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Zu Formeln von Fejes Töth und Hoppe für den Inhalt
sphärischer Tetraeder

Fejes Töth [2] gab 1956 eine Formel für den Inhalt jener sphärischen Tetraeder

an, die Schläfli [5] Orthoscheme genannt hat. An anderem Ort bemerkt Fejes
Töth [3], dass es ihm nicht gelungen ist, die Identität dieser Formel mit einer
gleichwertigen von Hoppe [4] aus dem Jahre 1882 auf direktem Wege nachzuweisen. Wie
man mit einfachen Mitteln beide Formeln ineinander überfuhren kann, soll
nachstehend gezeigt werden.

Bezeichnet man den Inhalt des Orthoschems im dreidimensionalen sphärischen
Raum der Krümmung + 1 mit 5(4), so ist nach Hoppe

ö

sind sin/?2 cos/?!

und nach Fejes Töth

2 S<« f [Sf> - <f>*(f) arctan *?ß^] dy> (2)

0

mit:
U*)2 cos2a2cos2y _^ ' sm2^ — cos2a2sm2y v ;

tan'Sf - t-n-S» («_. «,. «,) ^S^?* '

Zur Erläuterung der auftretenden Grössen möge die Abbildung dienen.

Der dreidimensionale sphärische Raum wird als Kugelfläche in einen
vierdimensionalen euklidischen Raum eingebettet. Aus dem Mittelpunkt der Kugel wird
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das Orthoschem auf einen dreidimensionalen, zum Strahl OPx normalen, euklidischen
Unterraum projiziert. Bei Hoppe sind ß2 und ß3 Winkel zwischen Kanten des
Bildtetraeders, ßx ein Winkel zwischen Projektionsstrahlen. In der Formel von Fejes Töth

P'

R'ff 4

ß*

sind mit oc, die von nß verschiedenen Winkel zwischen den Wänden des Orthoschems
bzw. den projizierenden Unterräumen bezeichnet. SfHst die zum Winkel af gehörende
Kante des Orthoschems. Vorausgesetzt wird 0 < ß( < nß (i 1, 2, 3) oder, damit
gleichwertig 0 < <xf < nß. Hierin liegt keine Einschränkung der Allgemeinheit: Ist nß
< aÄ < n, so lässt sich das Orthoschem in Teilorthoscheme zerlegen, deren Winkel den
Forderungen genügen. Für <xA 0, nß oder n kann 5(4) sofort angegeben werden
(Schläfli [6]). Unter den angeführten Voraussetzungen sind die Winkel oc, und/?, über

cosa! cos/?! sin/?2, cosa2 cos/?2 sin/?3 cosa3 cos/?3 (3)

verbunden. Werden in (1) die Winkel af- als Bestimmungsstücke eingeführt, so ergibt
sich

2 S(4) / Sf^ip, <x2, a3) dtp sing cosa2
sina3

(4)

(Man vergleiche auch Böhm [1]).
Um aus (4) auf direktem Wege (2) herzuleiten, oder umgekehrt, betrachte man die

Funktion
d /sing» siny \ d ^m, x

7 l^T Si(V» «i-««)F((p, y>)
dtp

arcsm smy smy^
cosaÄ

cos9? siny cos2a2 cosa8 cosy
(cos2aa — sinay su^y)1'2 (sin2y sin2as — cos2«^1'2 (sin2y — cos2«x2)

\Q < f <> «i < —•, 0 ^ <p <, -y - ot2J.

(5)
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Wird

(sin2y sin2oc3 — cos2a2) cos2cp u(cp, y) (cos2a2 — sin2cp sin2y) cos2a3 v(cp, tp)

gesetzt, so ist, wie leicht nachweisbar

_i r jul _ du] __l r^i1
2 L dy dy J dy L v J

11/2

F(<p, y) tti/f „i/i [W + W]
1 _*__

v

folglich:
n

j F((p,ip)dq> ip^S?)(y>,<it,ai); (q < y < clx < y) (6)
0

/_%, V) <ty arctan [fg^-f2; (o <, <p __ f - «,) (6*)

Ausgehend von (4) gewinnt man durch Teilintegration, da S[2)(ipt a2, a3) für y o
verschwindet:

n

2 S<« - Ä1 S?> - f y> -£- Sf'(v. «2, 03) <fy -/ <fy y Ffo>, y) <fy

e e 0

Austausch der Integrationen bringt mit (6*)

n

2S<« «1S<2>-7 arctan f-, f ,"COByttan?' 1 dcp (7)11 y L (cos2a2 — sin^sm^)1'2! T v '
o

Hier hat man nur noch sinai sin cp cosa2 siny zu setzen, um die Formel von Fejes
Töth zu gewinnen. - Man findet F(cp, tp) beim Versuch, für (2) die Schläflische
Differentialformel

dS(4)
=__ 1 5(2)

daf 2

zu bestätigen. B. Weissbach, Magdeburg
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