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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Förderung der wissenschaftlichen Forschung

El. Math. Band 26 Heft 4 Seiten 73-96 10. Juli 1971

Heinz Hopf
f 3. Juni 1971

Prof. Dr. Heinz Hopf, der seit dem Herbst 1950 dem Patronatskollegium unserer
Zeitschrift angehörte, ist nach langem Leiden am 3. Juni 1971 in seinem 77.

Lebensjahr gestorben. Eine Würdigung des grossen Forschers und hervorragenden

Lehrers soll später erfolgen.
P. Buchner, J. Ratz, E. Trost

Starre, kippende, wackelige und bewegliche Gelenkvierecke
im Raum

§1. Räumliche Viergelenksketten

Werden vier starre Körper EX,E2, Sz und__74 in zyklischer Reihenfolge durch vier
Zylindergelenke verbunden, die bloss Drehungen gestatten, so entsteht im allgemeinen
ein starres Aggregat. Der volle Freiheitsgrad 6 eines im Raum frei beweglichen
Körpers wird nämlich durch ein fest gelagertes Zylindergelenk, das nur mehr eine
reine Drehung (also eine einparametrige Bewegung) erlaubt, um 5 Einheiten reduziert.
Bei der vorliegenden Viergelenkskette ergibt sich daher für die Bewegung von drei
Systemen gegenüber dem vierten ein Freiheitsgrad F 3 • 6 — 4 • 5 — 2, der

wegen F < 1 jede Beweglichkeit ausschliesst [1].

Bei besonderer Anordnung der vier Gelenkachsen gX2, g2Z, gBA und g41 kann jedoch
trotzdem Beweglichkeit bestehen. Unter Voraussetzung durchwegs verschiedener
Achsen tritt dies bekanntlich [1] in folgenden drei Fällen ein:

I. Die Achsen sind parallel - ebenes Gelenkviereck.

IL Die Achsen laufen in einem eigentlichen Zentrum zusammen - sphärisches
Gelenkviereck.

III. Die Gemeinlote der Achsen (in ihrer zyklischen Reihenfolge) bilden ein wind¬
schiefes Viereck mit paarweise gleichen Gegenseiten - Bennettsches Isogramm [2].
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Die vorliegende Note will auf die Existenz gewisser Zwischenformen hinweisen,
die eine infinitesimale oder eine sprungartige endliche Lagenänderung gestatten, und
eine Anzahl von einschlägigen, metrisch ausgezeichneten Modellen beschreiben. Ähnliche

Betrachtungen wurden bei früherer Gelegenheit an Oktaedern durchgeführt [3].

§2. Wackelige Viergelenksketten

Eine beliebige zwangläufige (d.h. einparametrige) Bewegung eines starren
Raumsystems kann bekanntlich hinsichtlich der Bahntangenten der Systempunkte in
jedem Augenblick als eine Schraubung aufgefasst werden. Die Bahnnormalen erfüllen
daher - wie bei der Schraubung - im allgemeinen einen linearen Strahlkomplex (ein
«Strahlgewinde»); sie sind die Nullstrahlen eines Mobiusschen Nullsystems. Im
Sonderfall einer Momentandrehung besteht dieser Komplex aus den Treffgeraden der
Drehachse («Strahlgebüsch»), im Grenzfall einer Momentanschiebung artet er in ein
Gebüsch mit Fernachse aus.

Unter Bezugnahme auf die grundlegende Eigenschaft, dass alle Gewindestrahlen,
die eine Gerade g treffen, auch noch eine zweite Gerade g schneiden, die sogenannte
Nullpolare von g - hinsichtlich eines elementaren, darstellend-geometrischen Beweises
siehe [4] -, erkennt man, dass in dem zu einer allfälligen Bewegung EJEX gehörigen
Nullsystem die Achsen g2S und £12 sowie die Achsen gM und g41 einander als reziproke
Polare entsprechen: Die Bahnnormalen aller Punkte von g2Z C ^3 etwa treffen ja die
Achse g12 der Drehung E2/Ex.

Jede der oo1 Treffgeraden t von gx2, g23 und gu ist als Treffgerade von g12 und g23

ein Gewindestrahl und muss daher auch die Nullpolare g41 von gM schneiden. Die
Achse g41 muss daher ebenfalls der durch die Leitgeraden gX2, g2Z, gM bestimmten
Regelschar 2. Grades angehören, die im allgemeinen von einem einschaligen Hyperboloid

getragen wird: Die vier Gelenkachsen befinden sich mithin in «hyperboloidischer
Lage».

Werden umgekehrt die vier Gelenkachsen gl2, g2Z, gM und g41 in hyperboloidischer
Lage vorausgesetzt, dann lässt sich stets eindeutig ein Möbiussches Nullsystem
angeben, in welchem die Achsen g12 und g2Z sowie gu und g41 zwei Paare reziproker
Polaren bilden. Es ist etwa folgendermassen zu finden: Man ziehe in einer Ebene, die
keine der vier Achsen enthält, die beiden Treffgeraden sx, s2 an die Achsenpaare und
wähle im Büschel sx s2 einen weiteren Strahl s; das in bekannter Weise durch die

reziproken Polaren g12, g29 und den Nullstrahl s bestimmte Nullsystem ist das
gesuchte. Dementsprechend besteht dann auch eine wenigstens infinitesimale Beweglichkeit

- Wackeligkeit - der Viergelenkskette. Hinsichtlich einschlägiger Demonstrationsmodelle

sei auf Figur 2 und 4 verwiesen.

Nach allem ist die Wackeligkeit des Mechanismus eine projektive Eigenschaft, denn
bei Ausübung einer beliebigen Raumkollineation bleibt ja die hyperboloidische Lage
der vier Gelenkachsen erhalten.

Eine elementarere Vorgangsweise, die keine Kenntnisse der projektiven Geometrie
benötigt, wäre die folgende: Man betrachte etwa das System EB mit den ihm
angehörenden, beliebig vorgegebenen Gelenkachsen gn und gu und nehme irgendeine
Schraubung (durch Achse und Ganghöhe) an. Femer wähle man auf gm zwei Punkte
A$t B% und auf gM zwei Punkte _44, ß4* Die darstellend-geometrisch einfach zu kon-
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struierende Schnittgerade der durch die Schraubung bestimmten Bahnnormalebenen
von _43 und _53 werde mit g12 bezeichnet, die Schnittgerade der Bahnnormalebenen
von _44 und J54 mit g41 Durch die vier Achsen gtk ist dann eme wackelige Viergelenkskette

festgelegt - Wählt man schliesslich noch geeignete Punkte Ax, Bx auf g41 und
A2, B2 auf gX2, so kann man durch Matenahsierung der vier Tetraeder AXBXB2A2,
A2B2B3A3, _43_33B4_44 und _44ß4_51_41 aus Karton, die mittels Klebstreifen längs der

gemeinsamen Kanten gelenkig zu verbinden smd, bei einiger Geschicklichkeit leicht
em nettes Demonstrationsmodell herstellen (vgl Fig 4)

§3 Kippende Viergelenksketten
Seien E3(g2Z, gM) und_T3(g23, g'u) zwei endlich benachbarte (gleichsinnig-kongruente)

Lagen des Systems __73 und der ihm angehörenden, beliebig angenommenen Gelenkachsen

Man wähle willkürlich auf g23 zwei Punkte _43, BB und auf gu zwei Punkte
_44, Z?4, die entsprechenden Punkte _43, £3 auf g23 und _4'4, B\ auf g'u smd durch die

gleichsinnig-kongruente Beziehung zwischen den Lagen E3 und Es eindeutig bestimmt
Nun ermittle man die Schnittgerade g12 der Symmetralebenen fur die beiden
Bahnsehnen ^43^43 und BBBZ, g12 ist die Achse einer Drehung, die _43 nach _43 und gleichzeitig

_93 nach _53 bringt Analog suche man die Schnittgerade g41 der Symmetralebenen

fur die beiden Bahnsehnen _44_44 und _94_54 auf Die vier Achsen glk bestimmen
mithin eme Viergelenkskette, die neben der Anordnung g^gizgugto. noch eine zweite

Anordnung gi^g2Zgug^ zulasst Bei nicht allzustarker Verschiedenheit der beiden

Lagen __73, __73 wird daher em entsprechendes, an und fur sich starres Aggregat bei

einiger Nachgiebigkeit des Materials unter Anwendung sanfter Gewalt einen
sprungartigen, «kippenden» Übergang von der einen Position in die andere vollfuhren können

Em einschlagiges Demonstrationsmodell aus Karton-Tetraedern kann nach Wahl
passender Punkte Ax, Bx auf g41 und A2,B2 auf gl2 wieder leicht angefertigt werden

(vgl. Fig 3) Stabilere Modelle waren aus Metallstaben mit richtigen Zyhnder-
gelenken nach dem Muster Figur 2 herzustellen

§4 Analytische Behandlung symmetrischer Viergelenksketten

In elementarer Weise lassen sich metrisch spezielle, durch drei Symmetrieachsen
ausgezeichnete Viergelenksketten analytisch behandeln Lasst man die Symmetrieachsen

mit den Koordinatenachsen eines kartesischen Koordinatensystems x, y, z

zusammenfallen (Fig 1), dann mögen die Gelenkachsen durch folgende
Parameterdarstellungen angesetzt werden

g41. x a, y u, z m u, gX2 x —v, y b, z nv (4.1)

Durch Vorzeichenanderung sämtlicher rechten Seiten ergeben sich die Achsen g2Z

bzw gu Die Wahl der Punkte A t und Bt sei durch die zulassige Forderung normiert,
dass AXB2 das Gememlot der Achsen g41 und g12, A2BZ das Gememlot der Achsen g12

und g23 sei, usf Die Ecken jenes Tetraeders B1A1B2A2, welches das System Ex

repräsentiert, lauten daher (mit vorläufig noch unbekannten Parameterwerten u
und v)

Ax(a, u, m u), Bx(a, —u, —mu), A2(—v, b, n v), B2(v, b, —nv) (4.2)

Die der Normierung entsprechenden Orthogonahtatsbedmgungen verlangen

(1 + m2) u + mnv b mnu + (1 -f- n2) v a (4 3)
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•\/4

<

/

(4.4)

Figur 1

Festlegung der Achsen fur eme symmetrische Viergelenkskette.

Mit Benützung der Gleichungsdeterminante

D 1 + m2 + n2

errechnet man dann die Parameterwerte u und v aus

D - u (l + n2) b — mn a D • v (1 + m2) a — mnb (4.5)

Mit ihrer Hilfe lassen sich nun sämtliche Kantenlängen des Tetraeders BXAXB2A2
ausdrücken. Mit Rücksicht auf die rechten Winkel <£ BXAXB2 <£ AXB2A2 jr/2
sind bloss vier Abmessungen wesentlich:

Ax Bx - p =- 2 u j/l + m2, A2B2 q 2v^l + n2; (4.6)

Ax B2 - e )/(a - fl)2 +(.-w)2+(wK+w.)2=(wa + m.):)/D; (4.7)

^2BX / j/(a + v)2 + (b + u)2 + (m u + n v)2 (4.8)

Für den durch die Richtungsvektoren (0,1, m) und (—1,0, n) der beiden Gelenkachsen

gn und gX2 (4.1) bestimmten «Schränkwinkel» a erhält man über das
Skalarprodukt :

cosc; s —, • (4.9)
]/! + rn* ]/l + n*

Unter Heranziehung des Kosinussatzes lässt sich zwischen den berechneten Grössen
die Beziehung

f2-e* p* + q2 + 2pqs (4.10)

herstellen, die zur bequemeren Berechnung von/dienen kann.

Die übrigen drei Tetraeder E2(B2A2BBAB), Ez{BzAzBaA^ und _T4(_94_44i91_41)

haben dieselben Abmessungen, da sie aus dem ersten Tetraeder EX(BXAXB2A2) durch
Spiegelung an den Achsen y, z und x hervorgehen. Alle vier Tetraeder sind also
untereinander gleichsinnig-kongruent.

Die Abmessungen p, q (4.6), e (4.7) und a (4.9) legen auch die Form der Glieder
eines nach dem Muster Figur 2 gebauten StangenmoHells fest: e gibt die Länge der vier
Hauptstäbe an, <r bezeichnet den Schränkwinkel der an den Stabenden rechtwinkelig
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anzubringenden Zylindergelenke, und^> und q bedeuten die Versetzungen benachbarter
Stangen, also die ungefähre Lange der Gelenkszylmder1)

Vx A
^

v.
^

Figur 2

Stangenmodell einer symmetrischen Viergelenkskette (wackelig).

Sind umgekehrt vier (reelle) gleichsinnig-kongruente Tetraeder - oder die
entsprechenden Stangenelemente - durch ihre Abmessungen e, p, q und er (oder s)

vorgegeben, so erhebt sich die Frage nach ihrer Position, die sie beim Zusammenbau
annehmen, also nach der Form der aus ihnen bildbaren Viergelenkskette, falls diese
überhaupt existiert Zur Beantwortung dieser Frage smd die sechs Gleichungen (4.3),
(4 6), (4 7) und (4 9) nach u, v, a, b, m und n aufzulösen Dies kann auf folgende Weise

geschehen Nach Elimination von u und v und anschliessend von a und b ergibt sich
fur m und n das Gleichungssystem

/ P m q n \

s |/l + m2

Nun hegt es nahe, die neuen Unbekannten
j/l + w2 mn. (4.H)

V>

|/1 + w2 ' j/l + n2

einzuführen, wodurch die Gleichungen (4.11) m

v —4==- (4.12)

(pfi + qv, |/ (1 - ß\
übergeführt werden Mit Benutzung der zweiten Gleichung nimmt die erste (nach
Fortschaffung der Quadratwurzel) die Form

(4.14)

(4.15)

(1 - s2) {pfi + qv)2 4 e2 (1 + s2 - fi2 - v2)

an Damit gelangt man schliesslich zu dem einfachen Gleichungspaar

Pp* + Qv2^ R, fiv s

mit
p 4 e2 + (1 - s2) p2, Q 4 e2 + (1 - s2) q2, R 4 (1 + s2) e2 - 2 s (1 pq.

*) Stangenmodelle lassen sich auch im Falle verschwindender Versetzungen unschwer bauen, wahrend
Kartonmodelle wegen der zu Dreiecken ausgearteten Tetraeder die Wahl von Ersatzpunkten fur die mit
einer Ecke A zusammenfallenden Punkte B erfordern. - Zwecks Verstellbarkeit der Schrankungen empfiehlt
es sich, die Hauptstäbe zu teilen und durch Muffen mit Klemmschrauben zu verbinden
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Seine Auflösung - die graphisch auf den Schnitt einer Ellipse mit einer konzentrischen
gleichseitigen Hyperbel in der /^-Ebene hinauslaufen würde - kann auf die Bestimmung

des Verhältniswertes fijv aus der homogenen quadratischen Gleichung

sPfA2- RfÄV + sQv2 0 (4.16)

zurückgeführt werden. Man erkennt, dass reelle Lösungen nur dann zu erwarten sind,
wenn

R2^4s2PQ. (4.17)

Auf Grund von (4.15) ist diese Bedingung äquivalent zu

(1 - s2) e2 ^ s2 (p2 + q2)+s(l + s2)pq. (4.18)

Diese Bedingung erscheint zunächst bloss notwendig für reelles fxjv, aber noch nicht
hinreichend für reelle Werte von m und n. Hierfür muss mit Rücksicht auf (4.12) noch
0 <£ ja2 f£ 1 erfüllt sein. Überprüfung der Lösungswerte für fi lehrt aber, dass bei
Bestehen der Ungleichung (4.17) die Zusatzforderung stets automatisch befriedigt
wird. - Nach Bestimmung der Werte m und n aus (4.12) lassen sich dann über (4.6)
die Parameter u und v und schliesslich aus (4.3) die Grössen a und b ermitteln.

Die Ungleichung (4.18) stellt mithin die notwendige und hinreichende Bedingung
für die reelle Existenz von Viergelenksketten dar, welche sich aus vier kongruenten
Gliedern zusammensetzen lassen, die durch die vorgegebenen Abmessungen e, p, q
und s gekennzeichnet sind. Mit Rücksicht auf die entscheidende quadratische
Gleichung (4.16) wird es im allgemeinen zwei wesentlich verschiedene Formen der Kette
geben, die jeweils starr sind.

Sind die Unterschiede der beiden Formen jedoch gering, so hat man eine sprungartig

kippende Kette vor sich. Die Schranken für die zulässigen Unterschiede hängen
natürlich von der Verformbarkeit des Materials ab.

§5. Symmetrische Viergelenksketten mit gleichen Versetzungen

Zur Erhöhung der Gleichartigkeit der Kettenglieder mag noch die Nebenbedingung
gleicher Versetzungen gestellt werden. Jedes der vier kongruenten Tetraeder hat dann
zwei Paare kongruenter Seitenflächen, und jeder Stab des Stangenmodells ist an
beiden Enden gleich gestaltet. Die in Rede stehende Forderung

P (5-1)

führt über (4.6) und (4.5) zur kennzeichnenden Bedingung

a2:b2~ (l + n2):(l + m2) (5.2)

Da über die Längeneinheit jederzeit frei verfügt werden kann, mag die Festsetzung

a= V 6= *
(5.3)

getroffen werden. Für die Hauptabmessungen erhält man dann auf Grund von (4.6)
und (4.7) die Werte

p « q A (j/l + wa /iT^-mw), (5.4)

1 / n m \ fK -.
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wobei gemäss (4 4) D — 1 -f m2 + n2 Die Formel (4 10) fur / vereinfacht sich zu

/2 ^2 + 2(l + s) p2 (5 6)

Die bei Vorgabe der Abmessungen e, p und s entscheidende Existenzbedingung einer
reellen Viergelenkskette folgt aus (4 18) und lautet

(l-s)e2^s(l + s) p2 (5 7)

Em gut funktionierendes Kartonmodell fur eine kippende Viergelenkskette ergibt
sich mit der Annahme m 1, n ]/2 (D 4) Die zur Anfertigung der vier kongruenten

Tetraeder benotigten Abmessungen lauten

p-q- (1/3- l)/|/2 0,5176,

e (1 + f3) I 2 ]ß 0,7887, / ^14 - 3 ]ß / ]/6 - 1,2113 (5 8)

Das erste Tetraeder ist m Figur 3 durch Grund- und Aufriss nebst einem verkleinerten
Netz dargestellt Die beiden durch die «Halbachsen» a l/j/2 0,7071 und b

l\]j3 — 0,5774 gekennzeichneten Formen der Kette smd zueinander kongruent Das

Kippen von der einen Form m die andere hat, sofern man von der Bezeichnung der
Ecken absieht, den gleichen Effekt wie eine Vierteldrehung des ganzen Modells um
die z-Achse

Aufnß

u-j/-h I
„

Netz (12)n/ arctgn

y ararctgm

*\ Q A

6nmdn8

V
Figur 3

Element des Tetraedermodells einer symmetrischen Viergelenkskette (kippend)

Em Modell, das zur Demonstration emer unbeweghchenJstarrenyViergeienkskette
geeignet ist, ergibt sich etwa für die Annahme m lj]/2, n=*]/2 (D 7/2) Die

zugehörigen Abmessungen betragen
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p - q y (3 J/2 - 2) 0,6408

e (1 4- 21/2) / j/21 - 0,8354; / - ]/ 19 4 J/2 /j/7= 1,3806. (5.9)

Ein Kippen, das die beiden Halbachsen a j/2/3 0,8165 und b 1/1/3 0,5774
vertauschen würde, ist hier ohne Beschädigung des Modells kaum möglich.

§6. Wackelige symmetrische Viergelenksketten

Gilt in der Bedingung (4.18) das Gleichheitszeichen, dann rücken die beiden
Formen der symmetrischen Viergelenkskette zusammen, und man hat eine wackelige
Kette. Eine einfacher zu handhabende Bedingung ergibt sich, wenn man unter
Berufung auf §2 zum Ausdruck bringt, dass die vier Gelenkachsen einer Regelschar des

einschaligen Hyperboloids
_._ _ .2 _._

1 (6.1)+ J_L
fe2

angehören. Mit Benützung des Ansatzes (4.1) erhält man so die Wackeligkeits-
bedingung

m: n a: b (6.2)

Fordert man überdies gleiche Versetzungen (§5), dann muss wegen (5.2) m — n und
daher a b sein: Die Trägerquadrik (6.1) ist also ein Drehhyperboloid. Unter diesen
Umständen lauten die Hauptabmessungen, wenn man a b 1 normiert:

p * l+2w2 ' l/l+2w2' f Z V 1 + 2 m2 '

Man findet bestätigt, dass die Abmessungen e und p zusammen mit s m2j(l + m2)

die Bedingung (5.7) mit dem Gleichheitszeichen befriedigen.
Ein hübsches, durch hohe Regelmässigkeit ausgezeichnetes Modell erhält man

mit der Zusatzforderung p e, welche m* 1/2 bedingt. Die Hauptabmessungen
dieser in Figur 4 axonometrisch dargestellten Tetraederkette, die auf der Aussenseite
acht gleichschenklig-rechtwinkelige Dreiecke zeigt, betragen:

p =_ q ___ e j/4 - 2 )/2 1,0824; / |/6|/2-T 2,1178 (6.4)

/

Figur 4
Tetraedermodell einer wackeligen Viergelenkskette.
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§7. Bewegliche symmetrische Viergelenksketten

Ein neuer Ansatz

g41... x — a — m u, y 0, z u; gX2 x 0, y b — n v, z — v (7.1)

legt zusammen mit den durch Spiegelung an der z-Achse gewonnenen Geraden gm und
gM vier Gelenkachsen fest, die sich auf zwei die z-Achse enthaltende Strahlbüschel
verteilen (Fig. 5). Die Trägerquadrik ist nunmehr zwar in das Ebenenpaar xy 0
zerfallen, aber doch vorhanden, so dass zumindest infinitesimale Beweglichkeit der
Viergelenkskette zu erwarten ist.

Auf Grund der bezüglich der xz- und yz-ILbene symmetrischen Anordnung treten
jetzt keine Versetzungen auf und die Gememlote benachbarter Gelenkachsen bilden
ein geschlossenes windschiefes Viereck mit den Ecken

Ax(a — m u, 0, u), A2(0, b — n v, — v), Az(m u — a, 0, u), A±(0, n v — b, — v), (7.2)

wobei sich die Parameterwerte u, v aus den Orthogonalitätsbedingungen

(1 + m2) u + v m a u + (1 + n2) v nb (7.3)

berechnen lassen. Im Hinblick auf die Verschiebbarkeit der ganzen Figur längs der
2-Achse kann man es so einrichten, dass der Koordinatenursprung in die Mitte
zwischen den beiden Vierecksdiagonalen AxAz und A2A± zu liegen kommt. Diese
Annahme läuft auf die Festsetzung

u v (7.4)

hinaus und legt den Grössen a und b eine gewisse Bedingung auf, die zufolge (7.3)
durch

a ___ JL (2 + m2) b — (2 + n2) (7.5)

erfüllt werden kann.

Nunmehr ergibt sich für die gemeinsame Länge aller Gemeinlote der Wert

AXA2 - e ^(a-mu)2+ (b-n v)2 + (u + v)2 =2«/l + m~2 + n~2 (7.6)

Der Schränkwinkel a zweier Nachbarachsen ist durch

coso* s _______ _—/^_____i__" (7.7)
j/l + w2 J/l + n*

bestimmt.
Zu jedem der oo1 Wertepaare m, n, welche die Gleichung (7.7) für ein fest

vorgegebenes s befriedigen, lässt sich aus (7.6) ein entsprechender Wert u finden, der eine

konstant vorgeschriebene Länge e liefert. Dies bedeutet, dass es eine einparametrige,
stetige Schar von Formen der durch die Abmessungen e und a (oder s) gekennzeichneten

Viergelenkskette gibt: Es liegt eine zwangläufig bewegliche Kette vor. Im Prinzip
handelt es sich um den gleichseitigen Sonderfall des Bennettschen Isogramms, eines

wohlbekannten Mechanismus (§1, III). Ein stabiles Modell einer solchen
«windschiefen Raute» wird am besten aus vier gleich langen, um die Längsachse um die
Winkel ±or tordierten Metallamellen hergestellt, die durch Nieten2) gelenkig
miteinander zu verbinden sind (Fig. 5).

2) Besser als die in der Figur angedeuteten Kopfnieten sind Hohlmeten, die den Ablauf eines
vollständigen Zyklus der Bewegung erlauben.
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Nach Annahme geeigneter Zusatzpunkte Bx, B2, B3, _94 auf den Gelenkachsen
lässt sich natürlich auch ein Kartonmodell aus vier Tetraedern anfertigen - eine etwas
ungewöhnliche Realisierung des Isogramms. Zur Vereinbarung entsprechender
Festsetzungen zieht man am besten die durch m n gekennzeichnete Mittelstellung der
Raute AXA2ABA4 heran, in der sie im Normalriss auf die #y-Ebene als Quadrat
erscheint. Der betreffende Parameterwert beträgt zufolge (7.7) :

\«
g»

*

_v
30

'912/

Figur 5
Stabmodell einer beweglichen Viergelenkskette (windschiefe Raute).

mn= nn r-
Die übrigen Grössen haben, wenn man e

TVT+T' ao=&o 4F1
Zu den gemäss (7.2) durch u

-f s

V

(7.8)

1 setzt, gemäss (7.6) und (7.5) die Werte

(7.9)
+ s

u0 festgelegten Ecken

(7.10)'fe. °.fe). Mfe-Tl/HH)-
mögen nun etwa die zu u' v' — u0 gehörigen Punkte

treten. In der betrachteten Mittelstellung haben also alle Ecken gleiche Abstände von
der Mittelebene * «= 0. - Zur Entwicklung der Tetraedernetze benötigt man noch die
Längen p, q, f der Kanten A1B1, A%B% und BXB%. Mit Benützung der Koordinaten
aus (7.10) und (7.11) findet man:

'-«-Vt^v. '-V2 - s

(1 + s) ' ' V s

Figur 6 zeigt ein solches Tetraedermodell für die Annahme s 1/2 (a ¦

Mittelstellung. Die zugehörigen Abmessungen betragen:

e l; p » q » )/2ß « 0,8165; / « p __. 1,7321.

(7.12)

60°) in der

(7.13)
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Durch kollineare Umformung eines derartigen Tetraedermodells erhält man zufolge
§2 im allgemeinen eine bloss wackelige Viergelenkskette. Bei Anwendung spezieller
Kolhneationen, welche die Symmetrie nicht zerstören, bleibt die stetige Beweglichkeit

jedoch erhalten.

Y /n
9*1

^ üaT
$*,

^
934 L

fe

Figur 6
Tetraedertnodell einer beweglichen Viergelenkskette (Bennettsches Isogramm).

Im Laufe der Bewegung gegenüber dem fest gedachten Koordinatensystem werden
die Seiten des Isogramms AXA2ABA^ ständig durch die ^y-Ebene halbiert. Die
Mittelpunkte der Kanten AXBX und ABBB wandern dabei auf der x-Achse, die Mittelpunkte
der Kanten A2B2 und AJB^ auf der y-Achse. Die Ecken Ax und _43 beschreiben in der
#2-Ebene eine gemeinsame Bahnkurve, deren Gleichung sich auf Grund von (7.2),
(7.5), (7.6) und (7.7) durch Elimination der Parameter m, n und u aus dem System

x
2 u

z _= u, e2^4u2(l + m-2 + n~2), s~2 - (1 + m2) (1 + n2) (7.14)

ergibt; sie lautet

x2 (x2 + 4 z2) e2 x2 - c2 z2 mit c
2 s e

yr=-
2 e cota (7.15)

Die Bahn ist demnach eine doppelt-symmetrische algebraische Kurve 4. Ordnung. Sie

hat die Gestalt einer Achterschleife (Fig. 5) mit einem Knoten im Ursprung und einem
zweiten (isolierten) Doppelpunkt im Fernpunkt der £-Achse. Da der Fernpunkt der
#-Achse kein Kurvenpunkt ist und weitere Doppelpunkte aus Symmetriegründen
nicht vorhanden sein können, hat die Kurve das Geschlecht 1.

W. Wunderlich, Wien (derzeit Pulhnan, Wash., USA)
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