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Vektorielle Integralgeometrie

Die vorliegende Note gibt eine Skizze einer «vektonellen» Integralgeometrie uber dem
«Konvexring», einer Klasse von Korpern, die sich als Vereinigungsmenge endlich vieler Eikörper
des w-dimensionalen euklidischen Raumes gewinnen lassen Dieses Konzept wurde mit inhaltlich
im wesentlichen übereinstimmenden Begriffen und Aussagen von den beiden Verfassern etwa
gleichzeitig und unabhängig aufgestellt Es handelt sich um Satze und Integralformeln mit
vektorwertigen Funktionen Diese gehören einem (n + 1)-dimensionalen linearen Raum an, der
eme Basis von n + 1 «Quermassvektoren» besitzt, die ihrerseits mit Krummungsschwerpunkten,
die den Korpern zugewiesen werden können, m engem Zusammenhang stehen. - Eme ausführlich
gehaltene Abhandlung des zweitgenannten Autors [1] mit allgemeineren Ansätzen umschhesst die
vorliegende speziellere Theorie und erfasst insbesondere auch alle Verbindungen mit alteren sich
auf Krummungsschwerpunkte m Sonderfallen beziehenden Teilergebnissen und der einschlagigen
Literatur

Mit dem vorliegenden gemeinsam verfassten Artikel soll lediglich ein Grundriss der eben
erwähnten spezielleren Theorie m knapper und möglichst elementarer Form dargestellt werden.
Vorbestimmte Rechnungen werden nicht explizite durchgeführt, und Hinweise auf Begriffe und
Formeln der «skalaren» Integralgeometrie, wie diese m einer unserem einfachen Aufbau
entsprechenden Weise etwa in [2] entwickelt worden smd, ermöglichen weitere Kürzungen

1. Additive vektorielle Funktionen

Es bezeichne En (n > 1) den w-dimensionalen euklidischen Raum, in dem ein
Punkt 0 als Ursprung ausgezeichnet sei. Weiter sei Vn der n-dimensionale euklidische
Vektorraum, dessen Elemente hier aufgrund der zwischen En und Vn bestehenden

Bijektion als die im Ursprung 0 e En angreifenden Ortsvektoren der Punkte des En

gedeutet werden. So ist für uns zweckmässig, für die Punkte x e En und ihre
Ortsvektoren xeVn das nämliche Zeichen zu verwenden. Skalarprodukt und Norm sollen
mit <#, y> und | x | <#, x}112 angeschrieben werden.

Ist Xn die Klasse der nichtleeren Eikörper (kompakte und konvexe
Punktmengen) des En, so bedeute Sn den Konvexring, d.h. die Klasse aller Punktmengen
des En, die sich als Vereinigungsmenge endlich vieler Eikörper von JCn darstellen
lassen; die leere Menge <f> sei ebenfalls Element von $n. Es gilt also:

AeSn'<=> Ä=(f> oder A \JkxAt, AteXn (* 1,...,*). (1.1)

Sn enthält insbesondere die Teilklasse pn der kompakten Polyeder des En.

Es bezeichne nun / eine Abbildung /: $n -> Vn, die jedem Körper A e $n des

Konvexrings einen Vektor f(A)eVn zuordnet; zusätzlich sei f(<f>) 0 festgelegt,



50 H. Hadwiger und R. Schneider: Vektonelle Integralgeometrie

so dass das Bild der leeren Menge der Nullvektor ist. Es handelt sich um eine vektorielle
(vektorwertige) Funktion / über Sn- Diese soll bedingt stetig heissen, wenn

A,AteXn (f l,2,...), Al^A(i->oo)=>f(Ai)^f(A) (?-?oo) (1.2)

gilt, wobei sich die Eikörperkonvergenz links auf die in X" übliche Blaschke-Hausdorff
Metrik, die Vektorkonvergenz rechts auf die im Vn festgelegte Norm bezieht.

Nun sei Jn die Klasse der bedingt stetigen vektoriellen Funktionen über $n. -
Analog bedeute <£>" die Klasse der bedingt stetigen skalaren Funktionen <p: Sn -> R,

die jedem Körper A e Sn eine reelle Zahl <p(A) e R zuweist, wobei auch <p(<f>) 0 (Null)
festgesetzt ist.

Eine vektorielle Funktion / e *3-n nennen wir nun additiv, wenn das der Verbandsstruktur

von Sn angepasste Additionstheorem

A, Be$» => f(A uB)+ f(A n B) f(A) + f(B) (1.3)

uneingeschränkt gültig ist. Sie heisst ferner drehäquivariant, wenn die Beziehung

AeSn, deD=>f(dA) df(A) (1.4)

gilt, wobei D die Gruppe der (eigentlichen) Drehungen d des Raumes En um den

Ursprung 0 bezeichnet. Wir nennen die Funktion / ferner cp-translationsäquivariant,
wenn eine ihr zugeordnete skalare Funktion cp <p[f] e &n derart existiert, dass die
Aussage

AeSn, teT»f{A+t) f{A)+(p(A)t (1.5)

gilt, wo T die Gruppe der Translationen t von En auf sich anzeigt. Mit dem
Translationsvektor t wird mit A + t das Translat des Körpers A anschreibbar. Wir nennen cp

die zu / assoziierte Funktion. - Die additiven, drehäquivarianten und <p-translations-
äquivarianten vektoriellen Funktionen / e 2" fassen wir zur Teilklasse 3£ C 7"
zusammen. - Analog bilden wir die Teilklasse &$ C @n derjenigen skalaren Funktionen
cp von 0n, die zusätzlich additiv, drehinvariant und translationsinvariant sind, so dass

also die Beziehungen

A, B e S» => cp (A u B) + <p (A O B) cp(A) + <p(B); (1.6)

A €$», d£D^<p(dA)=:<p(A); (1.7)

Ae$\ teT*><p(A + t) <p(A) (1.8)

gelten. Mit den beiden letzten Relationen wird zusammengefasst ausgesagt, dass cp

bewegungsinvariant ist.
Mühelos beweist man jetzt die nachfolgenden Tatbestände:

f,ge2%, a,£eR, h *f + ßg-he3S, <pW *q>[f] + ßq>[g]; (1.9)

f€T0, <P-<P[f]~<pe0Z. (1.10)

Es gilt demnach das folgende
Lemma 1. Die Klasse #J ist ein linearer Raum über R, und die Assoziation

<p: f -> <p[f] ist ein Homomorphismus von 3$ in <PJ •
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2. Der charakteristische Vektor

Nachfolgend begründen wir eme spezielle vektonelle Funktion c e 3% der Eigenheit,

dass ihre assoziierte skalare Funktion mit der Eulerschen Charakteristik
X e 0q identisch wird, so dass also

m x (2i)

gilt Diese uber dem Konvexring Sn erklärbare Funktion c, die jedem Korper A e $n

den charakteristischen Vektor c{A) e Vn zuweist, spielt m der hier skizzierten vektoriellen

Integralgeometrie die nämliche Rolle wie die Eulersche Charakteristik in der
entsprechenden skalaren Integralgeometrie uber dem Konvexring1)

Sei S — {xe En, \x\ 1} die (n — 1)-dimensionale Einheitssphare um den

Ursprung 0 Em Einheitsvektor us S bezeichnet dann eme Raumrichtung Mit
Xe R wird durch H(X, u) {xg En, ix, uy X} eme (n — 1)-dimensionale Ebene im
En gekennzeichnet Fur A e Sn, A + <f>, bilden wir

q(A, X,u) x {a nHfi> u)) ~ lim+ X [A n H(f*> u)) > (2 2)

wobei hm+ den rechtsseitigen Grenzwert fur ja -> X mit pt, > X anzeigen soll, dessen

Existenz fur Korper _4 e Sn trivial ist2) Die uber alle X e R erstreckte Summe

a(A,u) ^^q(A,X,u)Xu (2 3)

reduziert sich im Hinblick darauf, dass q{A, X, u) fur A e Sn fast immer verschwindet,
de facto lediglich auf endlich viele Glieder, und sie stellt einen stetig von u abhangigen
Vektor dar Bedeutet du die Richtungsdichte (Flachenelement auf 5), so ist mit dem
Ansatz

c(A) (llcon)ja(A,u)du, (2 4)

m dem sich die Integration uber die volle Richtungssphare S erstreckt, em dem

Korper A e Sn zugeordneter Vektor c(A) gegeben Es ist der charakteristische Vektor
Die im Ansatz verwendete Konstante stellt das Volumen

con n«2jr (1 + n/2) (2 5)

der w-dimensionalen Emheitskugel dar - Wir erganzen (2 4) noch durch

c(cß) 0 (2.6)

wonach also der charakteristische Vektor der leeren Menge der Nullvektor ist - Die
mit (2 2) bis (2 4) eingeleitete Konstruktion ist dem Schnittrekursionsverfahren
nachgebildet, das eme elementare Begründung der Eulerschen Charakteristik ermöglicht3)
In vektoneller Form wurde sie im Zusammenhang mit der Frage der Übertragung des

Steinerpunktes von Eikorpern auf Korper des Konvexrings von P Mam4)
vorgeschlagen

x) Vgl [2], S 236 ff
2) Vgl [2], S 238/9
8) Für den Konvexrmg erstmals in [3] angegeben
4) Vgl [4], Lemma 4
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Ist AeJCn ein Eikörper mit der Stützgrösse h(A, u) sup{<#, u); xeA} in
Richtung u, so ergibt sich mit der Bemerkung q(A, X, u) 0 für X + h(A,u) und
q(A, X,u) 1 für X h(A, u) aus (2.4) die Integraldarstellung

c(A) (1/ö>„) fh(A, u)udu, (2.7)

die mit der bekannten von G. C. Shephard5) angegebenen Darstellung des

Steinerpunktes s des Eikörpers A zusammenfällt. So notieren wir die Feststellung

AeX»=>c(A) s(A) (2.8)

Mit (2.7) folgt, dass c bedingt stetig ist. Mit der Additivität von # lässt sich mit
(2.2) bis (2.4) unmittelbar erkennen, dass / c das Additionstheorem (1.3) erfüllt,
sodass c additiv ist. Mit der Drehäquivarianz des Integrals in (2.4) folgt weiter, dass

/ c auch (1.4) befriedigt; c ist also auch drehäquivariant. Sei nun noch te T und
A + t das Translat von A. Rückblick auf (2.2) zeigt zunächst, dass q(A + t, X, u) —

q(A, X — (u, f), u) ist, so dass sich mit Verwendung der Schnittrekursion6)

Ze(A,X,u)=x(A) (2.9)

in Verbindung mit (2.3) auf o(A + t,u) a(A, u) + %(A) (u, ty u schhessen lässt.
Einsatz der Integralformel

/<(u, tyudu ojnt (2.10)

liefert mit (2.4) sodann

c(A+t)~ c(A) + X(A) t, (2.11)

womit zusammenfassend ce3% und (2.1) nachgewiesen ist.
Abschliessend bemerken wir, dass sich aus (2.4) die Beziehung

c(i A) | c(A) (0 < | < oo) (2.12)

ablesen lässt, wonach der charakteristische Vektor bezüglich Dilatation homogen
vom ersten Grade ist.

3. Die Quermassvektoren

Die oben sichergestellte charakteristische vektorielle Funktion ceJ-q erlaubt es

nun, eine Skala von n+l additiven vektoriellen Funktionen

q{EX (* 0,...,*) (3.1)

zu begründen, die den Minkowskischen Quermassintegralen Wi so zugeordnet sind,
dass

VM-Wt (f«0,...,*) (3.2)

Ä) Vgl. [5], S. 11, und die Ausführungen zum Steinerpunkt bei B. Gruenbaum [6], bes. S. 314.
6) Vgl. [2], S. 239.
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gilt. Wir nennen qt den ^-ten Quermassvektor; die ihm zugeordnete assoziierte skalare
Funktion ist also das ^-te Quermassintegral Wt. Mit Verwendung der Hilfszahlen

(n\ ojn_x...oon_t
äib I I— - (i=l,...,n-1)) aon=l, ann=ljoyn (3.3)

definieren wir über dem Konvexring $n die Funktion qt für A 4= <f> durch den Integralansatz

?,(--)=— fc(AnE')dE' (» 0 n-l);qn(A)=wnc(A), (3.4)
ain J

und fügen ergänzend noch

qt(<f>) 0 (i 0,...,n) (3.5)

hinzu. Hier bedeuten El eine im Raum En bewegliche ^-dimensionale Ebene und dEl
die Bewegungsdichte von E% im Sinne der Integralgeometrie7). Mit den einschlägigen
Eigenschaften von c lässt sich ausgehend vom gewählten Ansatz mühelos begründen,
dass qt bedingt stetig, additiv und drehäquivariant ausfällt. Mit einer Translation
t E T ergibt sich mit (2.11)

ql(A+t) qt(A) + Wl(A)t, (3.6)

wenn für das i-te Quermassintegral die bekannte Darstellung

Wt(A) -^ fx (A n E') dE' (i 0,..., n - 1); W„(A) <on X(A) (3.7)
am J

herangezogen wird8). - Die Funktion qt ist also IFrtranslationsäquivariant. So

bestätigen sich die Aussagen (3.1) und (3.2). Endlich bemerken wir noch, dass

qM A) ?-+i qt(A) (0 < f < oo) (3.8)

gilt, wonach der ^'-te Quermassvektor bezüglich Dilatation homogen vom Grade
n — i + 1 ist.

4. Hauptsatz

Wir wollen nun zeigen, dass die n + 1-Quermassvektoren qt (i 0, n) eine
Basis des linearen Raumes J" ausmachen, so dass alle vektoriellen Funktionen
/e#o als Linearkombinationen der qt dargestellt werden können9). Es handelt sich
um das vektorielle Korrelat des nachfolgend formulierten sich auf skalare Funktionen
beziehenden bekannten Satzes10):

7) Vgl. [2], S. 227.
8) Vgl. [2], S. 240 (120).
9) Der erstgenannte Verfasser verdankt hier Herrn U. Würgler einen wertvollen Hinweis,

der eine Abkürzung der Begründung ermöglichte (Seminar, Sommersemester 1970).
10) Vgl. [2], S.221 (Satz IV).
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Zu einer Funktion q?E0% existieren n+l reelle Konstanten at (i 0, ...,n)
derart, dass die Identität

o

über Sn besteht.
Mit Rücksicht auf das Ergebnis des vorstehenden Abschnittes folgt in

Verbindung mit (1.9) die Aussage

<pE0no=>3fETo: <p[f]=<p. (4.2)

Die Assoziation <p: f -> <p[f] ist also eine surjektive Abbildung von 3% auf 0%. -Weiter
gilt aber die wichtige Feststellung

1eT0, <p[/] 0_./ 0. (4.3)

Die oben genannte Abbildung ist demnach auch injektiv.
Beweis: Ordnen wir jedem Eikörper A eXh den Punkt s'(A) s(A) + f(A) zu,

so ist mit s' eine stetige, additive, translationsäquivariante und drehäquivariante,
insgesamt also bewegungsäquiVariante Abbildung $'\ %n -> En gegeben. Hierbei sind die

zuständigen Eigenschaften des Steinerpunktes s berücksichtigt und die mit der
Voraussetzung <p[f] 0 bedingte Invarianz / (A + t) — f(A) benutzt worden. Nach
neueren Ergebnissen betreffend die axiomatische Kennzeichnung des Steinerpunktes u)
resultiert s' s, also / 0 über %n. Dies zieht mit der Additivität von / die Folgerung
/ 0 über $n nach sich, was zu zeigen war.

Zusammenfassend schhessen wir mit (4.2) und (4.3) auf

Lemma 2. Die Assoziation cp: f-*<p[f] stellt einen Isomorphismus von J-q und
0o dar.

Mit (3.2) und (4.1) folgert man jetzt den

Hauptsatz. Ist f eJq, so existieren n+l reelle Konstanten ol{ (i 0, ,n)
derart, dass die Identität

f=j£*{q, (4-4)
0

über Sn besteht.

5. Integralformeln

Gestützt auf die Aussage (4.4) des Hauptsatzes lassen sich Ergebnisse herleiten,
indem eine vektorielle Funktion / über dem Konvexring $n - etwa durch einen

Integralansatz - so definiert wird, dass diese ersichtlich bedingt stetig, additiv, mit
einem q> E 0J weiter ^-translationsäquivariant und drehäquivariant ist. Mit der /
assoziierten Funktion cp sind gemäss (4.1) auch die Konstanten o>{ ermittelbar, und
nach (4.4) ergibt sich dann die Darstellung von / durch die Quermassvektoren q{.

n) Vgl. [7], bes. aber [1] (Satz 2).
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Damit ist eine Formel der vektoriellen Integralgeometrie über $n gewonnen. Die
erforderlichen Nebenrechnungen sind eindeutig vorbestimmt und werden nachfolgend
weggelassen. - Vorbereitend sei noch die nützliche Hilfskonstante

am mla)x...coJ2 (5.1)

festgelegt. - Zunächst erörtern wir das vektorielle Analogon zum vollständigen
kinematischen Hauptsystem der Integralgeometrie12).

Bezeichnen A e Sn einen beweglichen, B e $n einen ruhenden Körper des Konvexrings

und dA die kinematische Dichte von A, so gilt das Formelsystem

fqk(AnB)dA £cnktWk_,(A)qt(B) (* 0 n), (5.2)

wobei sich die Integration über alle Bewegungen von A erstreckt und die Koeffizienten
durch

Cnkt L I (5-3)

festgelegt sind. - Nachfolgend geben wir ein vollständiges System von Integralformeln
vom Croftonschen Typ. Bezeichnet El eine bewegliche ^-dimensionale Ebene, dEl ihre
Bewegungsdichte, so ist mit A e Sn

fqk (A O &) dE> dnkl qk + l_n(A) (n - * < * < n, k 0, n) (5.4)

wobei die Konstante durch

_
k\i\a)ko>t(x)2n_t_k

__**** a>»
(k + i-n)\n\con„kcon_tcok+t_n ^

ausgedrückt werden kann, wenn die Hilfsgrösse (3.3) erneut verwendet wird. Im Falle
k n, qn conc, dnnt atncon wird wieder der definitorische Ansatz (3.4) reproduziert.
Wenn i n ist, soll das Integral links in (5.4) den Integranden darstellen, so dass die
Formel mit dnkn= 1 trivial wird.

Wir fügen noch einige Formeln an, die sich lediglich auf Eikörper AeX"
beziehen. Diese ergeben sich aus einer naheliegenden und mit geringfügigen Modifikationen

möglichen Restriktion der Hauptsatzaussage (4.4) auf die Klasse Xn.

Bezeichnet Al den Normalriss des Eikörpers A e Xn auf die durch den Ursprung 0

gehende ^"-dimensionale Ebene Ex, so gilt die Pro]ektionsformel

fqn(A>) dh (* an\2 n at an_t) qn(A) (* 1. * - 1) (5.6)

Hierbei bezeichnet dEl die Drehdichte von El im Sinne der Integralgeometrie, und am ist
die mit (5.1) angegebene Hilfskonstante. Im Falle i 1 ist (5.6) mit der Shephardschen

2) Vgl. [2], S. 244 (130).
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Integraldarstellung (2.7) gleichwertig, indem q^A1) (ooj2) [h(A, u) — h(A, —u)] u
und dE1 du ist, wo E1 eine Gerade der Richtung u bzw. — u anzeigt.

Für zwei Eikörper A, BeX", A um den Ursprung 0 drehbar, B fest, gilt die
Drehformel bezüglich Minkowskischer Addition/n /n__b\

qk (A + B)dA («>_) g ^ _ kj Wn+k_{{A) q,(B) (A 0, ...,») (5.7)

wobei dA die .Drehdichte von A bedeutet. - Wählt man für A speziell eine Kugel Kr
vom Radius r um 0 und set^t anstelle von B erneut A, so resultiert mit den

Bemerkungen, dass A + Kr Ar den äusseren Parallelkörper von A im Abstand r
ergibt, Wm(Kr) conrn-m und / dKr an ist, ein vektorielles Analogon zu den Steinerschen

Parallelformeln13), nämlich

n /fi — k\
qk{Ar) Zy^^'^qAA) (k 0,..., (5.8)

Im speziellen Fall k n liefert diese Formel noch den Tatbestand qn(Ar) qn(A), der

wegen qn ojns eine bekannte Eigenschaft des Steinerpunktes ausdrückt.

6. Krümmungsschwerpunkte

Wir beziehen uns nachfolgend auf die Klassen

S»= {A E Snl WAA) + 0} (i 0,...,n)
solcher Mengen des Konvexrings, für die das i-te Minkowskische Quermassintegral W(
nicht verschwindet, die insbesondere nicht leer sind. - Jedem Körper A e S" kann
man durch den Ansatz

pi(A) qi(A)IWi(A) (« 0,...,n) (6.1)

einen Punkt fit e En zuordnen, indem man den mit \\W{ dilatierten i-ten Quermassvektor

als Ortsvektor im En deutet. Wir wollen p{ den i-ten Krümmungsschwerpunkt
von A nennen. Mit den für die Quermassvektoren begründeten Eigenschaften ergibt
sich, dass die mit (6.1) gegebene Punktzuordnung p{: 5? -> En die nachfolgend
angeführten Tatbestände erfüllt: (a) p{ ist bedingt stetig; (b) p( ist gewogen additiv, d.h.
es gilt das Additionstheorem

Wt (A u B) fi (AUB) + Wt (A O B) p, (AHB) 1

-WMhW + WiWMB); 1

(c) pi ist bewegungsäquivariant, d.h. es gilt

pi(bA) bpi(A), • (6.3)

wo b eine eigentliche Bewegung im Raum En anzeigt.

u) Vgl. [2], S. 214 (49).
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Für die Begründung ist neben der Drehaquivananz von qt die sich mit Ansatz
(6 1) aus (3 6) ergebende Translationsaquivananz

p, (A + t) p,(A) + t (6 4)

entscheidend - Zwei Schwerpunkte smd besonders hervorzuheben, namhch

_•¦> _ (V>0), pn s (z*0), (6 5)

die sich mit Ruckblick auf (3 4) und Ansatz (6 1) mit den Bemerkungen W0 V
(Volumen) und Wn con % (% Eulers Charakteristik) ergeben Hierbei soll g den

«gewohnlichen» Schwerpunkt und s den im Sinne von Mam14) auf Korper des Konvex-
rmgs übertragenen Steinerpunkt bezeichnen So wie die Festlegung von g nur fur
Korper positiven Volumens möglich ist, kann eme Definition des Steinerpunktes s nur
dann gegeben werden, wenn die Eulersche Charakteristik nicht verschwindet

Zusammenfassend stellen wir fest, dass die Punkte pt (i 0, n) eme vom
Schwerpunkt zum Stemerpunkt fuhrende vollständige Punktreihe bilden

Fur Eikörper mit «glattem» Rand (zweimal stetig differenzierbare Randflache)
kann gezeigt werden15), dass

pt fxHt_x(x)dFJ jHt_x(x)dF (i-l, ,n) (6 6)

gilt, wobei Hm(x) die m-te elementarsymmetrische Funktion der n — l Haupt-
krummungen an der Stelle x E dA der Randflache des Eikorpers A und dF das
Flachenelement bei x bezeichnen, die Integration hat sich uber den gesamten Rand
dA zu erstrecken

Nun können samthche im vorstehenden Abschnitt entwickelten Integralformeln
fur die Quermassvektoren qt gemäss der mit (6 1) angesetzten Beziehung qt Wt pt
m solche umgerechnet werden, die sich auf die Krummungsschwerpunkte pt unter
Beachtung der Klausel Wt + 0 beziehen Dies sei hier aber nicht explizite ausgeführt.

H Hadwiger (Bern) und R Schneider (Berlin)
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