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Vektorielle Integralgeometrie

Die vorliegende Note gibt eine Skizze einer «vektoriellen» Integralgeometrie iiber dem
«Konvexring», einer Klasse von Korpern, die sich als Vereinigungsmenge endlich vieler Eikérper
des n-dimensionalen euklidischen Raumes gewinnen lassen. Dieses Konzept wurde mit inhaltlich
im wesentlichen iibereinstimmenden Begriffen und Aussagen von den beiden Verfassern etwa
gleichzeitig und unabhingig aufgestellt. Es handelt sich um Sétze und Integralformeln mit
vektorwertigen Funktionen. Diese gehoren einem (# + 1)-dimensionalen linearen Raum an, der
eine Basis von # + 1 «Quermassvektoren» besitzt, die ihrerseits mit Kriimmungsschwerpunkten,
die den Korpern zugewiesen werden konnen, in engem Zusammenhang stehen. —~ Eine ausfithrlich
gehaltene Abhandlung des zweitgenannten Autors [1] mit allgemeineren Ansitzen umschliesst die
vorliegende speziellere Theorie und erfasst insbesondere auch alle Verbindungen mit 4lteren sich

auf Krimmungsschwerpunkte in Sonderfillen beziehenden Teilergebnissen und der einschligigen
Literatur.

Mit dem vorliegenden gemeinsam verfassten Artikel soll lediglich ein Grundriss der eben er-
wiahnten spezielleren Theorie in knapper und moglichst elementarer Form dargestellt werden.
Vorbestimmte Rechnungen werden nicht explizite durchgefiihrt, und Hinweise auf Begriffe und
Formeln der «skalaren» Integralgeometrie, wie diese in einer unserem einfachen Aufbau ent-
sprechenden Weise etwa in [2] entwickelt worden sind, ermoglichen weitere Kiirzungen.

1. Additive vektorielle Funktionen

Es bezeichne E” (n > 1) den n-dimensionalen euklidischen Raum, in dem ein
Punkt 0 als Ursprung ausgezeichnet sei. Weiter sei I’ der n-dimensionale euklidische
Vektorraum, dessen Elemente hier aufgrund der zwischen E* und V" bestehenden
Bijektion als die im Ursprung 0 € E* angreifenden Ortsvektoren der Punkte des E”
gedeutet werden. So ist fiir uns zweckmissig, fiir die Punkte x € E* und ihre Orts-
vektoren x € V" das ndmliche Zeichen zu verwenden. Skalarprodukt und Norm sollen
mit <x, y> und |x| = <{x, x)1? angeschrieben werden.

Ist X die Klasse der nichtleeren Eikoérper (kompakte und konvexe Punkt-
mengen) des E”, so bedeute §” den Konvexring, d.h. die Klasse aller Punktmengen
des En, die sich als Vereinigungsmenge endlich vieler Eikorper von X* darstellen
lassen; die leere Menge ¢ sei ebenfalls Element von §7. Es gilt also:

AeS§t: <= A=¢ oder A=Ji4,, 4,eX (i=1,...,k). (1.1)

$" enthilt insbesondere die Teilklasse P der kompakten Polyeder des E*.
Es bezeichne nun f eine Abbildung f: §* — V", die jedem Korper 4 € §* des
Konvexrings einen Vektor f(4) € V* zuordnet; zusitzlich sei f(@) = O festgelegt,
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so dass das Bild der leeren Menge der Nullvektor ist. Es handelt sich um eine vektorielle
(vektorwertige) Funktion f iiber §". Diese soll bedingt stetig heissen, wenn

A, A;e X" (i1=1,2,..), A;,—>A (i —>o00)=f(4;) > [(A) (# >o0) (1.2)

gilt, wobei sich die Eikoérperkonvergenz links auf die in X" tibliche Blaschke-Hausdorff
Metrik, die Vektorkonvergenz rechts auf die im V'” festgelegte Norm bezieht.

Nun sei J* die Klasse der bedingt stetigen vektoriellen Funktionen iiber §». —
Analog bedeute @" die Klasse der bedingt stetigen skalaren Funktionen ¢: §* — R,
die jedem Korper A € S” eine reelle Zahl ¢(A4) € R zuweist, wobei auch ¢(¢) = 0 (Null)
festgesetzt ist.

Eine vektorielle Funktion f € J* nennen wir nun additiv, wenn das der Verbands-
struktur von §” angepasste Additionstheorem

4,Be§" = f(Adu B)+ {40 B)={f4)+ /(B (1.3)
uneingeschriankt giiltig ist. Sie heisst ferner drehdquivariant, wenn die Beziehung
Ae8, deD = fdA)=dfd) (1.4)

gilt, wobei D die Gruppe der (eigentlichen) Drehungen d des Raumes E" um den
Ursprung O bezeichnet. Wir nennen die Funktion f ferner g-translationsiquivariant,
wenn eine ihr zugeordnete skalare Funktion ¢ = ¢[f] € @* derart existiert, dass die
Aussage

Aes, teT=f(Ad+8=FA)+pd)! (1.5)

gilt, wo T die Gruppe der Translationen ¢ von E* auf sich anzeigt. Mit dem Transla-
tionsvektor ¢ wird mit 4 + ¢ das Translat des Korpers 4 anschreibbar. Wir nennen ¢
die zu f assoziierte Funktion. — Die additiven, drehdquivarianten und ¢-translations-
dquivarianten vektoriellen Funktionen fe J* fassen wir zur Teilklasse F; C F* zu-
sammen. — Analog bilden wir die Teilklasse @f C @" derjenigen skalaren Funktionen
@ von @*, die zusitzlich additiv, drehinvariant und translationsinvariant sind, so dass
also die Beziehungen

A, BeS" =g (Au B) + ¢ (4N B) =) + ¢B); (1.6)
Aes$, deD = pdd) = p(d); (1.7)
Aes$, teT =g (d+1)=pd) (1.8)

gelten. Mit den beiden letzten Relationen wird zusammengefasst ausgesagt, dass ¢
bewegungsinvariant ist.
Miihelos beweist man jetzt die nachfolgenden Tatbestidnde:

f,geF, «,BeR, h=af+pg=hed;, ghl=ag(f]l+Bolel; (1.9
feX, p=9¢lfl=>pedf. . (1.10)

Es gilt demnach das folgende
Lemma 1. Die Klasse Fg ist ein linearer Raum diber R, und die Assoziation
¢: [ = @[f] ist esn Homomorphismus von Fg in Dj.
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2. Der charakteristische Vektor

Nachfolgend begriinden wir eine spezielle vektorielle Funktion ¢ € F§ der Eigen-
heit, dass ihre assoziierte skalare Funktion mit der Eulerschen Charakteristik
x € Df identisch wird, so dass also

ple]l = 7 (2.1)

gilt. Diese tiber dem Konvexring §” erkldrbare Funktion ¢, die jedem Korper 4 € §*
den charakteristischen Vektor ¢(4) € V" zuweist, spielt in der hier skizzierten vekto-
riellen Integralgeometrie die nimliche Rolle wie die Eulersche Charakteristik in der
entsprechenden skalaren Integralgeometrie tiber dem Konvexring?).

Sei S={xeE"; |x|=1} die (»— 1)-dimensionale Einheitssphire um den
Ursprung 0. Ein Einheitsvektor € S bezeichnet dann eine Raumrichtung. Mit
A€ R wird durch H(A, u) = {x € E"; (x, ) = A} eine (n — 1)-dimensionale Ebene im
En gekennzeichnet. Fiir 4 € §*, 4 + ¢, bilden wir

o4, 4, u)=x (AOHQ, u) — lim + (4 0 H(u, u), (2.2)
">

wobei lim+ den rechtsseitigen Grenzwert fiir 4 — 4 mit u > 4 anzeigen soll, dessen

Existenz fiir Korper 4 € §* trivial ist2). Die iiber alle A € R erstreckte Summe

o(4,u) = 3 o(A, 4 u) 2 u (2.3)

reduziert sich im Hinblick darauf, dass g(4, A, ) fir 4 € §” fast immer verschwindet,
de facto lediglich auf endlich viele Glieder, und sie stellt einen stetig von » abhédngigen

Vektor dar. Bedeutet du die Richtungsdichte (Flichenelement auf S), so ist mit dem
Ansatz

c(d) = (1w,) /'U(A, u) du (2.4)

in dem sich die Integration iiber die volle Richtungssphidre S erstreckt, ein dem
Korper A € §* zugeordneter Vektor ¢(4) gegeben. Es ist der charakteristische Vektor.
Die im Ansatz verwendete Konstante stellt das Volumen

w, =3[ (1 + n/2) (2.5)
der n-dimensionalen Einheitskugel dar. — Wir ergdnzen (2.4) noch durch

o) =0, (2.6)

wonach also der charakteristische Vektor der leeren Menge der Nullvektor ist. — Die
mit (2.2) bis (2.4) eingeleitete Konstruktion ist dem Schnittrekursionsverfahren nach-
gebildet, das eine elementare Begriindung der Eulerschen Charakteristik ermoglicht 3).
In vektorieller Form wurde sie im Zusammenhang mit der Frage der Ubertragung des

Steinerpunktes von Eikérpern auf Kérper des Konvexrings von P. Mani?) vorge-
schlagen.

1) Vgl. [2], S. 236 ff.

%) Vgl. (2], S. 238/9.

3) Fur den Konvexring erstmals in [3] angegeben.
4) Vgl. (4], Lemma 4.
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Ist A € X* ein Eikorper mit der Stiitzgrosse h(4, u) = sup{<{x, u); x€ A} in
Richtung #, so ergibt sich mit der Bemerkung g(4, A, #) = 0 fiir 1 = A(4, #) und
0(4, A, u) = 1 fiir A = h(A4, u) aus (2.4) die Integraldarstellung

(4) = (Uw,) f WA, %) udu, (2.7)

die mit der bekannten von G. C. Shephard?®) angegebenen Darstellung des Steiner-
punktes s des Eikorpers 4 zusammenfillt. So notieren wir die Feststellung

Aedr = c(d) = s(4) . (2.8)

Mit (2.7) folgt, dass ¢ bedingt stetig ist. Mit der Additivitdt von y ldsst sich mit
(2.2) bis (2.4) unmittelbar erkennen, dass f = ¢ das Additionstheorem (1.3) erfiillt,
sodass ¢ additiv ist. Mit der Drehdquivarianz des Integrals in (2.4) folgt weiter, dass
f = c auch (1.4) befriedigt; ¢ ist also auch drehdquivariant. Sei nun noch ¢€ 7 und
A + t das Translat von 4. Riickblick auf (2.2) zeigt zunichst, dass p(4 + ¢, 4, #) =
o(4, A —<u, t), u) ist, so dass sich mit Verwendung der Schnittrekursion $)

2 0(A4, 2, u) = x(4) (2.9)

in Verbindung mit (2.3) auf (4 + ¢, u) = o(4, u) + x(A4) <u, t> u schliessen ldsst.
Einsatz der Integralformel

f Syt wdu = o, ¢ (2.10)
liefert mit (2.4) sodann
c(Ad+1t)=cld)+ g4) ¢, (2.11)

womit zusammenfassend ¢ € Fj und (2.1) nachgewiesen ist.
Abschliessend bemerken wir, dass sich aus (2.4) die Beziehung

o 4) =Ec(d) (0 <& <oo) (2.12)

ablesen ldsst, wonach der charakteristische Vektor beziiglich Dilatation homogen
vom ersten Grade ist.

3. Die Quermassvektoren

Die oben sichergestellte charakteristische vektorielle Funktion ¢ € Fj erlaubt es
nun, eine Skala von # 4 1 additiven vektoriellen Funktionen

g;€F (=0,...,n) (3.1)

zu begriinden, die den Minkowskischen Quermassintegralen W, so zugeordnet sind,
dass

plgl=W; (=0,...,n) (3.2)

8) Vgl. [5], S. 11, und die Ausfithrungen zum Steinerpunkt bei B. Gruenbaum [6], bes. S. 314,
%) Vgl [2], S. 239,
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gilt. Wir nennen g¢; den i-ten Quermassvektor,; die ihm zugeordnete assoziierte skalare
Funktion ist also das i-te Quermassintegral W,. Mit Verwendung der Hilfszahlen

ain - (n) = — (z = 1’ cee sy B — 1)1 aan = 1’ ann = 1/0)" (3‘3)
i Wy ... ©;

definieren wir iiber dem Konvexring §” die Funktion g, fiir A # ¢ durch den Integral-
ansatz

g:,(4) =

a:

n

! /c (AOE)dE: (=0,...,n—1); ¢,(4) = »,c(4), (3.4)

und fiigen erginzend noch

7:() =0 (E=0,...,%) (3.5)

hinzu. Hier bedeuten E? eine im Raum E” bewegliche i-dimensionale Ebene und dE?
die Bewegungsdichte von E‘ im Sinne der Integralgeometrie?). Mit den einschligigen
Eigenschaften von ¢ lasst sich ausgehend vom gewihlten Ansatz miihelos begriinden,
dass ¢; bedingt stetig, additiv und drehdquivariant ausfillt. Mit einer Translation
te T ergibt sich mit (2.11)

: (A + ) = qi(4) + Wi(4) ¢, (3.6)
wenn fiir das ¢-te Quermassintegral die bekannte Darstellung

W (4) = — /X(AnEi)dEi (=0,..,n—1); W) =w,yd) (3.7

herangezogen wird®). — Die Funktion ¢, ist also W -translationsdquivariant. So be-
stitigen sich die Aussagen (3.1) und (3.2). Endlich bemerken wir noch, dass

¢:(§ 4) = &1 g;(d) (0 <& <oo) (3.8)

gilt, wonach der 7-te Quermassvektor beziiglich Dilatation homogen vom Grade
n—1+ 1ist.

4. Hauptsatz

Wir wollen nun zeigen, dass die # + 1-Quermassvektoren ¢, (+ = 0, ..., n) eine
Basis des linearen Raumes J§ ausmachen, so dass alle vektoriellen Funktionen
fe F; als Linearkombinationen der ¢; dargestellt werden kénnen®). Es handelt sich
um das vektorielle Korrelat des nachfolgend formulierten sich auf skalare Funktionen
beziehenden bekannten Satzesl9):

%) Vgl (2], S. 227.

8) Vgl. [2], S. 240 (120).

9) Der erstgenannte Verfasser verdankt hier Herrn U. Wiirgler einen wertvollen Hinweis,
der eine Abkiirzung der Begriindung ermoglichte (Seminar, Sommersemester 1970).

10) Vgl. [2], S. 221 (Satz IV).
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Zu einer Funktion ¢ € @f existieren # + 1 reelle Konstanten «; (1 =0, ...,#n)
derart, dass die Identitit

@ = 2,, a; W, 4.1)
0

iiber §” besteht.

Mit Riicksicht auf das Ergebnis des vorstehenden Abschnittes folgt in Ver-
bindung mit (1.9) die Aussage

pedy=afeF;: plfl=¢. (4.2)

Die Assoziation ¢: f — @[] ist also eine surjektive Abbildung von Fj auf @f . — Weiter
gilt aber die wichtige Feststellung

fedFy, ¢lf]=0=f=0. (4.3)

Die oben genannte Abbildung ist demnach auch injektiv.

Beweis: Ordnen wir jedem Eikorper 4 € X* den Punkt s'(4) = s(4) + f(4) zu,
so ist mit s’ eine stetige, additive, translationsdquivariante und drehdquivariante, ins-
gesamt also bewegungsdquivariante Abbildung s': X» — E" gegeben. Hierbei sind die
zustdndigen Eigenschaften des Steinerpunktes s beriicksichtigt und die mit der
Voraussetzung ¢[f] = 0 bedingte Invarianz f (4 + ¢) = f(A4) benutzt worden. Nach
neueren Ergebnissen betreffend die axiomatische Kennzeichnung des Steinerpunktes?)

resultiert s’ = s, also f = 0 iiber . Dies zieht mit der Additivitit von f die Folgerung
f = 0 iiber §" nach sich, was zu zeigen war.
Zusammenfassend schliessen wir mit (4.2) und (4.3) auf

Lemma 2. Die Assoziation @: f—> @[f] stellt einen Isomorphismus von Fg und
Dy dar.

Mit (3.2) und (4.1) folgert man jetzt den

Hauptsatz. Ist fe F5, so existieren n + 1 reelle Konstanten o; (1 =0, ..., n)
derart, dass die Identitit
n
/= Z ®%; q; (4.4)
0

iiber S" besteht.

5. Integralformeln

Gesttitzt auf die Aussage (4.4) des Hauptsatzes lassen sich Ergebnisse herleiten,
indem eine vektorielle Funktion f iiber dem Konvexring §* — etwa durch einen
Integralansatz — so definiert wird, dass diese ersichtlich bedingt stetig, additiv, mit
einem @ € P} weiter @-translationsiquivariant und drehdquivariant ist. Mit der f
assoziierten Funktion ¢ sind gemiss (4.1) auch die Konstanten «; ermittelbar, und
nach (4.4) ergibt sich dann die Darstellung von f durch die Quermassvektoren g;.

11y vgl. [7], bes. aber [1] (Satz 2).
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Damit ist eine Formel der vektoriellen Integralgeometrie iiber §” gewonnen. Die
erforderlichen Nebenrechnungen sind eindeutig vorbestimmt und werden nachfolgend
weggelassen. — Vorbereitend sei noch die niitzliche Hilfskonstante

a,=mlw;...w,2 (5.1)

festgelegt. — Zunidchst erdrtern wir das vektorielle Analogon zum vollstindigen
kinematischen Hauptsystem der Integralgeometriel?).

Bezeichnen 4 € §" einen beweglichen, B € §” einen ruhenden Koérper des Konvex-
rings und 44 die kinematische Dichte von A, so gilt das Formelsystem

/Qk (4 0 B)dA = chkz w—i(4) ¢:;(B) (k=0,...,n), (5.2)
wobei sich die Integration iiber alle Bewegungen von 4 erstreckt und die Koeffizienten
durch

k Ap Wpy_ g+ ; W Wy

Cnki = |
2 w, W ; QO ;
nYk—1iYn—k Vi

(5.3)

festgelegt sind. — Nachfolgend geben wir ein vollstindiges System von Integralformeln
vom Croftonschen Typ. Bezeichnet E! eine bewegliche i-dimensionale Ebene, dE? ihre
Bewegungsdichte, so ist mit 4 € §*

/qk (ANEYAE =d,;; Giyi—nld) m—k<Li<n k=0,...,n), (5.4)

wobel die Konstante durch

—a k!i!wkwiCU2n__i_k B

d ;
Tkt —n)nlw, o, O i,

nki

(5.5)

ausgedriickt werden kann, wenn die Hilfsgrosse (3.3) erneut verwendet wird. Im Falle
k=mn,q,=w,c, d,,; = a,;,w, wird wieder der definitorische Ansatz (3.4) reproduziert.
Wenn 7 = # ist, soll das Integral links in (5.4) den Integranden darstellen, so dass die
Formel mit d,;, = 1 trivial wird.

Wir fiigen noch einige Formeln an, die sich lediglich auf Eikérper 4 € X* be-
ziehen. Diese ergeben sich aus einer naheliegenden und mit geringfiigigen Modifika-
tionen moglichen Restriktion der Hauptsatzaussage (4.4) auf die Klasse X*.

Bezeichnet A7 den Normalriss des Eikérpers A € X* auf die durch den Ursprung 0
gehende s-dimensionale Ebene E?, so gilt die Projektionsformel

/q,, dE‘ =(ta,f2na;a,_;)q,d) (G=1...,n—1). (5.6)

Hierbei bezeichnet 4E* die Drehdichte von E¢ im Sinne der Integralgeometrie, und a,, ist
die mit (5.1) angegebene Hilfskonstante. Im Falle ¢ = 1 ist (5.6) mit der Shephardschen

12) Vgl. 2], S. 244 (130).
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Integraldarstellung (2.7) gleichwertig, indem ¢,(4?) = (w,/2) [A(4, u) — h(4, —u)] u
und dE! = du ist, wo E* eine Gerade der Richtung u bzw. —u anzeigt.

Fiir zwei Eikorper 4, Be X*, A um den Ursprung O drehbar, B fest, gilt die
Drehformel beziiglich Minkowskischer Addition

/ 4 (4 + B) a4 = (a,),) )f("“k) Worr dA) g(B) (h=0,....7), (5.7)

S \i—k

wobei 44 die Drehdichte von 4 bedeutet. — Wahlt man fiir 4 speziell eine Kugel K,
vom Radius » um 0 und setzt anstelle von B erneut A, so resultiert mit den Be-
merkungen, dass 4 + K, = A4, den dusseren Parallelkérper von 4 im Abstand 7 er-

gibt, W,(K,) = o, 7~™und [ dK, = a, ist, ein vektorielles Analogon zu den Steiner-
schen Parallelformeln13), nimlich
5 (r—kR\ L,
ad) =2\, _ )7 rad) (k=0,...,m). (5.8)

i=k

Im speziellen Fall £ = # liefert diese Formel noch den Tatbestand ¢,(4,) = ¢,(4), der
wegen ¢, = w, s eine bekannte Eigenschaft des Steinerpunktes ausdriickt.

6. Krimmungsschwerpunkte

Wir beziehen uns nachfolgend auf die Klassen
St={Ade8§; Wi(d) =0} (:=0,...,n)

solcher Mengen des Konvexrings, fiir die das ¢-te Minkowskische Quermassintegral W,
nicht verschwindet, die insbesondere nicht leer sind. — Jedem Korper 4 € §7 kann
man durch den Ansatz

pi(d) = ¢(A)Wi(4) (1=0,...,7) (6.1)

einen Punkt p, € E* zuordnen, indem man den mit 1/, dilatierten i-ten Quermass-
vektor als Ortsvektor im E” deutet. Wir wollen p, den ¢-ten Kriimmungsschwerpunkt
von A nennen. Mit den fiir die Quermassvektoren begriindeten Eigenschaften ergibt
sich, dass die mit (6.1) gegebene Punktzuordnung p,: §? — E" die nachfolgend ange-
fithrten Tatbestinde erfiillt: (a) p, ist bedingt stetig; (b) p, ist gewogen additiv, d.h.
es gilt das Additionstheorem

W (AuB)p,(AuB)+ W, (A0 B) p; (40 B)

= Wi(4) p,(4) + W(B) p,(B);
(c) p; ist bewegungsidquivariant, d.h. es gilt

pi(b A) = bp(4), - (6.3)
wo b eine eigentliche Bewegung im Raum E” anzeigt.

13) Vgl. [2], S. 214 (49).
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Fiir die Begriindung ist neben der Drehdquivarianz von ¢; die sich mit Ansatz
(6.1) aus (3.6) ergebende Translationsiquivarianz

pi (A4 +1) =pd) +¢ (6.4)
entscheidend. — Zwei Schwerpunkte sind besonders hervorzuheben, ndmlich

po=g V>0, p,=s (x+0), (6.5)

die sich mit Riickblick auf (3.4) und Ansatz (6.1) mit den Bemerkungen W, =V
(Volumen) und W, = w, x (x = Eulers Charakteristik) ergeben. Hierbei soll g den
«gewohnlichen» Schwerpunkt und s den im Sinne von Mani!4) auf Kérper des Konvex-
rings {ibertragenen Steinerpunkt bezeichnen. So wie die Festlegung von g nur fiir
Korper positiven Volumens méglich ist, kann eine Definition des Steinerpunktes s nur
dann gegeben werden, wenn die Eulersche Charakteristik nicht verschwindet.

Zusammenfassend stellen wir fest, dass die Punkte $, (=0, ..., n) eine vom
Schwerpunkt zum Steinerpunkt fiihrende vollstdndige Punktreihe bilden.

Fiir Eikorper mit «glattem» Rand (zweimal stetig differenzierbare Randfldche)
kann gezeigt werden??), dass

p,.=fo,._1(x) dF//H,._l W) dF (=1,...,n) (6.6)

gilt, wobei H,(x) die m-te elementarsymmetrische Funktion der » — 1 Haupt-
krilmmungen an der Stelle x € 04 der Randfliche des Eikorpers A und 4F das
Flachenelement bei x bezeichnen; dic Integration hat sich iiber den gesamten Rand
0A zu erstrecken.

Nun konnen simtliche im vorstehenden Abschnitt entwickelten Integralformeln
fiir die Quermassvektoren g; gemiss der mit (6.1) angesetzten Beziehung ¢, = W, $,
in solche umgerechnet werden, die sich auf die Kriimmungsschwerpunkte ; unter
Beachtung der Klausel W; + 0 beziehen. Dies sei hier aber nicht explizite ausgefiihrt.

H. Hadwiger (Bern) und R. Schneider (Berlin)
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