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Zu Formeln von Fejes T6th und Hoppe fiir den Inhalt
sphirischer Tetraeder

FejEs TétH [2] gab 1956 eine Formel fiir den Inhalt jener sphirischen Tetraeder
an, die ScHLAFLI [5] Orthoscheme genannt hat. An anderem Ort bemerkt FEJES
TétH [3], dass es ihm nicht gelungen ist, die Identitdt dieser Formel mit einer gleich-
wertigen von HoppE [4] aus dem Jahre 1882 auf direktem Wege nachzuweisen. Wie
man mit einfachen Mitteln beide Formeln ineinander iiberfithren kann, soll nach-
stehend gezeigt werden.

Bezeichnet man den Inhalt des Orthoschems im dreidimensionalen sphérischen
Raum der Kriimmung + 1 mit S@®, so ist nach HorPE

B
- . tan?¢ tan?y
2 S® — f bW dy; e, sintp, T tantp, — .
8
sind = sin f, cos B,
und nach Fejes TétH
% tan S§2)
2S® — 6/ [Sf’ — ¢*(y) arctan 7‘(75"] 4y @
mit:

s costmacosty @)

sin?a, — cos?a, sin?y
sin?a, sin?ay — cos?a,
sin%a, cos?ay
Zur Erliuterung der auftretenden Gréssen moge die Abbildung dienen.
Der dreidimensionale sphéirische Raum wird als Kugelfliche in einen vier-
dimensionalen euklidischen Raum eingebettet. Aus dem Mittelpunkt der Kugel wird

tan? S® = tan? SP («,, o, atg) =
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das Orthoschem auf einen dreidimensionalen, zum Strahl O P, normalen, euklidischen
Unterraum projiziert. Bei HoppE sind §, und §, Winkel zwischen Kanten des Bild-
tetraeders, f, ein Winkel zwischen Projektionsstrahlen. In der Formel von FEjEs TéTH

sind mit «; die von /2 verschiedenen Winkel zwischen den Winden des Orthoschems
bzw. den projizierenden Unterriumen bezeichnet. S®ist die zum Winkel «; gehérende
Kante des Orthoschems. Vorausgesetzt wird 0 < g, < #/2 (¢ = 1, 2, 3) oder, damit
gleichwertig 0 < a; < /2. Hierin liegt keine Einschrinkung der Allgemeinheit: Ist 7z/2
< a, < 7, so lisst sich das Orthoschem in Teilorthoscheme zerlegen, deren Winkel den
Forderungen geniigen. Fiir o, = 0, 7z/2 oder & kann S® sofort angegeben werden
(ScHLAFLI [6]). Unter den angefiihrten Voraussetzungen sind die Winkel «; und g, iiber

cosay; = cosfysinfy, cosay, = cosfysinfly, cosag = cosf, (3)

verbunden. Werden in (1) die Winkel «; als Bestimmungsstiicke eingefiihrt, so ergibt
sich
o

' . COS
2.5® — / SP(p, aa, a5) dy,  sing = St 4)
e
(Man vergleiche auch Boum [1]).
Um aus (4) auf direktem Wege (2) herzuleiten, oder umgekehrt, betrachte man die
Funktion

0 . (singsiny) 0
Flp,yp) = F arcsin ( ey ) oy
cos g siny cos?ay cosay COSY

- (5)

(cos®ay — sin?g sinfy)l/? (sin?y sin?ay; — cos?ay)l/? (sin?y — cos?oy)

5(12)('})» %g, aS)

e<vsm<F 0<9<T-a)



B. Weissbach: Zu Formeln von Fejes Té6th und Hoppe 111
Wird

(sin?yp sin®ag — cos?a,) cos?e = u(p, y) , (cos?ay — sin?g sin?y) costag = v(p, )

gesetzt, so ist, wie leicht nachweisbar

w2 91 [y + o]

T |5
v

folglich:
7w 0
Of Flp, ) dp = v - SP(p, @, o) (e <p<Loy < {21) (6)
F u(p, 0y)1/2 4 *
F(p, y) dy = arctan [v—(;a—l)] ; (OS¢£—2-~a2). (6*)
e

Ausgehend von (4) gewinnt man durch Teilintegration, da SP(yp, ay, ay) fiir p =
verschwindet :

o

oy
0
259 — g 5(2’~~f¢“5,; 5‘12’(w,ocz,oca)dw=—f dwf Flp,y) dp.
o 0

e
Austausch der Integrationen bringt mit (6*)

: (
28® =g, S _ / arctan [ ( Sina, cosg tan 517 ] dep . (7)

; cos?a, — sin?a, sin?gp)!/2

Hier hat man nur noch sina, sing = cosa, siny zu setzen, um die Formel von FEJEs

To6TH zu gewinnen. — Man findet F(p, y) beim Versuch, fiir (2) die Schliflische
Differentialformel
0S® 1

= — S@
Ou; 2 S‘

4

zu bestitigen. B. WEeissBacH, Magdeburg
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