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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare
Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

ElL Math. Band 26 Heft 4 Seiten 73-96 10. Juli 1971

Heinz Hopf
t 3. Juni 1971
Prof. Dr. Heinz Hopf, der seit dem Herbst 1950 dem Patronatskollegium unserer

Zeitschrift angehorte, ist nach langem Leiden am 3. Juni 1971 in seinem 77.
Lebensjahr gestorben. Eine Wiirdigung des grossen Forschers und hervorra-
genden Lehrers soll spéter erfolgen.

P. Buchner, J. Ritz, E. Trost

Starre, kippende, wackelige und bewegliche Gelenkvierecke
im Raum

§1. Raumliche Viergelenksketten

Werden vier starre Korper 2, 2,, 23 und X, in zyklischer Reihenfolge durch vier
Zylindergelenke verbunden, die bloss Drehungen gestatten, so entsteht im allgemeinen
ein starres Aggregat. Der volle Freiheitsgrad 6 eines im Raum frei beweglichen
Korpers wird namlich durch ein fest gelagertes Zylindergelenk, das nur mehr eine
reine Drehung (also eine einparametrige Bewegung) erlaubt, um 5 Einheiten reduziert,
Bei der vorliegenden Viergelenkskette ergibt sich daher fiir die Bewegung von drei
Systemen gegeniiber dem vierten ein Freiheitsgrad F=3:6 —4-:5= —2, der
wegen I < 1 jede Beweglichkeit ausschliesst [1].

Bei besonderer Anordnung der vier Gelenkachsen g4, £,3, £34 Und g, kann jedoch
trotzdem Beweglichkeit bestehen. Unter Voraussetzung durchwegs verschiedener
Achsen tritt dies bekanntlich [1] in folgenden drei Féllen ein:

I. Die Achsen sind parallel — ebenes Gelenkuviereck.

II. Die Achsen laufen in einem eigentlichen Zentrum zusammen - sphdrisches
Gelenkviereck.

III. Die Gemeinlote der Achsen (in ihrer zyklischen Reihenfolge) bilden ein wind-
schiefes Viereck mit paarweise gleichen Gegenseiten — Bennettsches Isogramm [2].
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Die vorliegende Note will auf die Existenz gewisser Zwischenformen hinweisen,
die eine infinitesimale oder eine sprungartige endliche Lageninderung gestatten, und
eine Anzahl von einschligigen, metrisch ausgezeichneten Modellen beschreiben. Ahn-
liche Betrachtungen wurden bei fritherer Gelegenheit an Oktaedern durchgefiihrt [3].

§2. Wackelige Viergelenksketten

Eine beliebige zwangldufige (d.h. einparametrige) Bewegung eines starren Raum-
systems kann bekanntlich hinsichtlich der Bahntangenten der Systempunkte in
jedem Augenblick als eine Schraubung aufgefasst werden. Die Bahnnormalen erfiillen
daher — wie bei der Schraubung — im allgemeinen einen linearen Strahlkomplex (ein
«Strahlgewinde»); sie sind die Nullstrahlen eines Mdbiusschen Nullsystems. Im
Sonderfall einer Momentandrehung besteht dieser Komplex aus den Treffgeraden der
Drehachse («Strahlgebiisch»), im Grenzfall einer Momentanschiebung artet er in ein
Gebiisch mit Fernachse aus.

Unter Bezugnahme auf die grundlegende Eigenschaft, dass alle Gewindestrahlen,
die eine Gerade g treffen, auch noch eine zweite Gerade g schneiden, die sogenannte
Nullpolare von g — hinsichtlich eines elementaren, darstellend-geometrischen Beweises
siehe [4] —, erkennt man, dass in dem zu einer allfilligen Bewegung 25/X; gehorigen
Nullsystem die Achsen g, und g,, sowie die Achsen g, und g,, einander als reziproke
Polare entsprechen: Die Bahnnormalen aller Punkte von g,3 C 25 etwa treffen ja die
Achse g,, der Drehung X,/%).

Jede der oco! Treffgeraden ¢ von g5, g5 und g, ist als Treffgerade von gy, und g,
ein Gewindestrahl und muss daher auch die Nullpolare g,; von gs, schneiden. Die
Achse g,; muss daher ebenfalls der durch die Leitgeraden g5, g3, g34 bestimmten
Regelschar 2. Grades angehoren, die im allgemeinen von einem einschaligen Hyper-
boloid getragen wird: Die vier Gelenkachsen befinden sich mithin in «hyperboloidischer
Lage».

Werden umgekehrt die vier Gelenkachsen g5, £33, £34 und g, in hyperboloidischer
Lage vorausgesetzt, dann ldsst sich stets eindeutig ein Mdbiussches Nullsystem an-
geben, in welchem die Achsen g;, und g3 sowie gy, und g, zwei Paare reziproker
Polaren bilden. Es ist etwa folgendermassen zu finden: Man ziehe in einer Ebene, die
keine der vier Achsen enthilt, die beiden Treffgeraden s,, s, an die Achsenpaare und
wihle im Biischel s, s, einen weiteren Strahl s; das in bekannter Weise durch die
reziproken Polaren g, g,5 und den Nullstrahl s bestimmte Nullsystem ist das ge-
suchte. Dementsprechend besteht dann auch eine wenigstens infinitesimale Beweglich-
keit — Wackeligkeit — der Viergelenkskette. Hinsichtlich einschldgiger Demonstrations-
modelle sei auf Figur 2 und 4 verwiesen.

Nach allem ist die Wackeligkeit des Mechanismus eine projektive Eigenschaft, denn
bei Ausiibung einer beliebigen Raumkollineation bleibt ja die hyperboloidische Lage
der vier Gelenkachsen erhalten.

Eine elementarere Vorgangsweise, die keine Kenntnisse der projektiven Geometrie
benétigt, wire die folgende: Man betrachte etwa das System X mit den ihm ange-
horenden, beliebig vorgegebenen Gelenkachsen gy und g und nehme irgendeine
Schraubung (durch Achse und Ganghéhe) an. Ferner wihle man auf gy zwei Punkte
Ay, By und auf gy, zwei Punkte 4,, B,. Die darstellend-geometrisch einfach zu kon-
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struierende Schnittgerade der durch die Schraubung bestimmten Bahnnormalebenen
von 45 und B; werde mit g, bezeichnet, die Schnittgerade der Bahnnormalebenen
von A4, und B, mit g,;. Durch die vier Achsen g;, ist dann eine wackelige Viergelenks-
kette festgelegt. — Wihlt man schliesslich noch geeignete Punkte 4,, B, auf g,, und
A,, By auf gy, so kann man durch Materialisierung der vier Tetraeder A;B,By4,,
AyB,B3A4, A3ByB,A, und A,B,B,;A, aus Karton, die mittels Klebstreifen langs der
gemeinsamen Kanten gelenkig zu verbinden sind, bei einiger Geschicklichkeit leicht
ein nettes Demonstrationsmodell herstellen (vgl. Fig. 4).

§3. Kippende Viergelenksketten

Seien Xy(gas, £3a) und Xy(g5s, &5,) ZWei endlich benachbarte (gleichsinnig-kongruente)
Lagen des Systems 2’3 und der ihm angehérenden, beliebig angenommenen Gelenk-
achsen. Man wihle willkiirlich auf g,; zwei Punkte A4, B; und auf g, zwei Punkte
A4, By; die entsprechenden Punkte A;, B, auf g,, und 4, B, auf g;, sind durch die
gleichsinnig-kongruente Beziehung zwischen den Lagen X3 und 2; eindeutig bestimmt.
Nun ermittle man die Schnittgerade g,, der Symmetralebenen fiir die beiden Bahn-
sehnen A3A4; und B,Bj; g;, ist die Achse einer Drehung, die 43 nach 4 und gleich-
zeitig By nach B; bringt. Analog suche man die Schnittgerade g,; der Symmetral-
ebenen fiir die beiden Bahnsehnen 4,4, und B, B, auf. Die vier Achsen g;, bestimmen
mithin eine Viergelenkskette, die neben der Anordnung g,,8,s83:€, NOCh eine zweite
Anordnung g,,85,854841 Zzuldsst. Bei nicht allzustarker Verschiedenheit der beiden
Lagen 25, 2, wird daher ein entsprechendes, an und fiir sich starres Aggregat bei
einiger Nachgiebigkeit des Materials unter Anwendung sanfter Gewalt einen sprung-
artigen, «kippenden» Ubergang von der einen Position in die andere vollfiihren kénnen.

Ein einschligiges Demonstrationsmodell aus Karton-Tetraedern kann nach Wahl
passender Punkte 4,, B, auf g,; und 4,, B, auf g,, wieder leicht angefertigt werden
(vgl. Fig. 3). Stabilere Modelle wiren aus Metallstiben mit richtigen Zylinder-
gelenken nach dem Muster Figur 2 herzustellen.

§4. Analytische Behandlung symmetrischer Viergelenksketten

In elementarer Weise lassen sich metrisch spezielle, durch drei Symmetrieachsen
ausgezeichnete Viergelenksketten analytisch behandeln. Lisst man die Symmetrie-
achsen mit den Koordinatenachsen eines kartesischen Koordinatensystems x, y, z
zusammenfallen (Fig. 1), dann moégen die Gelenkachsen durch folgende Parameter-
darstellungen angesetzt werden:

€ ---X=a, Y=U, Z=MU; gp...X=—v,Yy=0b 2=nv. (4.1)
Durch Vorzeicheninderung sidmtlicher rechten Seiten ergeben sich die Achsen gy
bzw. g,,. Die Wahl der Punkte 4 ; und B, sei durch die zuldssige Forderung normiert,
dass 4,B, das Gemeinlot der Achsen g, und g,5, 4,83 das Gemeinlot der Achsen gy,
und g,, sei, usf. Die Ecken jenes Tetraeders By4,B,A4,, welches das System X
reprisentiert, lauten daher (mit vorldufig noch unbekannten Parameterwerten
und v):
Ay(a, u, mu), By(a, —u, —mu), Ay(—v, b, nv), By(v,b, —nv). 4.2)
Die der Normierung entsprechenden Orthogonalititsbedingungen verlangen
4+ mut+mnv=>b, muu+ (1+n)v=a. (4.3)
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Figur 1
Festlegung der Achsen fiir eine symmetrische Viergelenkskette.

Mit Beniitzung der Gleichungsdeterminante

D=1+ m?+ n? (4.4)
errechnet man dann die Parameterwerte # und v aus
D-u=Q14+n)b—mna, D-v=_1+m?))a—mnb. 4.5)

Mit ihrer Hilfe lassen sich nun sdmtliche Kantenlingen des Tetraeders B;A,B,A4,
ausdriicken. Mit Riicksicht auf die rechten Winkel < B,4,B, = < A, B4, = 7|2
sind bloss vier Abmessungen wesentlich:

A Bi=p=2u)l+m*, A,B,=q=2v)1+n?; (4.6)
Ay By=e=Y(@a— 0+ (b—u2+ (mu+nv)?=ma+mb):JD; (47
A2B1=f=}/(a+v)2+(b+u)2+(mu+nv)2. (4.8)

Fiir den durch die Richtungsvektoren (0, 1, m) und (— 1, 0, #) der beiden Gelenk-
achsen g,; und g,, (4.1) bestimmten «Schrdnkwinkel» o erhdlt man iiber das Skalar-
produkt:

mn
COS0 = § = : 4.9
Vi+m? 1+ n? (+.9)
Unter Heranziehung des Kosinussatzes ldsst sich zwischen den berechneten Gréssen
die Beziehung

[2—e=p24+q2+2p¢qs (4.10)

herstellen, die zur bequemeren Berechnung von f dienen kann.
Die iibrigen drei Tetraeder X,(ByA,Bsd,), 23(BsA3B,A,) und X, (B,AB4,)
haben dieselben Abmessungen, da sie aus dem ersten Tetraeder X' (B,4,B,4,) durch

Spiegelung an den Achsen ¥, z und x hervorgehen. Alle vier Tetraeder sind also unter-
einander gleichsinnig-kongruent.

Die Abmessungen p, ¢ (4.6), e (4.7) und o (4.9) legen auch die Form der Glieder
eines nach dem Muster Figur 2 gebauten Stangenmodells fest: e gibt die Linge der vier
Hauptstibe an, o bezeichnet den Schrdnkwinkel der an den Stabenden rechtwinkelig
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anzubringenden Zylindergelenke, und p und g bedeuten die Versetzungen benachbarter
Stangen, also die ungefdhre Linge der Gelenkszylinder?).

Figur 2
Stangenmodell einer symmetrischen Viergelenkskette (wackelig).

Sind umgekehrt vier (reelle) gleichsinnig-kongruente Tetraeder — oder die ent-
sprechenden Stangenelemente — durch ihre Abmessungen e, p, ¢ und o (oder s) vor-
gegeben, so erhebt sich die Frage nach ihrer Position, die sie beim Zusammenbau an-
nehmen, also nach der Form der aus ihnen bildbaren Viergelenkskette, falls diese iiber-
haupt existiert. Zur Beantwortung dieser Frage sind die sechs Gleichungen (4.3),
(4.6), (4.7) und (4.9) nach u, v, 4, b, m und » aufzulésen. Dies kann auf folgende Weise
geschehen: Nach Elimination von # und v und anschliessend von a und b ergibt sich
fiir m und »# das Gleichungssystem

p m n 2 2
( T + V1+”2) V1+m +n2 = 2e,
s‘/l—i-m2 ]/1—{—%2 =mmn. (4.11)
Nun liegt es nahe, die neuen Unbekannten

p=—r _ y=——"_ (4.12)
Vit me Vit m
einzufiihren, wodurch die Gleichungen (4.11) in
1 — u2qe?
(pﬂ—}—qv)l/(l—,uz)(l—v*) =2e, pv=s (4.13)

iibergefiihrt werden. Mit Beniitzung der zweiten Gleichung nimmt die erste (nach
Fortschaffung der Quadratwurzel) die Form

I=sN(ppu+qrv)i=4e (14 s2—pu?—1? (4.14)
an. Damit gelangt man schliesslich zu dem einfachen Gleichungspaar
Pu24+Qv*=R, puv=s (4.15)

mit
P=4c24+(1—-s)p% Q=42+ (1—5H)¢% R=4(1+s)e2—-2s5s(1—5%pgq.

1) Stangenmodelle lassen sich auch im Falle verschwindender Versetzungen unschwer bauen, wihrend
Kartonmodelle wegen der zu Dreiecken ausgearteten Tetraeder die Wahl von Ersatzpunkten fiir die mit
einer Ecke A zusammenfallenden Punkte B erfordern. — Zwecks Verstellbarkeit der Schrinkungen empfiehlt
es sich, die Hauptstibe zu teilen und durch Muffen mit Klemmschrauben zu verbinden.
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Seine Auflésung — die graphisch auf den Schnitt einer Ellipse mit einer konzentrischen
gleichseitigen Hyperbel in der uv-Ebene hinauslaufen wiirde — kann auf die Bestim-
mung des Verhiltniswertes u/v aus der homogenen quadratischen Gleichung

SPu*—Ruv+sQ»¥=0 (4.16)

zuriickgefiihrt werden. Man erkennt, dass reelle Losungen nur dann zu erwarten sind,
wenn

RE=4s2P(Q. (4.17)
Auf Grund von (4.15) ist diese Bedingung dquivalent zu
(I—s)e?=s2(p2+¢%) +s(1+s%)pq. (4.18)

Diese Bedingung erscheint zunichst bloss notwendig fiir reelles u/v, aber noch nicht
hinreichend fiir reelle Werte von m und ». Hierfiir muss mit Riicksicht auf (4.12) noch
0 < u? <1 erfiillt sein. Uberpriifung der Lésungswerte fiir u lehrt aber, dass bei
Bestehen der Ungleichung (4.17) die Zusatzforderung stets automatisch befriedigt
wird. — Nach Bestimmung der Werte m und » aus (4.12) lassen sich dann iiber (4.6)
die Parameter # und v und schliesslich aus (4.3) die Grossen 2 und b ermitteln.

Die Ungleichung (4.18) stellt mithin die notwendige und hinreichende Bedingung
fiir die reelle Existenz von Viergelenksketten dar, welche sich aus vier kongruenten
Gliedern zusammensetzen lassen, die durch die vorgegebenen Abmessungen e, p, ¢
und s gekennzeichnet sind. Mit Riicksicht auf die entscheidende quadratische Glei-
chung (4.16) wird es im allgemeinen zwe: wesentlich verschiedene Formen der Kette
geben, die jeweils starr sind.

Sind die Unterschiede der beiden Formen jedoch gering, so hat man eine sprung-
artig kippende Kette vor sich. Die Schranken fiir die zuldssigen Unterschiede hingen
natiirlich von der Verformbarkeit des Materials ab.

§5. Symmetrische Viergelenksketten mit gleichen Versetzungen

Zur Erhéhung der Gleichartigkeit der Kettenglieder mag noch die Nebenbedingung
gleicher Versetzungen gestellt werden. Jedes der vier kongruenten Tetraeder hat dann
zwei Paare kongruenter Seitenflichen, und jeder Stab des Stangenmodells ist an
beiden Enden gleich gestaltet. Die in Rede stehende Forderung

p=q (5.1)

fiihrt iiber (4.6) und (4.5) zur kennzeichnenden Bedingung
a?: b2 = (14 n?): (1 + m?) . (5.2)
Da tiber die Langeneinheit jederzeit frei verfiigt werden kann, mag die Festsetzung

1 1

-— b=
Y1+ ms ! Y1+ n?
getroffen werden. Fiir die Hauptabmessungen erhélt man dann auf Grund von (4.6)
und (4.7) die Werte

o

(5.3)

e TR SN
1 ”n . m
“=Vp (Vrm N vm)’ 5
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wobei gemiss (4.4) D = 1 4+ m? + n%. Die Formel (4.10) fiir f vereinfacht sich zu
2=¢24+2(1+5s)p2. (5.6)
Die bei Vorgabe der Abmessungen ¢, p und s entscheidende Existenzbedingung einer
reellen Viergelenkskette folgt aus (4.18) und lautet:
(I—s)e2=s(1+s)p2. (5.7)
Ein gut funktionierendes Kartonmodell fiir eine kippende Viergelenkskette ergibt

sich mit der Annahmem =1,# = 2 (D = 4). Die zur Anfertigung der vier kongruen-
ten Tetraeder benstigten Abmessungen lauten:

 p=q¢=(/3-1)[y2=0517;
e=(1+3)/2)/3=07887; f=}14—3)3/)6=12113. (5.8)
Das erste Tetraeder ist in Figur 3 durch Grund- und Aufriss nebst einem verkleinerten
Netz dargestellt. Die beiden durch die «Halbachsen» a = 1/)/2 = 0,7071 und b =
1/y3 = 0,5774 gekennzeichneten Formen der Kette sind zueinander kongruent. Das
Kippen von der einen Form in die andere hat, sofern man von der Bezeichnung der

Ecken absieht, den gleichen Effekt wie eine Vierteldrehung des ganzen Modells um
die z-Achse.

Aufrif 7
e }.\.] 4, Nelz (1:2)
A7 Va l/ 1 N B
. - P -5
L /Q r - . /// af"g” ) / p
Zaretgm > ! A
\<'/ - S 8 £ 7
........ -
Y & e b,
d ——————— \\
b 7\
\ . !
_ N & L0 A /,'
v
: \\\ ”’/’
A
£
Grundrif
Az

Figur 3
Element des Tetraedermodells einer symmetrischen Viergelenkskette (kippend).
Ein Modell, das zur Demonstration einer unbeweglichen (starren) Viergelenkskette
geeignet ist, ergibt sich etwa fiir die Annahme m = 1/y2, n = 2 (D = 7/2). Die
zugehoérigen Abmessungen betragen:
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p=q=—2 (32— 2) = 06408 ;
e=(1+2y2)[y21=08354; f=)19—4y2 |7 =1,3806. (5.9)
Ein Kippen, das die beiden Halbachsen a = VZ_/§ = 0,8165 und b = 1))/3 = 0,5774
vertauschen wiirde, ist hier ohne Beschddigung des Modells kaum maoglich.

§6. Wackelige symmetrische Viergelenksketten

Gilt in der Bedingung (4.18) das Gleichheitszeichen, dann riicken die beiden
Formen der symmetrischen Viergelenkskette zusammen, und man hat eine wackelige
Kette. Eine einfacher zu handhabende Bedingung ergibt sich, wenn man unter Be-

rufung auf §2 zum Ausdruck bringt, dass die vier Gelenkachsen einer Regelschar des
einschaligen Hyperboloids

%2 52 22

St -5=1 (6.1)

angehoren. Mit Beniitzung des Ansatzes (4.1) erhdlt man so die Wackeligkeits-
bedingung
m:n=a:b. (6.2)

Fordert man iiberdies gleiche Versetzungen (§5), dann muss wegen (5.2) m = » und
daher a = b sein: Die Tragerquadrik (6.1) ist also ein Drehhyperboloid. Unter diesen
Umstidnden lauten die Hauptabmessungen, wenn man a = b = 1 normiert:

21+ m? 2m 2+ mE
b=t e o= Viam 12 s (63)
Man findet bestdtigt, dass die Abmessungen ¢ und p zusammen mit s = m?/(1 + m?)
die Bedingung (5.7) mit dem Gleichheitszeichen befriedigen.

Ein hiibsches, durch hohe Regelmaissigkeit ausgezeichnetes Modell erhilt man
mit der Zusatzforderung p = e, welche m* = 1/2 bedingt. Die Hauptabmessungen
dieser in Figur 4 axonometrisch dargestellten Tetraederkette, die auf der Aussenseite
acht gleichschenklig-rechtwinkelige Dreiecke zeigt, betragen:

p=g=e=)4—2y2=1,0824; f=)6y2—4 =2,1178. (6.4)

Figur 4
Tetraedermodell einer wackeligen Viergelenkskette.
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§7. Bewegliche symmetrische Viergelenksketten
Ein neuer Ansatz

€. Xx=a—mu, y=0,2=u; gy...x=0,y=b—-nv, 2=—v (7.1)

legt zusammen mit den durch Spiegelung an der z-Achse gewonnenen Geraden g, und
g3, vier Gelenkachsen fest, die sich auf zwei die z-Achse enthaltende Strahlbiischel ver-
teilen (Fig. 5). Die Trdgerquadrik ist nunmehr zwar in das Ebenenpaar xy = 0 zer-
fallen, aber doch vorhanden, so dass zumindest infinitesimale Beweglichkeit der
Viergelenkskette zu erwarten ist.

Auf Grund der beziiglich der xz- und yz-Ebene symmetrischen Anordnung treten
jetzt keine Versetzungen auf und die Gemeinlote benachbarter Gelenkachsen bilden
ein geschlossenes windschiefes Viereck mit den Ecken
Aja—mu,0,u), A,0,b—nv, —v), Agimu —a,0,u), A;0,nv — b, —v), (7.2
wobei sich die Parameterwerte %, v aus den Orthogonalitdtsbedingungen

l4+m)ut+v=ma, u+(1+n)v=nb (7.3)

berechnen lassen. Im Hinblick auf die Verschiebbarkeit der ganzen Figur lings der
z-Achse kann man es so einrichten, dass der Koordinatenursprung in die Mitte
zwischen den beiden Vierecksdiagonalen 4,45 und 4,4, zu liegen kommt. Diese
Annahme lduft auf die Festsetzung

U =10 (7.4)
hinaus und legt den Grossen a und b eine gewisse Bedingung auf, die zufolge (7.3)
durch

a="24m), b=—(2+n) (7.5)
erfiillt werden kann.
Nunmehr ergibt sich fiir die gemeinsame Ldnge aller Gemeinlote der Wert
A, Ay = e=V(a—mu)2+ (b —nv)?+ (u+ v)? = Zu‘/i+m’2+n—2. (7.6)

Der Schrinkwinkel o zweier Nachbarachsen ist durch

1
COSO = § = T i (7.7)

bestimmt.

Zu jedem der oco! Wertepaare m, n, welche die Gleichung (7.7) fiir ein fest vorge-
gebenes s befriedigen, lisst sich aus (7.6) ein entsprechender Wert « finden, der eine
konstant vorgeschriebene Linge e liefert. Dies bedeutet, dass es eine einparametrige,
stetige Schar von Formen der durch die Abmessungen ¢ und o (oder s) gekennzeichne-
ten Viergelenkskette gibt: Es liegt eine zwangliufig bewegliche Kette vor. Im Prinzip
handelt es sich um den gleichseitigen Sonderfall des Bennetischen Isogramms, eines
wohlbekannten Mechanismus (§1, III). Ein stabiles Modell einer solchen «wind-
schiefen Raute» wird am besten aus vier gleich langen, um die Lingsachse um die
Winkel + ¢ tordierten Metallamellen hergestellt, die durch Nieten?2) gelenkig mit-
einander zu verbinden sind (Fig. 5).

%) Besser als die in der Figur angedeuteten Kopfnieten sind Hohlnieten, die den Ablauf eines voll-
stindigen Zyklus der Bewegung erlauben.
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Nach Annahme geeigneter Zusatzpunkte B,, B,, B;, B, auf den Gelenkachsen
lasst sich natiirlich auch ein Kartonmodell aus vier Tetraedern anfertigen — eine etwas
ungewdhnliche Realisierung des Isogramms. Zur Vereinbarung entsprechender Fest-
setzungen zieht man am besten die durch m = »n gekennzeichnete Mittelstellung der
Raute 4,4,434, heran, in der sie im Normalriss auf die xy-Ebene als Quadrat er-
scheint. Der betreffende Parameterwert betrigt zufolge (7.7):

3( \z \Gzs
\9
5/ \ Aa C\
/ gﬂ \ A P //‘ ."‘-._‘
: " . }
00 = '
R

i

Figur 5
Stabmodell einer beweglichen Viergelenkskette (windschiefe Raute).

moznor_-l/ls‘s : (7.8)
Die tibrigen Grossen haben, wenn man e = 1 setzt, geméss (7.6) und (7.5) die Werte
11/1—s 1 1/1+s

Zu den gemdss (7.2) durch # = v = u, festgelegten Ecken

s 1 1/1-=5s s 11/1—s
allis oz liz) Al )i — 2 lhFi) s oo

mogen nun etwa die zu #’' = v’ = — %, gehoérigen Punkte
B (—-—~5—-—~ 0, — ~ 3——‘1—3-) B (0 S N ]/i:—f) usf.  (7.11)
N\ys@+5s’ 2 V1+s) TE\7"Ys(l+s) 2 V1+s : '
treten. In der betrachteten Mittelstellung haben also alle Ecken gleiche Abstdnde von
der Mittelebene z = 0. — Zur Entwicklung der Tetraedernetze benétigt man noch die
Léngen p, ¢, f der Kanten 4,B,, A4B,; und B,B,. Mit Beniitzung der Koordinaten
aus (7.10) und (7.11) findet man:

1-— 2 —
qutvs(1+ss)r / V = . (712)
Figur 6 zeigt ein solches Tetraedermodell fiir die Annahme s = 1/2 (¢ = 60°) in der
Mittelstellung. Die zugehérigen Abmessungen betragen:

e=1; p=gq=V2[3=08165; f=}3 =1,7321. (7.13)
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Durch kollineare Umformung eines derartigen Tetraedermodells erhilt man zufolge
§2 im allgemeinen eine bloss wackelige Viergelenkskette. Bei Anwendung spezieller

Kollineationen, welche die Symmetrie nicht zerstoren, bleibt die stetige Beweglich-
keit jedoch erhalten.

Figur 6 ! .
Tetraedermodell einer beweglichen Viergelenkskette (Bennettsches Isogramm).

Im Laufe der Bewegung gegeniiber dem fest gedachten Koordinatensystem werden
die Seiten des Isogramms 4,4,444, stindig durch die xy-Ebene halbiert. Die Mittel-
punkte der Kanten A4,B, und 4,B; wandern dabei auf der x-Achse, die Mittelpunkte
der Kanten A,B, und 4,B, auf der y-Achse. Die Ecken 4, und 44 beschreiben in der
xz-Ebene eine gemeinsame Bahnkurve, deren Gleichung sich auf Grund von (7.2),
(7.5), (7.6) und (7.7) durch Elimination der Parameter m, » und % aus dem System

2u

p=— g=u, =4 (Lt m ), s2=(L+m?) (1+n?) (7.14)
ergibt; sie lautet
22 (x2+42%) =e2x% — 222 mit C:VEZ——E%T=2600W'- (7.15)

Die Bahn ist demnach eine doppelt-symmetrische algebraische Kurve 4. Ordnung. Sie
hat die Gestalt einer Achterschleife (Fig. 5) mit einem Knoten im Ursprung und einem
zweiten (isolierten) Doppelpunkt im Fernpunkt der z-Achse. Da der Fernpunkt der
x-Achse kein Kurvenpunkt ist und weitere Doppelpunkte aus Symmetriegriinden
nicht vorhanden sein kénnen, hat die Kurve das Geschlecht 1.

W. WuNDERLICH, Wien (derzeit Pullman, Wash., USA)
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