerfillt A in die drei momentanen Fixgeraden.

Ausserdem zerfillt 4 in einen Kegel-
schnitt und die Polbahntangente, falls
diese isotrop ist.

Die Wendepunktskurve A beriihrt die eigentliche Polbahn und durchsetzt den
absoluten Kegelschnitt K in den uneigentlichen Fixpunkten dreipunktig.

A hat keine reellen Schnittpunkte mit K
und besitzt keinen singuliren Punkt.
Die Wendepunktskurve 4 besteht dem-
nach aus zwei Zweigen, von denen der
paare (d.h. das Oval) im Innern von K
liegt.

A hat genau dann einen singuldren
Punkt, und zwar einen isolierten Doppel-
punkt, wenn

T=02—-16w,wy=0

ist. Nach §1 schneidet in diesem Fall die
Polbahntangente den absoluten Kegel-
schnitt K in reellen Punkten. Der
isolierte Doppelpunkt

5g6t+4w2p1_4w1p2

liegt im Aussengebiet von K. Seine
Polare beziiglich K ist die Inflexions-
achse von 4.

Fiir T > 0 hat 4 zwei reelle Zweige,
wobei der unpaare Zweig die eigentliche
Polbahn berithrt und K in den un-
eigentlichen Fixpunkten durchsetzt.
Fiir 7 < 0 ist 4 eine einteilige Kurve
dritter Ordnung.
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Unter den Hiillkurven von Bahngeradenscharen — das sind Geradenscharen in E,
die durch feste Geraden von E erzeugt werden — gibt es solche, die fiir einen Para-
meterwert ¢ Spitzen aufweisen. Der Ort dieser Spitzen ist die Wendepunktskurve A4
der inversen Bewegung?):

A= =¥ o (Pf““?g) 4= (#1 sz"f’g) (—wy p1 + @y P9)
+“(15(2)‘P5‘P§)P2» — 0 o P1 02, (37)

die wir Spitzenkurve nennen. Die Spitzenkurve hat die gleichen Eigenschaften wie die
Wendepunktskurve.

Die beiden Kurven A und A dritter Ordnung durchsetzen einander in den un-
eigentlichen Fixpunkten dreipunktig und beriihren sich im eigentlichen Pol. Weiterhin
schneiden sie sich auf der momentanen Fixgeraden X in

w=t. l W = Wy Py + W1 Py . (38)

Dieser Punkt liegt ausserdem auf der Polbahntangente. Nach dem Bézoutschen Satz
ist w der einzige von den momentanen Fixpunkten verschiedene Schnittpunkt von 4
und A.

w ist fiir beide Kurven 4 und 4 Wendepunkt. Die zu w gehérige harmonische
Polare in bezug auf A bzw. 4 ist die Polbahnnormale.

Die Wendetangenten in w an 4:

yX+aN I 0X— 20, + 20, B, (39)
und an 4:
—yX+aM | —0X—20,P;+20, P,  (40)

liegen harmonisch zur momentanen Fixgeraden X und der Polbahntangente.

Die Wendepunktskurve 4 und die Spitzenkurve A sind spiegelbildlich (im
hyperbolischen Sinn) beziiglich der Polbahntangente und in bezug auf den eigent-
lichen momentanen Fixpunkt.

§ 4. Cremonatransformation, Satz von Bobillier, Kreispunktkurve

Die Kriimmungsmittelpunkte q(f) einer Bahnkurve p(f) sind die Hiillkurven-
punkte der Schar der Bahnkurvennormalen (siehe [2]). Die Normale einer Bahnkurve
p(¢) geht fiir jeden Parameterwert ¢ durch den momentanen Fixpunkt 1(¢f). Sie wird
daher durch die Gleichung in q beschrieben:

Podh— $192=0. (41)

Differenzieren wir (41) und beachten dabei die Rastbedingungen (35) in F fiir p
und die entsprechenden Rastbedingungen in E fiir q (d.h. in (35) sind die Querstriche

%)  Dieses Ergebnis kénnen wir der projektiven Kinematik in der Ebene entnehmen, da die
hyperbolischen Bewegungen spezielle projektive sind. Siehe hierzu die Dissertation des Ver-
fassers, « Ebene projektive Kinematik», Karlsruhe 1968.
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wegzulassen), so erhalten wir als weitere Bedingung fiir den Kriimmungsmittel-
punkt q:

o« (Ps 9o — Po 92) 2w, (po 41— P1 %)
—y (h1q1 + 292 = 0. +2 w, (P2 9o — Po0 22) (42)
+0(p192+P20)=0.

Daraus erhalten wir zusammen mit (41) fiir die lokalen Koordinaten des Kriim-
mungsmittelpunktes q zum Bahnkurvenpunkt p:

Qo = % po Py + ¥ (5 + P3) go = Po (— Wy Py + Wy Py) — G Py P
g =apy Py ¢1 = P1 (— 01 P1 + w3 D) (43)
gs = o P} @2 = Pa (— w1 P1 + w5 D)

Auf jeder Geraden durch den eigentlichen Fixpunkt wird demnach durch eine
hyperbolische Bewegung eine quadratische Cremonatransformation induziert, die jedem
Bahnkurvenpunkt thren Kriimmungsmittelpunkt zuordnet.

Da bei der Zuordnung (43) die Wendepunktskurve in die Spitzenkurve abge-
bildet wird, gilt:

Die hyperbolischen Kriimmungsmittelpunkte derjenigen Bahnkurven,
die Wendepunkte durchlaufen, liegen auf der Spitzenkurve. (44)

Dabei geschieht die Abbildung von 4 auf A4 gemiss (43) derart, dass diejenigen
Punkte auf einer Geraden durch t ineinander iibergefiihrt werden, die nicht spiegel-
bildlich in bezug auf r liegen. Die Paare zueinandergehériger Punkte pe 4 und
q € 4 werden daher durch den absoluten Kegelschnitt K getrennt.

Die Kriimmungsmaittelpunkte der Polbahnen in E und E bilden ein Paar zugeordneter
Punkte bet der Cremonatransformation (43).

Wir betrachten auf zwei verschiedenen Geraden durch den Fixpunkt r, von denen
keine auf die Polbahntangente fallen soll, je ein Paar zugeordneter Punkte p, q und
P, . Dem Biischel der beiden Verbindungsgeraden (p, p) und (q, q) gehort dann die
Gerade:

L= (p1 P+ 1) T L=—w,p 5P
~ ($1 731 — P2 ﬁz) N +w; ps 732 B, (45)

an. L hingt aber nur von der Wahl der beiden Geraden durch t und nicht von der
Wahl der auf ihnen durch (43) definierten Punktepaare ab. Dies ist gerade die Aussage
des Satzes von Bobillier:

Die Verbindungsgerade von zwei beliebigen Punkien p und P, die auf verschiedenen
Geraden durch den eigentlichen Fixpunkt liegen, schneidet die Verbindungsgerade der
gemdiss (43) zugeordneten Punkie q und q immer auf einer Achse, die wur von der Wahl
der Geraden durch den Fixpunkt abhingt.
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Fillt eine der beiden Geraden durch tr mit der Polbahnnormalen zusammen, so

wird £ in (45) die hyperbolische Senkrechte zur anderen Geraden. Wegen (44) folgt
daraus der Projektionssatz:

Die Paare zugeordneter Punkte p, q auf einer Geraden durch den eigentlichen Fix-
punkt sind die Projektionen der Polbahnkriimmungsmittelpunkte m, m aus den Punkten
der hyperbolischen Senkrechten zur Geraden (p, q).

Differenzieren wir (42) wieder unter Beachtung der Rastbedingungen in E und E
fiir g bzw. p, so erhalten wir die Bedingungsgleichung fiir die stationiren Kriimmungs-
mittelpunkte, d.h. fiir die Scheitel der Bahnkurven. Zusammen mit (43) finden wir
daraus den Ort der Scheitel, auch Kreispunktkurve genannt, mit der Gleichung:

Q=1[(x—2y) p1 + (Iny[a)’ pa] (p] + $3) 2=, [~ (Ino)" + 2 (4, + 0)] p} p2
—3apyprh=0. + @y [(Ino) — 2 (4, — 0)] p1 55
— 3 po (—wy Py + Wy P3) (@1 P1 + @5 Py)
=0. (46)

Die Kriimmungsmittelpunkte in den Scheiteln der Bahnkurven liegen auf einer
Kurve Q, die als Mittelpunktkurve bezeichnet werden kann. 2 ergibt sich als Kreis-
punktkurve der inversen Bewegung und hat daher die gleichen Eigenschaften wie .

2 und 0 gehen durch die momentanen Fixpunkte der hyperbolischen Bewegung.
Im eigentlichen Fixpunkt haben sie einen gemeinsamen Doppelpunkt und die Pol-
bahntangente und die Polbahnnormale als gemeinsame Doppelpunktstangenten.
Dabei beriibren sie sich lings der Polbahntangente von erster Ordnung und lings der
Polbahnnormalen von zweiter Ordnung. In den uneigentlichen Fixpunkten schneiden
sich die beiden Kurven dritter Ordnung einfach.

Durchlaufen die eigentlichen Polbahnen in E und E gleichzeitig Scheitelpunkte,
d.h. gilt o’ = o’ = 0, so zerfillt nach (29) die Kreispunktkurve (46) in die Polbahn-
normale und einen die eigentliche Polbahn beriihrenden Kegelschnitt.

Hubert Frank, Universitdt Freiburg i. Br.
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