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Kleine Mitteilungen

Antwort auf eine Frage von P. Erdés nach fiinf Punkten
mit ganzzahligen Abstinden

Herr Professor ERDOs fragt (z. B. in [7]): Gibt es fiinf Punkte in der Ebene, von denen
keine drei auf einer Geraden und keine vier auf einem Kreis liegen, und deren Entfernungen
voneinander alle ganzzahlig sind ? — Bekannt ist, dass bei einer unendlichen Punktmenge
mit ganzzahligen Distanzen alle Punkte auf einer Geraden liegen miissen [1, 2, 3]. Fiir
jedes » wurden andererseits # Punkte mit ganzzahligen Abstinden so konstruiert, dass
keine drei auf einer Geraden, aber mindestens » — 1 auf einem Kreis liegen [4, 5, 6]. — Hier
soll eine Klasse von nicht zueinander dhnlichen Fiinfecken angegeben werden, die den
gefragten Bedingungen geniigen.

Mit noch zu wédhlenden Winkeln o und § werden die Punkte P, = (v,,%,),1=1,2,...,5,
mit den Koordinaten

X =Y1=9,=0; xg=1; 2, =25 — 1 =cos2a; y, = Y; = sin2a;
%3=1—cos2f; y; =sin2f (1)
betrachtet. P,, P,, P, und P, bilden die Eckpunkte eines Rhombus mit der Seitenlidnge 1.

Py und P, bzw. P,, P; und Py liegen auf den Einheitskreisen um P, bzw. um P,. Dann
sind die folgenden fiinf Entfernungen gleich der Einheit

A(Py, Py) = d(Py, Py) = d(Py, Py) = d(Py, Py) = d(Py, Pyg) = 1. (2)
Weitere vier Abstdnde ergeben sich zu
d(P,, P,) = 2sinf; d(P,, Pg) = 2 cosa;
d(P,, P,) = 2sina; d(P,;, Pg) = 2 (cosa cosf — sina sinf) (3)

2} Bl

und sind rational, falls die trigonometrischen Funktionen der Winkel o und § rational sind.
Dies wird erreicht, wenn « und f fiir beliebige rationale Werte & und # so bestimmt werden,
dass die Beziehungen

m-1

sine = m H

; sinfi =

erfiillt sind.
Von den zehn moglichen Abstédnden bleibt nun nur noch die Rationalitit von d =
d(P,, P,) fraglich. Es gilt

dt = (cos2a + cos2ff — 1) 4 (sin2a — sin2f8)? =1 — 8sinasinfcos{a + f), (5)
und mit (4) folgt
£-1 P11 (B-lP—1) —4En

2 __ ] =
4 *EFT i E+ D+ 1D (©)
Hieraus ergeben sich mit { + 0 die beiden Gleichungen *
Y : 2 __ 2. 1) — '
i+ 1= 8 &#-1 o211 4 d—1=¢ (82—1)(m2—1)—4¢&q )

B+ T Pt E+D @ +1)
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aus denen durch Addition d rational bestimmt ist, wenn die durch Subtraktion ent-
stehende diophantische Gleichung

208+ 1)(+1)=B-0) (-1 (P —1)+42&q (8)
in rationalen Zahlen &, 5, { gelost werden kann.

Mit dem auszuschliessenden Wert n = 1 (P,;, P,, P, wiren kollinear) und mit einem
rationalen Parameter q gilt (8) fiir

§=q und [=gq+1/q. (9)
Ebenfalls mit (9) besitzt (8) fiir # noch die zweite, nicht triviale Lésung
F(—
n=——?(«(—_(-[—f)—. Fl@=q¢*+2¢"-7q"+4¢+7¢*+ 29— 1. (10)
Werden nun (9) und (10) iiber (4) in (1) eingesetzt, so ergeben sich die Koordinaten
6¢2—qt— 1
X=91=0=0; x=1; % =x—1= q(qz+q1)g ;
ey tel@—-1 o 32¢2 (1) (*+ 1)°(¢" — 647+ 1)° (11)
NMEBE T E T @) -6 )P AR (P + D)

Bg(*—1)(2+1)*(¢*—64¢*+ 1) {(¢*— 1)*(¢* — 64>+ 1)> — 44 (¢* + 1)*}
(@ - D (=62 + P+ 4¢ @+ 1P

Ersetzt man in (11) ¢ durch —¢ oder durch 1/g, so erhdlt man die an der x-Achse ge-

spiegelten Punktmengen.

Die Punkte P,, P,, P,, P, sind nur kollinear, wenn g = 0 oder ¢ = + 1 gewdhlt wird;
sie liegen genau dann auf einem Kreis, wenn x, = 0 gilt, was aber fiir rationales g nicht
moglich ist. Da P, immer auf dem Einheitskreis um P, liegt, lassen sich die Fille, in denen
P, mit zwei bzw. drei der iibrigen Punkte auf einer Geraden bzw. auf einem Kreis liegt,
zu den folgenden Bedingungen fiir », aus (11) zusammenfassen

2(q*—64¢*+ 1) 8q° 2(¢*—1)?
(¢ + 1)* @+ (¢ +1)?
Schliesst man nun von den endlich vielen Losungen der durch (12) bestimmten Polynome
in ¢ die eventuell rationalen Werte aus, so stellen die mit ihrem Hauptnenner multiplizier-
ten Koordinaten aus (11) fiir jedes andere ¢ > 1 fiinf Punkte der gewiinschten Art dar.
Als Beispiel ergibt ¢ = 3 die Punkte Q, = (0, 0); Q, = (52-13%-17%2- 292, 0); Qg =
(27-32.56-72, —24-3-54-7-47-103); Qu = (—7-13%-172-292 2%.3.13%. 172 29?);
Qs=(2-32-132.172-29% 23.3.13%2-172.29%) mit den Abstinden d(Q,, Q,) =
A(Q1, Qo) = @(Qs, Qs) = d(Qs, Q5) = d(Qy, Qs) = 1 026 882 025; d(Qy, Q) = 1 365 890 000;

d(0,, Q;) = 1 232 258 430;  d(Q,, O,) = 1 643 011 240;  d(Q,, Q,) = 2 318 936 425;
d(Qs, Q) = 2 007 491 070.

Vs =

x:}: O) 2) q?‘, z_qz»

(12)

Heiko HARBORTH, Braunschweig
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Eine Verallgemeinerung der Cesaro-Rekursion

Ein Satz aus dem Jahre 1949 moge hier mit dem damaligen Beweis mitgeteilt werden:
Gegeben sind 2 unbestimmie Folgen abc ... und A B C ... . Das wie folgt gebildete Matrizen-
produkt ihver beliebig weit fortgesetzten Teilsummenschemata enthdlt in jeder Diagonale von
links oben nach vechts unten lauter gleiche Elemente :

. ) . M)
a b C o m « ) T ST. .
a a+b a+b+c¢c--- . ’ ) " | {RST.
al2a+b3a+2b+c -+ 344 2B+CA+B+C C RS .
.24A+ B A+ B B
- A A AJ
Beispiel:
P 100 413 432
111 111\—~ 543
123 - - 654
136 7675

Beweis: Nach der Umbenennung abc...m=aya,a,...a, nebst A BC... M =

Ay Ay A, ... A, handelt es sich um das Matrizenprodukt

e N
; (k+n)Ao+...+(k+0)An.

n

n

0 n 0
. (k * O)Ao .
0
- J
Im linken Faktor zahiti = —1, 0, 1, 2, ... von oben nach unten; im rechten Faktor zihlt
k=-—1,01, 2,... von rechts nach links. Das innere Produkt der notierten Zeile 7 und

Spalte % kann als Cauchy-Produkt entwickelt werden:
L+ 0\ (& ' E+0
W[50 e (T s

0 n n 0
40 0 4+ R+ 1
o R G O
1+ k+1+0
X(*H— -t(—) + )

Die Abhéngigkeit nur von der Summe ¢ + %, nicht aber noch einzeln von ¢ und %, zeigt die
behauptete Konstanz jeder Diagonale der Produktmatrix. — Die benutzte Beziehung

. (i+l)(k+u)=(i+k+l+v

) fir »=0,1,...,n
A u v

A pu=0
Adp=y

folgt durch Koeffizientenvergleich bei ¥ aus (1 — )~ —1 (1 — »)~k-1 = (1 — #)~i—Fk-3

nimlich aus
o0 . x o0 .
(2—{-— l)xlz(k-{—ﬂ) xP=Z(t+k+ 1+v)x"
=5\ A oo M y=0 ¥

Die Cesaro-Rekursion (Knopp, Unendliche Reihen, 4. Aufl.,, S. 483) ist der Spezialfall

abc...=100..., wobei die Hauptdiagonale Ss S der Produktmatrix betrachtet wird.
I. PaascHE, Miinchen
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