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112 Kieme Mitteilungen

Kleine Mitteilungen
Antwort auf eine Frage von P. Erdös nach fünf Punkten

mit ganzzahligen Abständen

Herr Professor Erdos fragt (z. B in [7]) Gibt es fünf Punkte in der Ebene, von denen
keine drei auf einer Geraden und keine vier auf einem Kreis liegen, und deren Entfernungen
voneinander alle ganzzahlig smd "> - Bekannt ist, dass bei einer unendlichen Punktmenge
mit ganzzahhgen Distanzen alle Punkte auf einer Geraden liegen müssen [1, 2, 3] Fur
jedes n wurden andererseits n Punkte mit ganzzahligen Abstanden so konstruiert, dass
keine drei auf einer Geraden, aber mindestens n—l auf einem Kreis liegen [4, 5, 6] - Hier
soll eme Klasse von nicht zueinander ähnlichen Fünfecken angegeben werden, die den
gefragten Bedingungen genügen

Mit noch zu wahlenden Winkeln a und ß werden die Punkte Pt= (xltyt),i 1,2,.. ,5,
mit den Koordinaten

xx yx y2 0, x% 1, at4 x5 — 1 cos 2a, y4 y5 sm 2 a,

x3 1 - cos20, y3 sm20 (1)

betrachtet Px, P2, P4 und P5 bilden die Eckpunkte eines Rhombus mit der Seitenlange 1

P2 und P4 bzw. Px, P3 und P5 liegen auf den Einheitskreisen um Px bzw um P2. Dann
smd die folgenden fünf Entfernungen gleich der Einheit

d(Px, P2) - d(Px, P4) d(P2, P3) d(P2, P5) - d(P„ P5) 1 (2)

Weitere vier Abstände ergeben sich zu

d(Px, P8) % siiij., d(Px, P5) 2 cosa,
d(Pz, P4) 2 sma, d(Pz, Pß) 2 (cosa cos/? — sma sm/?) (3)

ny

Ä

und smd rational, falls die tngonometnschen Funktionen der Winkel oc und ß rational smd
Dies wird erreicht, wenn a und ß fur beliebige rationale Werte | und r\ so bestimmt werden,
dass die Beziehungen

2* 2rj
a ___ ; cosa t%

¦ smß -Lrr-T- cosß -j-r^-|2 4- 1 |2 -f 1 r *72 4- 1 r t)2 + 1
(4)

erfüllt smd.
Von den zehn möglichen Abständen bleibt nun nur noch die Rationalität von d

d(P3, P4) fraglich. Es gilt
_f2 (cos2a + cos20 - l)2 -f- (sm2a - sm20)2 1 - 8 sma smß cos(a + ß) (5)

und mit (4) folgt
p _ 1 ^ - i ({t _ i) (^ _- i) - 4 $ ^^2 * 8f2-fl f?2+l (p + i) foi + i)

Hieraus ergeben sich mit f * 0 die beiden Gleichungen

(6)

a+i^ ± **~~l n%-1 und i-i-t (l2-i)fa2-i)-4^^+1 C la+i *?a+i
C (l2+i)W+i) '
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aus denen durch Addition d rational bestimmt ist, wenn die durch Subtraktion
entstehende diophantische Gleichung

21 (I2 + i) (v2 + 1) (8 - C2) (I2 - i) fo1 - i) + 4C2 in (8)

m rationalen Zahlen £, t gelost werden kann
Mit dem auszuschhessenden Wert r\ 1 (Px, P2, P3 waren kollmear) und mit einem

rationalen Parameter q gilt (8) fur
S q und f g + 1/f (9)

Ebenfalls mit (9) besitzt (8) fur r\ noch die zweite, nicht triviale Losung

V ~ F™$
> F(q) q*+ 2q*-7q*+4q*+7q*+ 2q-l. (10)

Werden nun (9) und (10) uber (4) m (1) eingesetzt, so ergeben sich die Koordinaten
6 t - t ~ x

*i yi y2 °> *i«-*, *4 -*,-_.- (^2 + 1)2

_r _ 4g(g2-l) _
32 g2 (g2 - l)2 (^ + l)^ (g4 - 6 g2 + l)2^ y»

(g2 + !)2 ' ^3 |^2 _ 1j2 (^4 _ 6 ?2 _|_ !)2 + 4 ?2 (^2 + !)4}2
> V

Sq(q2- 1) (^ + l)2 (g4 - 6 g2 + 1) {(q2 - l)2 (g4 - 6 g2 + l)2 - 4 g2 (g2 + l)4}
y3 {(g2 - l)2 (g* - 6 g2 + l)2 + 4 g2 (g2 + l)4}2

Ersetzt man in (11) g durch — g oder durch 1/g, so erhalt man die an der x-Achse
gespiegelten Punktmengen

Die Punkte Px, P2, P4, P5 smd nur kollmear, wenn g 0 oder g + 1 gewählt wird,
sie hegen genau dann auf einem Kreis, wenn x± 0 gilt, was aber fur rationales g nicht
möglich ist Da P3 immer auf dem Einheitskreis um P2 hegt, lassen sich die Falle, m denen
P3 mit zwei bzw. drei der übrigen Punkte auf einer Geraden bzw. auf einem Kreis hegt,
zu den folgenden Bedingungen fur xz aus (11) zusammenfassen

x 0 2,-2 ,« 2(g*-6g2-f l)2 8g2 _
2 (g2 - l)2

*3 - U, A g l q feI + 1)4 fe| + 1)2 {q2 + 1)2 <Hj

Schliesst man nun von den endlich vielen Losungen der durch (12) bestimmten Polynome
m g die eventuell rationalen Werte aus, so stellen die mit ihrem Hauptnenner multiplizierten

Koordinaten aus (11) fur jedes andere g > 1 fünf Punkte der gewünschten Art dar.
Als Beispiel ergibt g 3 die Punkte Qx (0, 0), Q2 (52 • 132 • 172 • 292, 0), 03

(27 • 32 • 56 • 72, - 24 • 3 • 54 • 7 • 47 • 103), ß4 (- 7 • 132 • 172 • 292, 28 • 3 • 13a • 172 • 292);
Q5 (2 • 32 • 132 • 172 • 292, 28 • 3 • 132 • 172 • 292) mit den Abstanden d(Qx, Q2)

d(Qi, Öi) d(Q2, ß,) d(Q2, Q5) d(Q„ ß5) 1 026 882 025, d(Qx, Qz) 1 365 890 000;
d(Qi, 06) 1 232 258 430, d(Q2, QA) 1 643 011 240, d(QB, 04) 2 318 936 425,
d(Qa> 05) 2 007 491 070 Heiko Harborth, Braunschweig
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Eine Verallgemeinerung der Cesäro-Rekursion

Em Satz aus dem Jahre 1949 möge hier mit dem damaligen Beweis mitgeteilt werden
Gegeben sind 2 unbestimmte Folgen abc und ABC Das wie folgt gebildete Matrizenprodukt

ihrer beliebig weit fortgesetzten Teilsummenschemata enthalt in jeder Diagonale von
links oben nach rechts unten lauter gleiche Elemente

r m\

fab c

a a+b a + b + c

a 2a+ b 3a+ 2b+ c

Beispiel 10 0 4 3 2
4 3 2

1 1 1 5 4 3
11112 3 6 5 4
0 0 0

1 3 6 7 6 5

3A + 2B+ C A + B+ C C
2A + B A + B B

A A A

S T
RST

RS

Beweis Nach der Umbenennung abc m a0axa2 an nebst ABC M
A0AXA2.. An handelt es sich um das Matrizenprodukt

f ß + n\ tk + 0\ A
~\

/» + 0\ H + n\ 1% + 0\

r:>»V \ - / jIm linken Faktor zahlt i — — 1, 0, 1, 2, von oben nach unten, im rechten Faktor zahlt
k — 1, 0, 1, 2, von rechts nach links Das innere Produkt der notierten Zeile i und
Spalte k kann als Cauchy-Produkt entwickelt werden

W('y)Cr)+---+(,r)(i:0)]+---+<-. <*.+¦••+«.<<.>

*[r. •)(*:•)]-Mi + k+1 + nr + K^„+ -*- + anA0)

't + k+ 1+ Q"

)¦
Die Abhängigkeit nur von der Summe i + k, nicht aber noch einzeln von i und k, zeigt die
behauptete Konstanz jeder Diagonale der Produktmatrix. - Die benutzte Beziehung

£«•-')(*;')-(¦* 4- k + 1 + v\ fur v 0, 1, n
X,fi-Q
A+H~v

folgt durch Koeffizientenvergleich bei w aus (1 — x)"1"1 (1 — x\
namhch aus

k-i. \-*-A-2

K* 4- A\
X

Die Cesäro-Rekursion (Knopp, Unendliche Reihen, 4. AufL, S. 483) ist der Spezialfall

a6c.M»10ö..,( wobei die Hauptdiagonale ö S der Produktmatrix betrachtet wird
I. Paasche, München
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