Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 26 (1971)

Heft: 3

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aufgabe 620. Es seien P ein beliebiger Punkt eines konvexen ebenen n-Ecks $A_1 A_2 \ldots A_n$, R_i der Abstand PA_i ($i = 1, \ldots, n$) und $A(R_i)$ das arithmetische Mittel der R_i . Ferner seien r der Inkreis- und R der Umkreisradius von $A_1 A_2 \ldots A_n$. Man beweise die folgenden Beziehungen:

a)
$$A(R_i) \ge \frac{4}{9} r \left(5 - \frac{r}{R}\right)$$
 und $A(R_i) \ge \frac{2}{3} r \sqrt[4]{48 \frac{R}{r} - 15}$ für $n = 3$;

b)
$$A(R_i) \ge 2\sqrt{2} \frac{\operatorname{tg} (\pi/2 n)}{\sqrt{1 - \operatorname{tg}^2 (\pi/2 n)}} r$$
 für $n \ge 3$.

J. Berkes, Szeged

Lösung mit Verschärfung für Aussage a), kombiniert nach F. Leuenberger (Feldmeilen) und O. Reutter (Ochsenhausen): D sei der Punkt, dessen Distanzsumme von den Ecken des Dreiecks $A_1A_2A_3$ minimal ist. Bekanntlich gilt $\not \subset A_iDA_{i+1}=120^\circ$ (i=1,2,3), falls kein Dreieckswinkel $>120^\circ$ ist; andernfalls ist die Stumpfwinkelecke des Dreiecks Träger dieser Minimaleigenschaft (vgl. etwa H. Dörrie, Triumph der Mathematik, 5. Aufl., Würzburg 1958, p. 360–362). Im ersten Falle lässt sich aus der Winkeleigenschaft von D elementar die Beziehung

$$\left(\sum \overline{DA}_i\right)^2 = \frac{1}{2} \sum a_i^2 + 2\sqrt{3} F \tag{1}$$

herleiten, in welcher a_i die Seitenlängen und F den Inhalt des Dreiecks $A_1A_2A_3$ bedeuten: Das Teildreieck A_iDA_{i+1} hat nämlich den Inhalt $^1/_2\overline{DA}_i\overline{DA}_{i+1}$ sin $120^\circ=^1/_4\sqrt{3}\ \overline{DA}_i\overline{DA}_{i+1}$, daher ist $^1/_4\sqrt{3}\ \Sigma\ \overline{DA}_i\overline{DA}_{i+1}=F$ (1a). Ferner gilt in dem genannten Teildreieck $a_{i+2}^2=\overline{DA}_i^2+\overline{DA}_{i+1}^2-2\overline{DA}_i\overline{DA}_{i+1}\cos 120^\circ=\overline{DA}_i^2+\overline{DA}_{i+1}^2+\overline{DA}_i\overline{DA}_{i+1}$, also ist $2\ \Sigma\ \overline{DA}_i^2+\Sigma\ \overline{DA}_i\overline{DA}_{i+1}=\Sigma\ a_i^2$ (1b). Trägt man (1a) und (1b) in die Identität $(\Sigma\ \overline{DA}_i)^2=\Sigma\ \overline{DA}_i^2+2\ \Sigma\ \overline{DA}_i\overline{DA}_{i+1}$ ein, dann ergibt sich (1). Ist aber $\alpha_3=4$ $A_1A_3A_2\ge 120^\circ$, so kann gezeigt werden, dass

$$\left(\sum \overline{DA}_i\right)^2 = \frac{1}{2}\sum a_i^2 + a_1 a_2 (2 + \cos \alpha_3) \ge \frac{1}{2}\sum a_i^2 + 2\sqrt{3} F$$

ist, wobei das Gleichheitszeichen zwischen den beiden letzten Termen genau für $\alpha_3 = 120^{\circ}$ gilt. Damit und auf Grund von (1) gilt für jeden Punkt P der Ebene

$$\left(\sum R_i\right)^2 \ge \frac{1}{2} \sum a_i^2 + 2\sqrt{3} F, \qquad (2)$$

mit Gleichheit genau dann, wenn P = D ist.

Zur weiteren Abschätzung von $(\Sigma R_i)^2$ werden die von J. Steinig hergeleiteten Ungleichungen $\Sigma a_i^2 \ge 12 r (2 R - r)$ und $F^2 \ge r^3 (16 R - 5 r)$ herangezogen [1]. Danach ist zunächst

$$(\sum R_i)^2 \ge 12 R r - 6 r^2 + 2 r \sqrt{48 R r - 15 r^2}.$$
 (3)

Wegen $R \ge 2 r$ ist weiterhin $\sqrt{48 R r - 15 r^2} \ge 9 r$, also gilt abgeschwächt $(\Sigma R_i)^2 \ge 12 R r + 12 r^2$ und somit

$$A(R_i) \ge \frac{2}{3} r \sqrt{3 \left| \frac{R}{r} + 3 \right|} . \tag{4}$$

Die Ungleichung (4) ist trotz der zuletzt durchgeführten Abschwächung schärfer als jede der beiden in Aufgabe a) angegebenen Ungleichungen, wie im folgenden gezeigt wird:

Aus der Identität

$$\left(3\frac{R}{r} + 3\right)^2 = \left(3\frac{R}{r} - 6\right)\left(3\frac{R}{r} - 4\right) + 48\frac{R}{r} - 15$$

folgt nämlich mit $R/r \ge 2$ zunächst

$$\left(3\frac{R}{r}+3\right)^2 \ge 48\frac{R}{r}-15.$$

Also gilt nach (4)

$$A(R_i) \ge \frac{2}{3} r \sqrt[4]{48 \frac{R}{r} - 15}$$
,

womit die eine Ungleichung der Aufgabe bestätigt ist.

Weiterhin genügen die beiden Funktionen $f(x) = \sqrt{3} x + 3$ und g(x) = 4 - (2/x) im Intervall $x \ge 2$ der Ungleichung $f(x) \ge g(x)$, denn es ist f(2) = g(2) = 3 und $f'(x) \ge g'(x)$ für alle $x \ge 2$, was leicht nachzuprüfen ist. Wegen $R/r \ge 2$ ist also $f(R/r) \ge g(R/r)$ und demzufolge nach (4)

$$A(R_i) \ge \frac{4}{3} r \left(2 - \frac{r}{R}\right). \tag{5}$$

Die rechte Seite von (5) ist für alle $R/r \ge 2$ ersichtlich mindestens so gross wie

$$\frac{4}{9} r \left(5 - \frac{r}{R} \right) ,$$

womit auch die andere Ungleichung der Aufgabe a) bestätigt ist.

In den Ungleichungen (3), (4) und (5) besteht Gleichheit genau dann, wenn R = 2r, wenn P also der Schwerpunkt des regulären Dreiecks ist.

LITERATUR

[1] J. Steinig, Inequalities Concerning the Inradius and Circumradius of a Triangle, El. Math. 18, S. 127ff; Ungleichung (16) und (17).

Lösung des Aufgabenstellers für Aussage b): Wir verwenden die bekannte isoperimetrische Ungleichung

$$L^2 \ge 4 \, n \cdot \operatorname{tg}\left(\frac{\pi}{n}\right) \cdot F \,, \tag{6}$$

wo L den Umfang und F den Flächeninhalt eines beliebigen n-Ecks bedeutet (vgl. etwa L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Springer-Verlag 1953, p. 9, (2)). Andererseits gilt für beliebige konvexe n-Ecke die Beziehung

$$F \ge n \, r^2 \cdot \operatorname{tg}\left(\frac{\pi}{n}\right),\tag{7}$$

(L. Fejes Tóth, a.a.O., p. 6, (1)). Zum Beweis der Ungleichung b) spiegeln wir den inneren Punkt P an jeder Seite des gegebenen konvexen n-Ecks $A_1 A_2 \ldots A_n$. Verbindet man nun jeden Spiegelpunkt mit den beiden auf der zugehörigen Spiegelungsgeraden liegenden Eckpunkten, so entsteht ein 2n-Eck mit Umfang $2\sum_{i=1}^{n}R_i$ und Flächeninhalt 2F, wobei F den Flächeninhalt von $A_1 A_2 \ldots A_n$ bezeichnet. Wendet man (6) auf das 2n-Eck und (7) auf das n-Eck an, so ergibt sich

$$[2 n \cdot A(R_i)]^2 \ge 8 n \cdot \operatorname{tg}\left(\frac{\pi}{2 n}\right) \cdot 2 n r^2 \cdot \operatorname{tg}\left(\frac{\pi}{n}\right)$$
,

und durch leichte Umformung folgert man die Behauptung b).

Aufgabe 622. If a, b, c are the sides, h_a , h_b , h_c the altitudes, r_a , r_b , r_c the exradii, and s the semiperimeter of a triangle ABC, prove that

$$\frac{r_a}{h_a} + \frac{r_b}{h_b} + \frac{r_r}{h_c} \ge 3; \quad \frac{a}{s-a} + \frac{b}{s-b} + \frac{c}{s-c} \ge 6,$$

with equalities if and only if the triangle is equilateral.

Ž. M. Mitrović, Vranje/Yugoslavia

First Solution: Applying an elementary inequality to a known identity, we have

$$\frac{r_a}{h_a} + \frac{r_b}{h_b} + \frac{r_c}{h_c} = \frac{a}{2(s-a)} + \frac{b}{2(s-b)} + \frac{c}{2(s-c)}$$

$$\geq 3 \sqrt[3]{\frac{a b c}{8(s-a)(s-b)(s-c)}},$$

equality holding if and only if a = b = c.

Since $a \ b \ c = 4 \ R \ r \ s \ge 8 \ r^2 \ s = 8 \ (s - a) \ (s - b) \ (s - c)$, where R is the circumradius and r the inradius of triangle ABC, it follows that

$$\sqrt[3]{\frac{a\ b\ c}{8\ (s-a)\ (s-b)\ (s-c)}} \geq 1,$$

with equality if and only if a = b = c. The required results follow.

L. Bankoff, Los Angeles, California, USA

2. Lösung nebst Verschärfung und Erweiterung: Sei wieder $s - a = s_a = x$ usw. Nach Matem. Vesnik Lösung 148 gilt die Verschärfung und Erweiterung

$$6 \leq \frac{6}{x y z} \frac{x + y + z}{3} \frac{y z + z x + x y}{3} \leq \frac{6}{x y z} \frac{y + z}{2} \frac{z + x}{2} \frac{x + y}{2}$$

$$\leq \frac{y + z}{x} + \frac{z + x}{y} + \frac{x + y}{z}$$

$$\leq \frac{4(x + y + z)(x^2 + y^2 + z^2)}{5 x y z} - \frac{2(x^3 + y^3 + z^3)}{5 x y z}.$$

In 4. Dreiecksstücken r = Inkreisradius und h = Umkreisdurchmesser ist das

$$6 \le \frac{4h + 2r}{3r} \le \frac{3h}{2r} \le \boxed{\frac{2h - 2r}{r}} \le \frac{2s^2 - 4rh - 8r^2}{5r^2}.$$

Der einschlägige Ausdruck kann mittels der 4. Dreiecksseite $d=2 \, r \, s/h \le 3 \sqrt{3} \, r/2$ noch bequemer nach oben abgeschätzt werden:

$$2\frac{h}{r}-2 \le 3\sqrt{3}\frac{h}{d}-2$$

Die allgemeine Theorie derartiger Aufgaben entnimmt man Matem. Vesnik Lösung 133 (Vol. 6 (1969), p. 94).

I. Paasche, München

Weitere Lösungen sandten A. Bager (Hjørring, Dänemark), J. Brejcha (Brno, ČSSR), P. Bundschuh (Freiburg i.Br.), J. Fehér (Pécs, Ungarn), H. Frischknecht (Berneck), H. Guggenheimer (Brooklyn, N.Y., USA), P. Hohler (Dietikon), L. Kieffer (Luxembourg), M. S. Klamkin (Dearborn, Mich., USA), F. Leuenberger (Feldmeilen), A. Makowski (Warszawa), H. Meyer (Birkerød, Dänemark), M. Milivoj (Zagreb), P. Nüesch (Baltimore/Zürich; zwei Beweise), I. Paasche (München; zwei weitere Beweise), O. Reutter (Ochsenhausen) und K. Schuler (Rottweil).

Anmerkung der Redaktion: M. S. Klamkin, F. Leuenberger und D. S. Mitrinović (Beograd) weisen darauf hin, dass die Ungleichungen der Aufgabe 622 im «American Mathematical Monthly» (Problem E 1779, Vol. 73 (1966), p. 668) bewiesen wurden, sogar mit einer von H. Guggenheimer stammenden Verschärfung (vgl. auch Bottema-Djordjević-Janić-Mitrinović-Vasić, Geometric Inequalities, Groningen 1969, p. 67–68). P. Hohler und P. Nüesch verwenden zur Lösung Beziehungen aus der oben unter Aufgabe 620 zitierten Arbeit von J. Steinig.

Aufgabe 623. Sind K die Summe der sechs Kantenquadrate eines Tetraeders, F das Sechzehnfache der Quadratsumme der Inhalte der vier Oberflächendreiecke und V der Tetraederinhalt, so gilt

$$V \le \frac{1}{24} \sqrt{\frac{F^2}{3 K}} \le \frac{1}{9} \sqrt[4]{3 \left(\frac{F}{16}\right)^3} \le \frac{1}{24} \sqrt{\frac{K^3}{27}}$$
,

wobei die Gleichheitszeichen genau für das reguläre Tetraeder zutreffen.

W. Jänichen, Berlin

Lösung des Aufgabenstellers: Wir benutzen zur Lösung einige Ergebnisse der Note W. Jänichen, Über ein Tetraederproblem, El. Math. XIX (1964), S. 83–87. Dort spielt eine symmetrische Matrix $\mathcal{J}=(t_{\lambda,\,\mu})$, $(\lambda,\,\mu=1,\,2,\,3)$, eine Rolle, wobei die Elemente $t_{\lambda,\,\mu}$ Funktionen der Koordinaten von 3 der Tetraederecken $p^{(1)},\,p^{(2)},\,p^{(3)}$ sind (l. c. S. 84) bei im Nullpunkt liegender 4. Ecke. Die charakteristische Gleichung von $\mathcal{J},\,f(\varkappa)=\varkappa^3-K\,\varkappa^2+Q\,\varkappa-|\mathcal{J}|=0$, hat drei reelle, und zwar positive Wurzeln (l. c. S. 85 und 87). Die geom. Bedeutung der Koeffizienten von $f(\varkappa)=0$ lässt sich angeben (l. c. S. 85), und zwar ist K die Summe der 6 Kantenquadrate und $|\mathcal{J}|=(24\ V)^2$. Da die Koeffizienten von $f(\varkappa)$ invariant sind bei einer Bewegung, lässt sich Q bei einer zweckmässigen Lagerung des Tetraeders leicht bestimmen. Man findet Q gleich der Grösse F der Aufgabe, also

$$f(x) = x^3 - K x^2 + F x - (24 V)^2 = 0.$$
 (1)

Die 3 Wurzeln von (1) sind reell und positiv, also auch die 2 Wurzeln von

$$f'(\varkappa) = 3 \,\varkappa^2 - 2 \,K \,\varkappa + F = 0 \,. \tag{2}$$

Die Diskriminante von (2) ist demnach positiv oder 0, somit

$$3 F \le K^2. \tag{3}$$

Wir unterscheiden nun drei Fälle:

1. Dem Gleichheitszeichen von (3) entspricht eine Doppelwurzel von (2), also eine dreifache Wurzel von (1), zu der ein reguläres Tetraeder gehört. Man sieht leicht, dass dann für 3 $F=K^2=36~k^4$

$$V = \frac{1}{24} \sqrt{\frac{F^2}{3K}} = \frac{1}{9} \sqrt[4]{3 \left(\frac{F}{16}\right)^3} = \frac{1}{24} \sqrt{\frac{K^3}{27}} . \tag{4}$$

Bei Ausschluss der Regularität ist 3 $F < K^2$, also D > 0 (alle 3 Wurzeln verschieden) oder D = 0 (höchstens 2 gleiche Wurzeln).

2. Ist 3 $F < K^2$ und D = 0, so ist das Tetraeder nicht regulär, hat ein gleichseitiges Dreieck mit der Seite a als Grundfläche und 3 gleichen Seitenkanten b ($a \neq b$). Dann ist

$$V = \frac{a^2}{12} \sqrt{3 b^2 - a^2},$$

$$K = 3 a^2 + 3 b^2$$
, $F = 12 a^2 b^2$, $3 F - K^2 = -(3 a^2 - 3 b^2)^2 < 0$

und

$$V < \frac{1}{24} \sqrt{\frac{F^2}{3K}} < \frac{1}{9} \sqrt[4]{3\left(\frac{F}{16}\right)^3} < \frac{1}{24} \sqrt{\frac{K^3}{27}}$$
 (5)

3. Ist endlich 3 $F < K^2$, D > 0, so ist

$$27 D = 4 (K^2 - 3 F)^3 - (2 K^3 - 9 K F + 27 (24 V)^2)^2 > 0$$
,

also $2K^3 - 9KF + 27(24V)^2 \le |2K^3 - 9KF + 27(24V)^2| < 2(K^2 - 3F)^{3/2}$, das heisst $27(24V)^2 < -2K^3 + 9KF + 2(K^2 - 3F)K(1 - 3F/K^2)^{1/2}$. Nun ist

 $(1-x)^{1/2} < 1-x/2$ für 0 < x < 1 und ferner $0 < 3 F/K^2 < 1$, also 27 (24 V)² < $-2K^3 + 9KF + 2K^3 - 6KF - 3KF + 9F^2/K = 9F^2/K$, woraus sich wiederum (5) ergibt.

Anmerkung der Redaktion: Herrn H. Hadwiger verdanken wir den folgenden Hinweis: Die Ungleichungen

$$V \le \frac{1}{9} \sqrt[4]{3\left(\frac{F}{16}\right)^3} \le \frac{1}{24} \sqrt{\frac{K^3}{27}}$$

sind in einem allgemeineren sich auf *n*-dimensionale Simplexe beziehenden System von E. M. Gol'berg (Bounds for the volume of an *n*-simplex in terms of the volume of its faces. Vestnik Leningrad. Univ. 16 (1961), no. 13, 5–10. Math. Rev. 25 (1963), no. 2521) enthalten.

Aufgabe 624. f und g seien zwei beliebige zahlentheoretische Funktionen. Die zahlentheoretische Funktion λ_k werde für $k=2,3,\ldots$ erklärt durch (1) $\lambda_k(1)=1$, (2) λ_k ist multiplikativ, (3) für Primzahlen p und ganze Zahlen a, b mit $a \ge 0$, $0 \le b < k$ ist

$$\lambda_k(p^{a\,k+b}) = \left\{ egin{array}{ll} +1 & ext{für } b=0 \ , \ \ -1 & ext{für } b=1 \ , \ \ 0 & ext{für } 2 \leqq b < k \ . \end{array}
ight.$$

Weiterhin sei $q_k(n)$ gleich 0, falls n durch die k-te Potenz ($k \ge 2$) einer Primzahl teilbar ist, andernfalls gleich 1. Man zeige: Sind f und g durch

$$g(n) = \sum_{t/n} \lambda_k(t) f\left(\frac{n}{t}\right)$$

miteinander verknüpft, so gilt auch

$$f(n) = \sum_{t|n} q_k(t) g\left(\frac{n}{t}\right)$$

und umgekehrt.

E. Krätzel, Jena

Solution: Define a binary operation \circ on the collection F of the arithmetical functions as follows: For $f, g \in F$,

$$(f \circ g) (n) := \sum_{d\delta = n} f(d) g(\delta) [n = 1, 2, ...].$$

Let H be the subcollection of arithmetical functions h with $h(1) \neq 0$ and * the restriction of \circ to $H \times H$. Then it is easy to see that (H, *) is an abelian group in which the function ε , defined by $\varepsilon(n) = 1$ or 0 according as n = 1 or n > 1, is the identity element. It is observed that λ_k and q_k $(k \geq 2)$, defined in the problem, are in H. Now we can translate the problem into this notation as follows:

(1) For
$$f, g \in F$$
, $g = \lambda_k \circ f$ if and only if $f = q_k \circ g$.

(1) is immediate if we prove the following:

$$(2) (q_k * \lambda_k) (n) = (q_k \circ \lambda_k) (n) = \varepsilon(n) [n = 1, 2, \ldots].$$

For n = 1, (2) is obvious. Since λ_k and q_k are multiplicative, so is $q_k \circ \lambda_k$. Therefore it is sufficient to verify (2) for $n = p^{\alpha}$, p a prime and $\alpha > 0$. Let be $\alpha = a + b$ where $a \ge 0$, $0 \le b < k$. By the definitions of q_k and λ_k , we have

$$(q_k \circ \lambda_k) (p^{\alpha}) = \sum_{d\delta = p^{\alpha}} q_k(d) \lambda_k(\delta) = \sum_{r=0}^{\alpha} q_k(p^r) \lambda_k(p^{\alpha-r}) = \sum_{r=0}^{\min \{\alpha, k-1\}} \lambda_k(p^{\alpha k+b-r}) = 0$$

since $\lambda_k(p^{a\,k+b-r})$ is +1 or -1 or 0 according as $r \equiv b \pmod{k}$ or $r \equiv b-1 \pmod{k}$ or otherwise. Thus, (2) is proved and hence (1).

V. Siva Rama Prasad, Waltair, India

Eine weitere Lösung sandte P. Bundschuh (Freiburg i. Br.).

Aufgabe 625. Démontrer d'une façon élémentaire qu'il existe une infinité de nombres naturels qui sont, de deux façons au moins, produits de deux nombres triangulaires aussi grands que l'on veut.

W. Sierpiński †, Varsovie

Solution: Let be $t_n = n \ (n+1)/2$. We have the identity $t_n t_{6n+2} = t_{3n} t_{2n+1}$ which solves the problem.

A. Makowski, Warszawa

Weitere Lösungen sandten C. Bindschedler (Küsnacht/ZH), P. Bundschuh (Freiburg i. Br.), J. Fehér (Pécs, Ungarn) und G. Wulczyn (Lewisburg, Pennsylvania, USA).

Anmerkung der Redaktion: J. Fehér verwendet die Identität $t_n t_{n^2-2n} = t_{n^2-1} t_{n-2}$.

Problem 625 A. Existe-t-il des nombres triangulaires qui sont, de deux façons au moins, produits de deux nombres triangulaires > 1 ? Le nombre de tels nombres est-il fini ?

W. Sierpiński †, Varsovie

Solution: For every natural number n and $a = 1 + \sqrt{2}$, $b = 1 - \sqrt{2}$, define

$$r_{n} = \frac{1}{4\sqrt{2}} \left(a^{2n+2} - b^{2n+2} \right), \quad j_{n} = \frac{1}{4} \left(a^{2n+1} + b^{2n+1} \right) - \frac{1}{2},$$

$$k_{n} = \frac{1}{4\sqrt{2}} \left(a^{2n+1} - b^{2n+1} \right) - \frac{1}{2}.$$

$$(1)$$

It is easily seen that the recurrence formulae

$$r_{n+2} = 6 r_{n+1} - r_n, j_{n+2} = 6 j_{n+1} - j_n + 2, k_{n+2} = 6 k_{n+1} - k_n + 2$$
 (2)

hold, the initial values being

$$r_1 = 6$$
, $r_2 = 35$; $j_1 = 3$, $j_2 = 20$; $k_1 = 2$, $k_2 = 14$. (3)

Therefore, (r_n) , (j_n) , (k_n) are strictly increasing sequences of natural numbers. From $a \ b = -1$ and (1) we get at once

$$n \in N \Rightarrow j_n (j_n + 1) = 2 k_n (k_n + 1)$$
 (4)

Combination of (4) for n and for n + 1 yields

$$n \in N \Rightarrow j_n (j_n + 1) k_{n+1} (k_{n+1} + 1) = j_{n+1} (j_{n+1} + 1) k_n (k_n + 1).$$
 (5)

Now a useful connection between r_n , j_n and k_{n+1} is given by

$$n \in N \Rightarrow 2 (r_n^2 - 1) r_n^2 = j_n (j_n + 1) k_{n+1} (k_{n+1} + 1)$$
 (6)

This is proved by an elementary computation using (1) and $a^4 + 1 = 6 a^2$, $b^4 + 1 = 6 b^2$. From (5), (6) we immediately obtain

$$n \in N \Rightarrow t_{r_{n}^{2}-1} = t_{j_{n}} \cdot t_{k_{n+1}} = t_{j_{n+1}} \cdot t_{k_{n}} \tag{7}$$

where $t_q = (1/2) \ q \ (q+1)$ is the q-th triangular number. Since the mappings $n \to t_{r_n^2-1}$, $n \to t_{i_n}$, $n \to t_{k_n}$ are injective and since, by (4), $t_{i_n} \neq t_{k_n}$ and moreover $t_{i_n} > 1$, $t_{k_n} > 1$ for all $n \in \mathbb{N}$, we have proved the following answer to Sierpiński's problem:

There are infinitely many triangular numbers which can be represented in at least two different ways as a product of two triangular numbers > 1.

G. Wulczyn (Lewisburg, Pa., USA) and J. Rätz (Bern)

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben erbeten bis 10. Januar 1972, wenn möglich in Maschinenschrift.

Aufgabe 646. Es seien n eine ungerade natürliche Zahl und A_1, \ldots, A_n abgeschlossene, nichtleere paarweise disjunkte und streng-konvexe sphärische Bereiche auf der gewöhnlichen Kugelfläche S. Dabei heisst ein konvexer sphärischer Bereich $A \subset S$ streng-konvex, wenn der sphärische Durchmesser von A kleiner als π ausfällt. Man beweise, dass es zwei Grosskreise auf S derart gibt, dass einer von ihnen geradzahlig viele A_i und der andere ungeradzahlig viele A_i trifft.

H. Hadwiger, Bern

Aufgabe 647. Für eine streng monoton wachsende Folge (a_i) natürlicher Zahlen seien $A(n) = \sum_{a_i < n} 1$ (n = 1, 2, ...), $\limsup A(n)/n$ $[n \to \infty]$ die obere Dichte und – im

Falle der Existenz – $\lim A(n)/n [n \to \infty]$ die *Dichte*. Man beweise:

- a) Jede streng monoton wachsende Folge natürlicher Zahlen mit oberer Dichte 1 besitzt eine unendliche Teilfolge, welche aus paarweise teilerfremden Zahlen besteht.
- b) Zu jedem $\varepsilon > 0$ gibt es stets eine streng monoton wachsende Folge natürlicher Zahlen mit Dichte $> 1 \varepsilon$ derart, dass für keine ihrer unendlichen Teilfolgen die Glieder paarweise denselben grössten gemeinsamen Teiler haben.

P. Erdös, Budapest

Aufgabe 648. Es seien a, b, c, k natürliche Zahlen und $S_c(k) = 1^c + 2^c + \cdots + k^c$. Für c = 0 definieren wir ergänzend $S_0(a + a b) = a + a b$, $S_0(a) = a$, $S_0(b) = b + 1$. Man beweise

$$S_c(a + a b) = \sum_{\gamma=0}^c a^{\gamma} \begin{pmatrix} c \\ \gamma \end{pmatrix} S_{c-\gamma}(a) S_{\gamma}(b)$$
.

I. Paasche, München

Aufgabe 649. a) Durch jeden Punkt in der Ebene eines Dreiecks gehen zwei Parabeln, die die Seiten des Dreiecks berühren. Man zeige: Der geometrische Ort des Punktes, in welchem sich diese beiden Parabeln unter rechtem Winkel schneiden, ist der Umkreis des Dreiecks.

b) Jede Gerade in der Ebene eines Kegelschnittbüschels mit den Grundpunkten A, B, C, D wird von zwei Büschelkegelschnitten berührt. Man zeige: Die Enveloppe der Geraden, für welche die beiden Berührungspunkte von A aus unter rechtem Winkel erscheinen, ist der Kegelschnitt, der die Seiten des Dreiecks BCD berührt und für welchen A ein Brennpunkt ist.

C. Bindschedler, Küsnacht/ZH

Literaturüberschau

Handbuch der Schulmathematik, Band 7: Neuere Entwicklungen. Herausgegeben von G. Wolff. 336 Seiten mit 160 Figuren. DM 54,-. Verlag Schroedel/Schöningh, Hannover und Paderborn 1968.

Der Entschluss, ein Handbuch der Schulmathematik herauszubringen wurde zu einer Zeit gefasst, als bereits erste Anzeichen einer weltweiten Reform des Mathematikunterrichtes vorhanden waren. Aber erst während der Bearbeitung der 6 vorgesehenen Bände begannen sich die Hauptrichtungen der Reform klar abzuzeichnen. Trotz der Versicherung des Herausgebers, dass sich die Autoren der verschiedenen Beiträge durchwegs auf eine fortschrittliche Linie eingestellt hätten, war bei dieser Situation nicht zu vermeiden, dass die neueren Entwicklungen in der Didaktik der Mathematik nur unvollständig eingefangen werden konnten. So gibt es in den ersten 6 Bänden viele bemerkenswerte Brücken zur modernen Mathematik, daneben aber leider auch