Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 26 (1971)

Heft: 4

Artikel: Starre, kippende, wackelige und bewegliche Gelenkvierecke im Raum

Autor: Wunderlich, W.

DOI: https://doi.org/10.5169/seals-28067

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik

und zur Förderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstützung des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung

El. Math. Band 26 Heft 4 Seiten 73-96 10. Juli 1971

Heinz Hopf

† 3. Juni 1971

Prof. Dr. Heinz Hopf, der seit dem Herbst 1950 dem Patronatskollegium unserer Zeitschrift angehörte, ist nach langem Leiden am 3. Juni 1971 in seinem 77. Lebensjahr gestorben. Eine Würdigung des grossen Forschers und hervorragenden Lehrers soll später erfolgen.

P. Buchner, J. Rätz, E. Trost

Starre, kippende, wackelige und bewegliche Gelenkvierecke im Raum

§1. Räumliche Viergelenksketten

Werden vier starre Körper Σ_1 , Σ_2 , Σ_3 und Σ_4 in zyklischer Reihenfolge durch vier Zylindergelenke verbunden, die bloss Drehungen gestatten, so entsteht im allgemeinen ein starres Aggregat. Der volle Freiheitsgrad 6 eines im Raum frei beweglichen Körpers wird nämlich durch ein fest gelagertes Zylindergelenk, das nur mehr eine reine Drehung (also eine einparametrige Bewegung) erlaubt, um 5 Einheiten reduziert. Bei der vorliegenden Viergelenkskette ergibt sich daher für die Bewegung von drei Systemen gegenüber dem vierten ein Freiheitsgrad $F = 3 \cdot 6 - 4 \cdot 5 = -2$, der wegen F < 1 jede Beweglichkeit ausschliesst [1].

Bei besonderer Anordnung der vier Gelenkachsen g_{12} , g_{23} , g_{34} und g_{41} kann jedoch trotzdem Beweglichkeit bestehen. Unter Voraussetzung durchwegs verschiedener Achsen tritt dies bekanntlich [1] in folgenden drei Fällen ein:

- I. Die Achsen sind parallel ebenes Gelenkviereck.
- II. Die Achsen laufen in einem eigentlichen Zentrum zusammen sphärisches Gelenkviereck.
- III. Die Gemeinlote der Achsen (in ihrer zyklischen Reihenfolge) bilden ein windschiefes Viereck mit paarweise gleichen Gegenseiten Bennettsches Isogramm [2].

Die vorliegende Note will auf die Existenz gewisser Zwischenformen hinweisen, die eine infinitesimale oder eine sprungartige endliche Lagenänderung gestatten, und eine Anzahl von einschlägigen, metrisch ausgezeichneten Modellen beschreiben. Ähnliche Betrachtungen wurden bei früherer Gelegenheit an Oktaedern durchgeführt [3].

§2. Wackelige Viergelenksketten

Eine beliebige zwangläufige (d.h. einparametrige) Bewegung eines starren Raumsystems kann bekanntlich hinsichtlich der Bahntangenten der Systempunkte in jedem Augenblick als eine Schraubung aufgefasst werden. Die Bahnnormalen erfüllen daher – wie bei der Schraubung – im allgemeinen einen linearen Strahlkomplex (ein «Strahlgewinde»); sie sind die Nullstrahlen eines Möbiusschen Nullsystems. Im Sonderfall einer Momentandrehung besteht dieser Komplex aus den Treffgeraden der Drehachse («Strahlgebüsch»), im Grenzfall einer Momentanschiebung artet er in ein Gebüsch mit Fernachse aus.

Unter Bezugnahme auf die grundlegende Eigenschaft, dass alle Gewindestrahlen, die eine Gerade g treffen, auch noch eine zweite Gerade \overline{g} schneiden, die sogenannte Nullpolare von g – hinsichtlich eines elementaren, darstellend-geometrischen Beweises siehe [4] –, erkennt man, dass in dem zu einer allfälligen Bewegung Σ_3/Σ_1 gehörigen Nullsystem die Achsen g_{23} und g_{12} sowie die Achsen g_{34} und g_{41} einander als reziproke Polare entsprechen: Die Bahnnormalen aller Punkte von $g_{23} \subset \Sigma_3$ etwa treffen ja die Achse g_{12} der Drehung Σ_2/Σ_1 .

Jede der ∞^1 Treffgeraden t von g_{12} , g_{23} und g_{34} ist als Treffgerade von g_{12} und g_{23} ein Gewindestrahl und muss daher auch die Nullpolare g_{41} von g_{34} schneiden. Die Achse g_{41} muss daher ebenfalls der durch die Leitgeraden g_{12} , g_{23} , g_{34} bestimmten Regelschar 2. Grades angehören, die im allgemeinen von einem einschaligen Hyperboloid getragen wird: Die vier Gelenkachsen befinden sich mithin in «hyperboloidischer Lage».

Werden umgekehrt die vier Gelenkachsen g_{12} , g_{23} , g_{34} und g_{41} in hyperboloidischer Lage vorausgesetzt, dann lässt sich stets eindeutig ein Möbiussches Nullsystem angeben, in welchem die Achsen g_{12} und g_{23} sowie g_{34} und g_{41} zwei Paare reziproker Polaren bilden. Es ist etwa folgendermassen zu finden: Man ziehe in einer Ebene, die keine der vier Achsen enthält, die beiden Treffgeraden s_1 , s_2 an die Achsenpaare und wähle im Büschel s_1 s_2 einen weiteren Strahl s; das in bekannter Weise durch die reziproken Polaren g_{12} , g_{23} und den Nullstrahl s bestimmte Nullsystem ist das gesuchte. Dementsprechend besteht dann auch eine wenigstens infinitesimale Beweglichkeit – Wackeligkeit – der Viergelenkskette. Hinsichtlich einschlägiger Demonstrationsmodelle sei auf Figur 2 und 4 verwiesen.

Nach allem ist die Wackeligkeit des Mechanismus eine *projektive Eigenschaft*, denn bei Ausübung einer beliebigen Raumkollineation bleibt ja die hyperboloidische Lage der vier Gelenkachsen erhalten.

Eine elementarere Vorgangsweise, die keine Kenntnisse der projektiven Geometrie benötigt, wäre die folgende: Man betrachte etwa das System Σ_3 mit den ihm angehörenden, beliebig vorgegebenen Gelenkachsen g_{23} und g_{34} und nehme irgendeine Schraubung (durch Achse und Ganghöhe) an. Ferner wähle man auf g_{23} zwei Punkte A_3 , B_3 und auf g_{34} zwei Punkte A_4 , B_4 . Die darstellend-geometrisch einfach zu kon-

struierende Schnittgerade der durch die Schraubung bestimmten Bahnnormalebenen von A_3 und B_3 werde mit g_{12} bezeichnet, die Schnittgerade der Bahnnormalebenen von A_4 und B_4 mit g_{41} . Durch die vier Achsen g_{ik} ist dann eine wackelige Viergelenkskette festgelegt. – Wählt man schliesslich noch geeignete Punkte A_1 , B_1 auf g_{41} und A_2 , B_2 auf g_{12} , so kann man durch Materialisierung der vier Tetraeder $A_1B_1B_2A_2$, $A_2B_2B_3A_3$, $A_3B_3B_4A_4$ und $A_4B_4B_1A_1$ aus Karton, die mittels Klebstreifen längs der gemeinsamen Kanten gelenkig zu verbinden sind, bei einiger Geschicklichkeit leicht ein nettes Demonstrationsmodell herstellen (vgl. Fig. 4).

§3. Kippende Viergelenksketten

Seien $\Sigma_3(g_{23},g_{34})$ und $\Sigma_3'(g_{23}',g_{34}')$ zwei endlich benachbarte (gleichsinnig-kongruente) Lagen des Systems Σ_3 und der ihm angehörenden, beliebig angenommenen Gelenkachsen. Man wähle willkürlich auf g_{23} zwei Punkte A_3 , B_3 und auf g_{34} zwei Punkte A_4 , B_4 ; die entsprechenden Punkte A_3' , B_3' auf g_{23}' und A_4' , B_4' auf g_{34}' sind durch die gleichsinnig-kongruente Beziehung zwischen den Lagen Σ_3 und Σ_3' eindeutig bestimmt. Nun ermittle man die Schnittgerade g_{12} der Symmetralebenen für die beiden Bahnsehnen A_3A_3' und B_3B_3' ; g_{12} ist die Achse einer Drehung, die A_3 nach A_3' und gleichzeitig B_3 nach B_3' bringt. Analog suche man die Schnittgerade g_{41} der Symmetralebenen für die beiden Bahnsehnen A_4A_4' und B_4B_4' auf. Die vier Achsen g_{1k} bestimmen mithin eine Viergelenkskette, die neben der Anordnung $g_{12}g_{23}g_{34}g_{41}$ noch eine zweite Anordnung $g_{12}g_{23}g_{34}g_{41}$ zulässt. Bei nicht allzustarker Verschiedenheit der beiden Lagen Σ_3 , Σ_3' wird daher ein entsprechendes, an und für sich starres Aggregat bei einiger Nachgiebigkeit des Materials unter Anwendung sanfter Gewalt einen sprungartigen, «kippenden» Übergang von der einen Position in die andere vollführen können.

Ein einschlägiges Demonstrationsmodell aus Karton-Tetraedern kann nach Wahl passender Punkte A_1 , B_1 auf g_{41} und A_2 , B_2 auf g_{12} wieder leicht angefertigt werden (vgl. Fig. 3). Stabilere Modelle wären aus Metallstäben mit richtigen Zylindergelenken nach dem Muster Figur 2 herzustellen.

§4. Analytische Behandlung symmetrischer Viergelenksketten

In elementarer Weise lassen sich metrisch spezielle, durch drei Symmetrieachsen ausgezeichnete Viergelenksketten analytisch behandeln. Lässt man die Symmetrieachsen mit den Koordinatenachsen eines kartesischen Koordinatensystems x, y, z zusammenfallen (Fig. 1), dann mögen die Gelenkachsen durch folgende Parameterdarstellungen angesetzt werden:

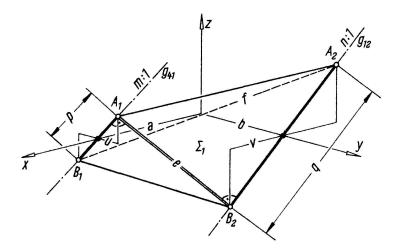
$$g_{41} \ldots x = a, \ y = u, \ z = m \ u; \ g_{12} \ldots x = -v, \ y = b, \ z = n \ v.$$
 (4.1)

Durch Vorzeichenänderung sämtlicher rechten Seiten ergeben sich die Achsen g_{23} bzw. g_{34} . Die Wahl der Punkte A_i und B_i sei durch die zulässige Forderung normiert, dass A_1B_2 das Gemeinlot der Achsen g_{41} und g_{12} , A_2B_3 das Gemeinlot der Achsen g_{12} und g_{23} sei, usf. Die Ecken jenes Tetraeders $B_1A_1B_2A_2$, welches das System Σ_1 repräsentiert, lauten daher (mit vorläufig noch unbekannten Parameterwerten u und v):

$$A_1(a, u, m u), B_1(a, -u, -m u), A_2(-v, b, n v), B_2(v, b, -n v).$$
 (4.2)

Die der Normierung entsprechenden Orthogonalitätsbedingungen verlangen

$$(1+m^2) u + m n v = b$$
, $m n u + (1+n^2) v = a$. (4.3)



Figur 1
Festlegung der Achsen für eine symmetrische Viergelenkskette.

Mit Benützung der Gleichungsdeterminante

$$D = 1 + m^2 + n^2 \tag{4.4}$$

errechnet man dann die Parameterwerte u und v aus

$$D \cdot u = (1 + n^2) b - m n a$$
, $D \cdot v = (1 + m^2) a - m n b$. (4.5)

Mit ihrer Hilfe lassen sich nun sämtliche Kantenlängen des Tetraeders $B_1A_1B_2A_2$ ausdrücken. Mit Rücksicht auf die rechten Winkel $\not \subset B_1A_1B_2 = \not \subset A_1B_2A_2 = \pi/2$ sind bloss vier Abmessungen wesentlich:

$$\overline{A_1 B_1} = p = 2 u \sqrt{1 + m^2}, \quad \overline{A_2 B_2} = q = 2 v \sqrt{1 + n^2};$$
 (4.6)

$$\overline{A_1 B_2} = e = \sqrt{(a-v)^2 + (b-u)^2 + (m u + n v)^2} = (n a + m b) : \sqrt{D}; \quad (4.7)$$

$$\overline{A_2 B_1} = f = \sqrt{(a+v)^2 + (b+u)^2 + (mu+nv)^2}. \tag{4.8}$$

Für den durch die Richtungsvektoren (0, 1, m) und (-1, 0, n) der beiden Gelenkachsen g_{41} und g_{12} (4.1) bestimmten «Schränkwinkel» σ erhält man über das Skalarprodukt:

$$\cos \sigma = s = \frac{m \, n}{\sqrt{1 + m^2} \, \sqrt{1 + n^2}} \, . \tag{4.9}$$

Unter Heranziehung des Kosinussatzes lässt sich zwischen den berechneten Grössen die Beziehung

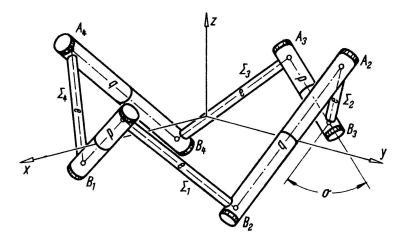
$$f^2 - e^2 = p^2 + q^2 + 2 p q s (4.10)$$

herstellen, die zur bequemeren Berechnung von f dienen kann.

Die übrigen drei Tetraeder $\Sigma_2(B_2A_2B_3A_3)$, $\Sigma_3(B_3A_3B_4A_4)$ und $\Sigma_4(B_4A_4B_1A_1)$ haben dieselben Abmessungen, da sie aus dem ersten Tetraeder $\Sigma_1(B_1A_1B_2A_2)$ durch Spiegelung an den Achsen y, z und x hervorgehen. Alle vier Tetraeder sind also untereinander gleichsinnig-kongruent.

Die Abmessungen p, q (4.6), e (4.7) und σ (4.9) legen auch die Form der Glieder eines nach dem Muster Figur 2 gebauten Stangenmodells fest: e gibt die Länge der vier Hauptstäbe an, σ bezeichnet den Schränkwinkel der an den Stabenden rechtwinkelig

anzubringenden Zylindergelenke, und p und q bedeuten die Versetzungen benachbarter Stangen, also die ungefähre Länge der Gelenkszylinder¹).



Figur 2
Stangenmodell einer symmetrischen Viergelenkskette (wackelig).

Sind umgekehrt vier (reelle) gleichsinnig-kongruente Tetraeder – oder die entsprechenden Stangenelemente – durch ihre Abmessungen e, p, q und σ (oder s) vorgegeben, so erhebt sich die Frage nach ihrer *Position*, die sie beim Zusammenbau annehmen, also nach der Form der aus ihnen bildbaren Viergelenkskette, falls diese überhaupt existiert. Zur Beantwortung dieser Frage sind die sechs Gleichungen (4.3), (4.6), (4.7) und (4.9) nach u, v, a, b, m und n aufzulösen. Dies kann auf folgende Weise geschehen: Nach Elimination von u und v und anschliessend von a und b ergibt sich für m und n das Gleichungssystem

$$\left(\frac{p m}{\sqrt{1+m^2}} + \frac{q n}{\sqrt{1+n^2}}\right) \sqrt{1+m^2+n^2} = 2 e,$$

$$s \sqrt{1+m^2} \sqrt{1+n^2} = m n.$$
(4.11)

Nun liegt es nahe, die neuen Unbekannten

$$\mu = \frac{m}{\sqrt{1+m^2}}, \quad \nu = \frac{n}{\sqrt{1+n^2}}$$
 (4.12)

einzuführen, wodurch die Gleichungen (4.11) in

$$(p \mu + q \nu) \sqrt{\frac{1 - \mu^2 \nu^2}{(1 - \mu^2) (1 - \nu^2)}} = 2 e, \quad \mu \nu = s$$
 (4.13)

übergeführt werden. Mit Benützung der zweiten Gleichung nimmt die erste (nach Fortschaffung der Quadratwurzel) die Form

$$(1-s^2) (p \mu + q \nu)^2 = 4 e^2 (1+s^2-\mu^2-\nu^2)$$
 (4.14)

an. Damit gelangt man schliesslich zu dem einfachen Gleichungspaar

$$P \mu^2 + Q \nu^2 = R$$
, $\mu \nu = s$ (4.15)

mit

$$P=4\ e^2+(1-s^2)\ p^2$$
, $Q=4\ e^2+(1-s^2)\ q^2$, $R=4\ (1+s^2)\ e^2-2\ s\ (1-s^2)\ p\ q$.

¹⁾ Stangenmodelle lassen sich auch im Falle verschwindender Versetzungen unschwer bauen, während Kartonmodelle wegen der zu Dreiecken ausgearteten Tetraeder die Wahl von Ersatzpunkten für die mit einer Ecke A zusammenfallenden Punkte B erfordern. – Zwecks Verstellbarkeit der Schränkungen empfiehlt es sich, die Hauptstäbe zu teilen und durch Muffen mit Klemmschrauben zu verbinden.

78

Seine Auflösung – die graphisch auf den Schnitt einer Ellipse mit einer konzentrischen gleichseitigen Hyperbel in der $\mu\nu$ -Ebene hinauslaufen würde – kann auf die Bestimmung des Verhältniswertes μ/ν aus der homogenen quadratischen Gleichung

$$s P \mu^2 - R \mu \nu + s Q \nu^2 = 0 \tag{4.16}$$

zurückgeführt werden. Man erkennt, dass reelle Lösungen nur dann zu erwarten sind, wenn

$$R^2 \ge 4 s^2 P Q$$
. (4.17)

Auf Grund von (4.15) ist diese Bedingung äquivalent zu

$$(1-s^2) e^2 \ge s^2 (p^2+q^2) + s (1+s^2) p q. \tag{4.18}$$

Diese Bedingung erscheint zunächst bloss notwendig für reelles μ/ν , aber noch nicht hinreichend für reelle Werte von m und n. Hierfür muss mit Rücksicht auf (4.12) noch $0 \le \mu^2 \le 1$ erfüllt sein. Überprüfung der Lösungswerte für μ lehrt aber, dass bei Bestehen der Ungleichung (4.17) die Zusatzforderung stets automatisch befriedigt wird. – Nach Bestimmung der Werte m und n aus (4.12) lassen sich dann über (4.6) die Parameter n und n und schliesslich aus (4.3) die Grössen n und n und

Die Ungleichung (4.18) stellt mithin die notwendige und hinreichende Bedingung für die reelle Existenz von Viergelenksketten dar, welche sich aus vier kongruenten Gliedern zusammensetzen lassen, die durch die vorgegebenen Abmessungen e, p, q und s gekennzeichnet sind. Mit Rücksicht auf die entscheidende quadratische Gleichung (4.16) wird es im allgemeinen zwei wesentlich verschiedene Formen der Kette geben, die jeweils starr sind.

Sind die Unterschiede der beiden Formen jedoch gering, so hat man eine sprungartig kippende Kette vor sich. Die Schranken für die zulässigen Unterschiede hängen natürlich von der Verformbarkeit des Materials ab.

§5. Symmetrische Viergelenksketten mit gleichen Versetzungen

Zur Erhöhung der Gleichartigkeit der Kettenglieder mag noch die Nebenbedingung gleicher Versetzungen gestellt werden. Jedes der vier kongruenten Tetraeder hat dann zwei Paare kongruenter Seitenflächen, und jeder Stab des Stangenmodells ist an beiden Enden gleich gestaltet. Die in Rede stehende Forderung

$$p = q \tag{5.1}$$

führt über (4.6) und (4.5) zur kennzeichnenden Bedingung

$$a^2:b^2=(1+n^2):(1+m^2).$$
 (5.2)

Da über die Längeneinheit jederzeit frei verfügt werden kann, mag die Festsetzung

$$a = \frac{1}{\sqrt{1+m^2}}, \quad b = \frac{1}{\sqrt{1+n^2}}$$
 (5.3)

getroffen werden. Für die Hauptabmessungen erhält man dann auf Grund von (4.6) und (4.7) die Werte

$$p = q = \frac{2}{D} \left(\sqrt{1 + m^2} \sqrt{1 + n^2} - m n \right), \qquad (5.4)$$

$$e = \frac{1}{\sqrt{D}} \left(\frac{n}{\sqrt{1 + m^2}} + \frac{m}{\sqrt{1 + n^2}} \right), \tag{5.5}$$

wobei gemäss (4.4) $D = 1 + m^2 + n^2$. Die Formel (4.10) für f vereinfacht sich zu

$$f^2 = e^2 + 2(1+s) p^2. (5.6)$$

Die bei Vorgabe der Abmessungen e, p und s entscheidende Existenzbedingung einer reellen Viergelenkskette folgt aus (4.18) und lautet:

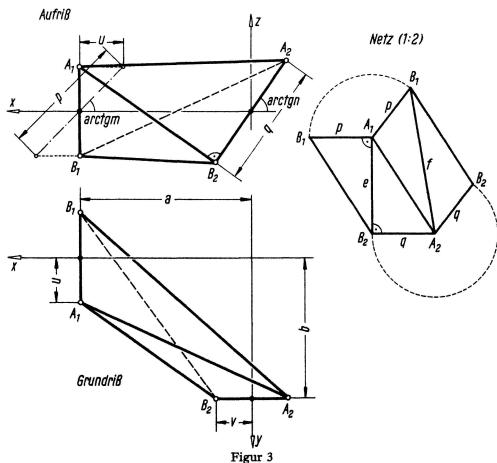
$$(1-s) e^2 \ge s (1+s) p^2. \tag{5.7}$$

Ein gut funktionierendes Kartonmodell für eine kippende Viergelenkskette ergibt sich mit der Annahme m=1, $n=\sqrt{2}$ (D=4). Die zur Anfertigung der vier kongruenten Tetraeder benötigten Abmessungen lauten:

$$p = q = (\sqrt{3} - 1) / \sqrt{2} = 0.5176 ;$$

$$e = (1 + \sqrt{3}) / 2\sqrt{3} = 0.7887 ; f = \sqrt{14 - 3\sqrt{3}} / \sqrt{6} = 1.2113 .$$
 (5.8)

Das erste Tetraeder ist in Figur 3 durch Grund- und Aufriss nebst einem verkleinerten Netz dargestellt. Die beiden durch die «Halbachsen» $a=1/\sqrt{2}=0,7071$ und $b=1/\sqrt{3}=0,5774$ gekennzeichneten Formen der Kette sind zueinander kongruent. Das Kippen von der einen Form in die andere hat, sofern man von der Bezeichnung der Ecken absieht, den gleichen Effekt wie eine Vierteldrehung des ganzen Modells um die z-Achse.



Element des Tetraedermodells einer symmetrischen Viergelenkskette (kippend).

Ein Modell, das zur Demonstration einer unbeweglichen (starren) Viergelenkskette geeignet ist, ergibt sich etwa für die Annahme $m = 1/\sqrt{2}$, $n = \sqrt{2}$ (D = 7/2). Die zugehörigen Abmessungen betragen:

$$p = q = \frac{2}{7} (3 \sqrt{2} - 2) = 0,6408 ;$$

$$e = (1 + 2\sqrt{2}) / \sqrt{21} = 0,8354 ; f = \sqrt{19 - 4\sqrt{2}} / \sqrt{7} = 1,3806 .$$
 (5.9)

Ein Kippen, das die beiden Halbachsen $a = \sqrt{2/3} = 0.8165$ und $b = 1/\sqrt{3} = 0.5774$ vertauschen würde, ist hier ohne Beschädigung des Modells kaum möglich.

§6. Wackelige symmetrische Viergelenksketten

Gilt in der Bedingung (4.18) das Gleichheitszeichen, dann rücken die beiden Formen der symmetrischen Viergelenkskette zusammen, und man hat eine wackelige Kette. Eine einfacher zu handhabende Bedingung ergibt sich, wenn man unter Berufung auf §2 zum Ausdruck bringt, dass die vier Gelenkachsen einer Regelschar des einschaligen Hyperboloids

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \tag{6.1}$$

angehören. Mit Benützung des Ansatzes (4.1) erhält man so die Wackeligkeitsbedingung

$$m: n = a:b. (6.2)$$

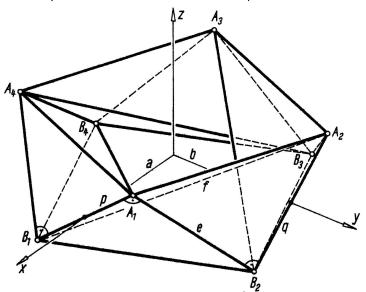
Fordert man überdies gleiche Versetzungen (§5), dann muss wegen (5.2) m = n und daher a = b sein: Die Trägerquadrik (6.1) ist also ein *Drehhyperboloid*. Unter diesen Umständen lauten die Hauptabmessungen, wenn man a = b = 1 normiert:

$$p = q = \frac{2\sqrt{1+m^2}}{1+2m^2}, \quad e = \frac{2m}{\sqrt{1+2m^2}}, \quad f = 2\sqrt{\frac{2+m^2}{1+2m^2}}.$$
 (6.3)

Man findet bestätigt, dass die Abmessungen e und p zusammen mit $s = m^2/(1 + m^2)$ die Bedingung (5.7) mit dem Gleichheitszeichen befriedigen.

Ein hübsches, durch hohe Regelmässigkeit ausgezeichnetes Modell erhält man mit der Zusatzforderung p = e, welche $m^4 = 1/2$ bedingt. Die Hauptabmessungen dieser in Figur 4 axonometrisch dargestellten Tetraederkette, die auf der Aussenseite acht gleichschenklig-rechtwinkelige Dreiecke zeigt, betragen:

$$p = q = e = \sqrt{4 - 2\sqrt{2}} = 1,0824; \quad f = \sqrt{6\sqrt{2} - 4} = 2,1178.$$
 (6.4)



Figur 4
Tetraedermodell einer wackeligen Viergelenkskette.

§7. Bewegliche symmetrische Viergelenksketten

Ein neuer Ansatz

$$g_{41} \dots x = a - m u, y = 0, z = u; g_{12} \dots x = 0, y = b - n v, z = -v$$
 (7.1)

legt zusammen mit den durch Spiegelung an der z-Achse gewonnenen Geraden g_{23} und g_{34} vier Gelenkachsen fest, die sich auf zwei die z-Achse enthaltende Strahlbüschel verteilen (Fig. 5). Die Trägerquadrik ist nunmehr zwar in das Ebenenpaar xy=0 zerfallen, aber doch vorhanden, so dass zumindest infinitesimale Beweglichkeit der Viergelenkskette zu erwarten ist.

Auf Grund der bezüglich der xz- und yz-Ebene symmetrischen Anordnung treten jetzt keine Versetzungen auf und die Gemeinlote benachbarter Gelenkachsen bilden ein geschlossenes windschiefes Viereck mit den Ecken

$$A_1(a-m u, 0, u), A_2(0, b-n v, -v), A_3(m u-a, 0, u), A_4(0, n v-b, -v),$$
 (7.2)

wobei sich die Parameterwerte u, v aus den Orthogonalitätsbedingungen

$$(1+m^2) u + v = m a$$
, $u + (1+n^2) v = n b$ (7.3)

berechnen lassen. Im Hinblick auf die Verschiebbarkeit der ganzen Figur längs der z-Achse kann man es so einrichten, dass der Koordinatenursprung in die Mitte zwischen den beiden Vierecksdiagonalen A_1A_3 und A_2A_4 zu liegen kommt. Diese Annahme läuft auf die Festsetzung

$$u = v \tag{7.4}$$

hinaus und legt den Grössen a und b eine gewisse Bedingung auf, die zufolge (7.3) durch

$$a = \frac{u}{m} (2 + m^2), \quad b = \frac{u}{n} (2 + n^2)$$
 (7.5)

erfüllt werden kann.

Nunmehr ergibt sich für die gemeinsame Länge aller Gemeinlote der Wert

$$\overline{A_1 A_2} = e = \sqrt{(a - m u)^2 + (b - n v)^2 + (u + v)^2} = 2 u \sqrt{1 + m^{-2} + n^{-2}}.$$
 (7.6)

Der Schränkwinkel \sigma zweier Nachbarachsen ist durch

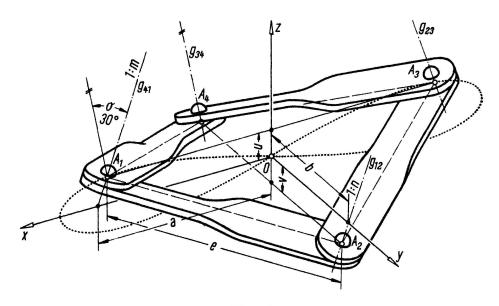
$$\cos \sigma = s = \frac{1}{\sqrt{1 + m^2 \sqrt{1 + n^2}}} \tag{7.7}$$

bestimmt.

Zu jedem der ∞^1 Wertepaare m, n, welche die Gleichung (7.7) für ein fest vorgegebenes s befriedigen, lässt sich aus (7.6) ein entsprechender Wert u finden, der eine konstant vorgeschriebene Länge e liefert. Dies bedeutet, dass es eine einparametrige, stetige Schar von Formen der durch die Abmessungen e und σ (oder s) gekennzeichneten Viergelenkskette gibt: Es liegt eine zwangläufig bewegliche Kette vor. Im Prinzip handelt es sich um den gleichseitigen Sonderfall des Bennettschen Isogramms, eines wohlbekannten Mechanismus (§1, III). Ein stabiles Modell einer solchen «windschiefen Raute» wird am besten aus vier gleich langen, um die Längsachse um die Winkel $\pm \sigma$ tordierten Metallamellen hergestellt, die durch Nieten²) gelenkig miteinander zu verbinden sind (Fig. 5).

²) Besser als die in der Figur angedeuteten Kopfnieten sind Hohlnieten, die den Ablauf eines vollständigen Zyklus der Bewegung erlauben.

Nach Annahme geeigneter Zusatzpunkte B_1 , B_2 , B_3 , B_4 auf den Gelenkachsen lässt sich natürlich auch ein *Kartonmodell* aus vier Tetraedern anfertigen – eine etwas ungewöhnliche Realisierung des Isogramms. Zur Vereinbarung entsprechender Festsetzungen zieht man am besten die durch m=n gekennzeichnete *Mittelstellung* der Raute $A_1A_2A_3A_4$ heran, in der sie im Normalriss auf die xy-Ebene als Quadrat erscheint. Der betreffende Parameterwert beträgt zufolge (7.7):



Figur 5
Stabmodell einer beweglichen Viergelenkskette (windschiefe Raute).

$$m_0 = n_0 = \sqrt{\frac{1-s}{s}} {.} {(7.8)}$$

Die übrigen Grössen haben, wenn man e = 1 setzt, gemäss (7.6) und (7.5) die Werte

$$u_0 = v_0 = \frac{1}{2} \sqrt{\frac{1-s}{1+s}}$$
, $a_0 = b_0 = \frac{1}{2} \sqrt{\frac{1+s}{s}}$ (7.9)

Zu den gemäss (7.2) durch $u = v = u_0$ festgelegten Ecken

$$A_1\left(\sqrt{\frac{s}{1+s}}, 0, \frac{1}{2}\sqrt{\frac{1-s}{1+s}}\right), A_2\left(0, \sqrt{\frac{s}{1+s}}, -\frac{1}{2}\sqrt{\frac{1-s}{1+s}}\right) \text{ usf.}$$
 (7.10)

mögen nun etwa die zu $u' = v' = -u_0$ gehörigen Punkte

$$B_1\left(\frac{1}{\sqrt{s(1+s)}}, 0, -\frac{1}{2}\sqrt{\frac{1-s}{1+s}}\right), B_2\left(0, \frac{1}{\sqrt{s(1+s)}}, \frac{1}{2}\sqrt{\frac{1-s}{1+s}}\right) \text{ usf.}$$
 (7.11)

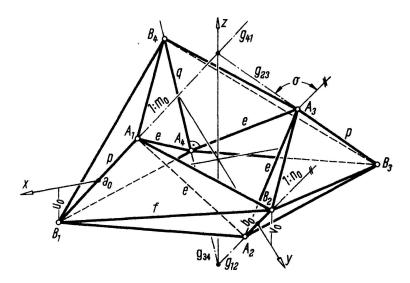
treten. In der betrachteten Mittelstellung haben also alle Ecken gleiche Abstände von der Mittelebene z=0. – Zur Entwicklung der Tetraedernetze benötigt man noch die Längen p, q, f der Kanten A_1B_1 , A_2B_2 und B_1B_2 . Mit Benützung der Koordinaten aus (7.10) und (7.11) findet man:

$$p = q = \sqrt{\frac{1-s}{s(1+s)}}, \quad f = \sqrt{\frac{2-s}{s}}.$$
 (7.12)

Figur 6 zeigt ein solches Tetraedermodell für die Annahme s=1/2 ($\sigma=60^\circ$) in der Mittelstellung. Die zugehörigen Abmessungen betragen:

$$e = 1; \ p = q = \sqrt{2/3} = 0.8165; \ f = \sqrt{3} = 1.7321.$$
 (7.13)

Durch kollineare Umformung eines derartigen Tetraedermodells erhält man zufolge §2 im allgemeinen eine bloss wackelige Viergelenkskette. Bei Anwendung spezieller Kollineationen, welche die Symmetrie nicht zerstören, bleibt die stetige Beweglichkeit jedoch erhalten.



Figur 6
Tetraedermodell einer beweglichen Viergelenkskette (Bennettsches Isogramm).

Im Laufe der Bewegung gegenüber dem fest gedachten Koordinatensystem werden die Seiten des Isogramms $A_1A_2A_3A_4$ ständig durch die xy-Ebene halbiert. Die Mittelpunkte der Kanten A_1B_1 und A_3B_3 wandern dabei auf der x-Achse, die Mittelpunkte der Kanten A_2B_2 und A_4B_4 auf der y-Achse. Die Ecken A_1 und A_3 beschreiben in der xz-Ebene eine gemeinsame Bahnkurve, deren Gleichung sich auf Grund von (7.2), (7.5), (7.6) und (7.7) durch Elimination der Parameter m, n und u aus dem System

$$x = \frac{2u}{m}$$
, $z = u$, $e^2 = 4u^2(1 + m^{-2} + n^{-2})$, $s^{-2} = (1 + m^2)(1 + n^2)$ (7.14)

ergibt; sie lautet

$$x^2 (x^2 + 4z^2) = e^2 x^2 - c^2 z^2$$
 mit $c = \frac{2 s e}{\sqrt{1 - s^2}} = 2 e \cot \sigma$. (7.15)

Die Bahn ist demnach eine doppelt-symmetrische algebraische Kurve 4. Ordnung. Sie hat die Gestalt einer Achterschleife (Fig. 5) mit einem Knoten im Ursprung und einem zweiten (isolierten) Doppelpunkt im Fernpunkt der z-Achse. Da der Fernpunkt der x-Achse kein Kurvenpunkt ist und weitere Doppelpunkte aus Symmetriegründen nicht vorhanden sein können, hat die Kurve das Geschlecht 1.

W. WUNDERLICH, Wien (derzeit Pullman, Wash., USA)

LITERATURVERZEICHNIS

- [1] R. BRICARD, Leçons de Cinématique, II (Paris, 1927).
- [2] G. T. Bennett, A New Mechanism, Engineering 76, 777 (1903); The Skew Isogram Mechanism, Proc. London Math. Soc. 13, 151-173 (1913).
- [3] W. Wunderlich, Starre, kippende, wackelige und bewegliche Achtflache, El. Math. 20, 25-32 (1965).
- [4] W. WUNDERLICH, Darstellende Geometrie, II (Mannheim, 1967).