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Gaussian Binomial Coeflicients

The binomial coefficients belong to the curriculum of the secondary school, their
connection with combinatorics is known since the days of Leibniz, Pascal and Jacob
Bernoulli. The ‘Gaussian binomial coefficients’ are much less widely known, their
connection with combinatorics is of a more recent date. We thought that an exposition
of some of the relations between Gaussian and ordinary binomial coefficients may add
some zest to a traditional secondary school subject.

1. Definition. We call

[n] _-1Hgr-1... (g -1)
r @—1)(-1...(¢—-1)
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a Gaussian binomzial coefficient; n and » are integers, 0 < » << #, and ¢ is a variable [1].
The definition (1.1) must be supplemented by an appropriate interpretation for r = 0,
and we add an obvious consequence for r = n:

[g] ~1, [:] —1. (1.2)

The value g = 1 is forbidden (for the moment). Yet each of the » factors in the
numerator and also each of the » factors in the denominator on the right hand side of
(1.1) is divisible by ¢ — 1. Performing these divisions we see that

n n
1 .
[r] ——>(r) as ¢ — (1.3)
where
(n)zlz_n—l.“n—r—f—l (1.1%)
4 1 2 4

is an ordinary binomial coefficient.
2. A generalization of the binomial theorem. We consider the polynomial in x
fX)=014+2)14+¢gx)...(1+qg1x); (2.1)

its zeros form a geometric progression of # terms whose quotient is ¢~ and initial
term — 1. Our next task is to find the coefficients Q,, 0, Qs, ... Q, of the expansion

f() = Qo+ Q2+ Qe+ ...+ Q2. (2.2)
Obviously

Qo=1, Q,—go-me. (2.3

To proceed further, we observe that (2.1) implies

(14 %) flg %) = f(x) 01 + ¢" %) (2.4)
or, in view of (2.2),

(40 X Qrr=(+ren Y ox. (2.5)

The comparison of like powers of x yields

Qr q + Qr-—l qr—l = Qr +q" Qr—l (26)

or
qn—-—r+1 —_— 1

0= Qs 2.7)

for » =1, 2, 3, ... n. Repeated application of (2.7) yields, in view of (2.3) and (1.1),
that

0.~ [}] . 29
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Therefore, see (2.1) and (2.2),

]7 (14 gk-12) = Z [”] gz 47 (2.9)
k=1 r=0 L?
Compare this with the particular case ¢ = 1:
2 (n
1 e ', : 9*
1+ %) 2-—.:0(7')’6 (2.9%)

3. The recursion formula. Substituting # + 1 for # in (2.9) leads to the same result

as multiplying (2.9) by (1 + ¢* x). If, in the equation so obtained, we compare like
powers of x, we find that

RONRENS

This result, which we can also directly verify from the definition (1.1), is analogous to

("77)=C) () b1

In starting from the ‘initial condition’ (1.2) and using the ‘recursion formula’ (3.1)
to pass from # to » + 1 we can compute the Gaussian binomial coefficients very
conveniently, in fact, only by addition and multiplication, without subtraction or
division. Thus, [}] which, defined by (1.1), appeared as a rational function of g¢,
turns out to be a polynomial in ¢

r(n—r)
[”] S SR (3.2
4 a=0 "

whose coefficients 4, , , are positive integers. (Also the ordinary binomial coefficient,
defined by (1.1*), appears initially as a rational number, but turns out to be an
integer.) The degree r (n — #) shown on the right hand side of (3.2) can be found as the
difference of the degrees of numerator and denominator on the right hand side of (1.1),
or can be verified by mathematical induction.

The principal aim of the present paper is to reveal the intuitive significance of the

integers 4, , ,.

4. A combinatorial interpretation. We consider a rectangular coordinate system
in the plane. A point whose coordinates are both integers (usually called a lattice
point) will be considered as a streef corner. A straight line that passes through a street
corner and is parallel to one or the other coordinate axis will be called a street. We
think of a pedestrian (a moving material point) walking in this network of streets.
A shortest way in this network between the street corners (0, 0) and (r, n — 7) (we
assume 0 < 7 << n) will be called a zigzag path, its length is n. The number of different
zigzag paths is (#). This is widely known [2]. We wish to add the

Theorem: The number of those zigzag paths the area under which is o« equals A, , , [3].

The ‘area under the path’ is contained between the path, the horizontal coordinate
axis ¥ = 0, and the line x = » parallel to the vertical coordinate axis.
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Figure 1 illustrates the theorem by exhibiting the particular case where # = 6
and 7 = 2. In examining it, bear in mind that

G- ()-m ()-e

Figure 1 shows 15 zigzag paths starting from (0, 0) and ending at (2, 4). The corre-
sponding Gaussian binomial coefficient is of degree 2x 4 = 8; its expansion consists
of O terms; in each term the exponent of x indicates the area under the path and the
coefficient the number of different paths with such an area.

JAR BN

JAEEN -

§ N == HEH

=1+4g¢+ 2¢*+2¢°+ 3¢* + 2¢°+ 2¢% + ¢" + ¢®

The theorem can be proved by mathematical induction; the recursion formula
(3.1) provides the bridge for the passage from # to n + 1. The proof is clearly indicated
by Figure 1 which exhibits the passage from 5 to 6. Each of the 15 zigzag paths shown
is of length 6 and should be conceived as consisting of two parts, an initial part of
length 5 starting from (0, 0) and of a terminal segment of length 1 ending at (2, 4).
Of the 15 zigzag paths considered, 10 have a vertical, and 5 a horizontal, terminal
segment (notice the line of separation in Figure 1). The area under the whole path is
the same as the one under the initial part for the 10, but it is larger by 4 units for the 5;
the 10 correspond to the first, and the 5 to the second, term on the right hand side of
(3.1). The reader should be able to see the general argument behind the representative
particular case exhibited.

It is instructive to verify directly some points connected with the theorem whose
proof we have just indicated. It is obvious, either from the figure or from the expres-
sion (1.1), that

4 =4

nrrin—r—a (41)

Moreover, as the value of the Gaussian binomial coefficient for ¢ = 1 is just the
corresponding ordinary binomial coefficient, see (1.3), (3.2) yields

r(n—r)
2 Aya= (n) (4.2)

o=0 ¥

nr,a

as it should be.
5. Another combinatorial interpretation. A zigzag path consists of consecutive
segments of unit length; each segment joins two neighboring street corners. Starting
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from the initial point (0, 0) we name these segments consecutively x or y according
to which coordinate axis each one is parallel. We obtain so a one-to-one mapping of
the set of zigzag paths onto a set of letter sequences; see the example in Figure 2
where the zigzag path ends at the street corner (5, 4) and the corresponding sequence
consists of 9 letters.

Divide the area under the zigzag path with endpoint (r, # — ) by equidistant
parallels to the y-axis into 7 rectangles each of base 1. In Figure 2 there are 5 such
rectangles; their heights are (we survey them from left to right)

0,1,3,3,4

respectively. Each rectangle has as top a horizontal unit segment of the zigzag path,
and corresponds so to an x in the letter sequence. The height, and so the area, of the
rectangle is the number of y’s preceding that x, and so equals the number of inversions
determined by that x in the letter sequence. (In a letter sequence of length # there are
n (n — 1)/2 pairs of letters. Such a pair forms an snversion if, and only if, it consists
of a y preceding an x.) Thus, the joint area of the » rectangles, that is, the area under
the zigzag path equals the number of inversions in the letter sequence (11 in our example).

A

Figure 2

S XYXYYXEYX

Thus, the Gaussian binomial, by enumerating the areas under the zigzag paths,
enumerates #pso facto the inversions in the letter sequences considered. This connection
of the Gaussian binomials with inversions was known [4]. What we wanted to point
out is the intuitive transition from areas to inversions [5].

6. Another approach. In fact, the theorem of Section 4 can be obtained as a slight
reinterpretation of a known particular result of a classical theory, the theory of
partitions whose foundation was laid down by Euler [6]. We shall assume as known
an essential point of this theory in the following derivation.

Remember the definition of a zigzag path given in Section 4 and set n =7 + s.
As Figure 2 suggests, we can build up a zigzag path with » juxtaposed rectangles.
Each of these rectangles has a horizontal base of length 1 and its vertical altitude is
measured by a non-negative integer < s; the altitude 0 is admissible. The bases of the
r rectangles are alined along the x-axis starting from the origin, the altitudes form a
non-decreasing sequence, and the sum of the areas (or altitudes) is «, the area under
the zigzag path. Thus the altitudes form a partition of « into exactly » non-negative
integers none of which exceeds s; we define now (in opposition to Section 3) 4, ,,
as the number of such partitions.

We can determine this number by Euler’s method according to which if we set

1-2(1—-gx)(1—-¢"2x..0—¢ 2 =gl (6.1)
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(compare (2.1)) we obtain the ‘generating function’
1
A &F g% ==
N
If we define
PO = 1’2Ar+s,r,ac q“ = Pr (63)
o

for » > 1, we can write (6.2) as

. (6.2)

1
—— = Py + P Py, x4 ... 4 S ;
g(x) 0+ 1x+ 2x+ +P1‘x+ (64)
Now (6.1) involves
1—x« 1—gs+lx (6.5)
g(x) g(g ) '
(compare (2.4)) or, in view of (6.4),
(1 -x)ZP,x’= (1 —q$+1x)2P,q’x'. (6.6)
0 0
The comparison of like powers yields
Pr_Pr—lzqurﬁqr-HPr—l (6'7)
or
qr+s - 1
P=P_,— :
r r—1 q,. -1 (6 8)

for r=1,2,3,.... Repeated application of (6.8) yields, in view of (6.3) and the
definition (1.1),

rs

r+ s a
Pr= [ » ] = ZAr-{-s,r,aq (69)

a=0
and this proves our theorem stated in Section 4.
To check (6.9) we may observe that, for ¢ — 1, (6.4) goes over into

(1—x)=s-1 = f‘ (' + s)x’. (6.4%)

r=0 4
The computation of P, in this section was very similar to the computation of Q,
in Section 2. Yet in this section we started with a combinatorial definition of 4
and proceeded hence to a formula, whereas in Section 4 we defined 4
formula (3.2) and verified the combinatorial interpretation afterwards.

n,r,a

n,r,o by the

7. A brief outlook on ‘Gaussian multinomial coefficients’. Let n be a nonnegative
integer and let us call ‘Gaussian factorial’ the polynomial in ¢

g-1)@-1(¢—-1...(¢—1)
(g—1)"
=1.-(1+¢q) - -L+g+¢) ... Q+g+¢+...+¢? (7.1)
nin—1)/2
= 2 Bn,iqi;

gm0

n!l =
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its coefficients B, ; are nonnegative integers, its degree is n (n — 1)/2. It could be also
defined by the initial condition

oll=1 (7.2)
and the recursion formula
M+ =014+g+¢+...+ ¢ n!l. (7.3)

Consider a ‘word’ formed by # given different letters of the alphabet; the number
of all such words is obviously #!. In any one of these words there are n (» — 1)/2 pairs
of letters; such a pair forms an inversion if, and only if, the alphabetically preceding
letter comes later. The number of those among the n! words (permutations) that show
precisely 1 inversions is B, ; [7].

This is easy to prove by mathematical induction from the recursion formula (7.3).
Add to the # different letters which form the word a new letter that precedes all of
them alphabetically. According as the letter added occupies the first, the second, the
third, ... or the last place, the number of inversions increases by 0, 1, 2, ... or # and
that is what (7.3) expresses.

From the defining formula or from the combinatorial interpretation

B, ;= Bin—1s2—i » (7.4)
n(n—1)/2
B,,=mnl. (7.5)
t=0

The Gaussian binomial coefficient can be written in the form

" n!!
[r] T -l (7.6)

Here is a Gaussian analogue to a multinomial coefficient:

n!!

ril sttt (7.7)

where 7 + s 4+ ¢ = n and 7, s, ¢ and # are nonnegative integers; it can be shown that
(7.7) is a polynomial in g, of degree » s + r ¢ + s £, with positive integer coefficients.
These coefficients have a combinatorial significance: They count such sequences of »
letters, each of which may be x, y or z, as show a given number of inversions. Such a
letter sequence can be regarded as representing a zigzag path in a three dimensional
lattice. The number of inversions equals the sum of three areas, each under the
projection of the zigzag path onto a coordinate plane; but ‘under’ must be carefully
interpreted.

The Gaussian analogues to multinomial coefficients count the number of certain
letter sequences with a given number of inversions; the interpretation with areas is
possible but becomes clumsy in several dimensions.

G. Pélya and G. L. Alexanderson
Stanford University and University of Santa Clara, Calif., USA
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Zu Formeln von Fejes T6th und Hoppe fiir den Inhalt
sphirischer Tetraeder

FejEs TétH [2] gab 1956 eine Formel fiir den Inhalt jener sphirischen Tetraeder
an, die ScHLAFLI [5] Orthoscheme genannt hat. An anderem Ort bemerkt FEJES
TétH [3], dass es ihm nicht gelungen ist, die Identitdt dieser Formel mit einer gleich-
wertigen von HoppE [4] aus dem Jahre 1882 auf direktem Wege nachzuweisen. Wie
man mit einfachen Mitteln beide Formeln ineinander iiberfithren kann, soll nach-
stehend gezeigt werden.

Bezeichnet man den Inhalt des Orthoschems im dreidimensionalen sphérischen
Raum der Kriimmung + 1 mit S@®, so ist nach HorPE

B
- . tan?¢ tan?y
2 S® — f bW dy; e, sintp, T tantp, — .
8
sind = sin f, cos B,
und nach Fejes TétH
% tan S§2)
2S® — 6/ [Sf’ — ¢*(y) arctan 7‘(75"] 4y @
mit:

s costmacosty @)

sin?a, — cos?a, sin?y
sin?a, sin?ay — cos?a,
sin%a, cos?ay
Zur Erliuterung der auftretenden Gréssen moge die Abbildung dienen.
Der dreidimensionale sphéirische Raum wird als Kugelfliche in einen vier-
dimensionalen euklidischen Raum eingebettet. Aus dem Mittelpunkt der Kugel wird

tan? S® = tan? SP («,, o, atg) =
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