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Kleine Mitteilungen

Semi-k-free Integers

Let % be a fixed integer = 2. A positive integer # is called semi-k-free if the multiplicity
of each prime factor of # is not equal to % or equivalently, if n is not divisible unitarily by the
k-th power ot any prime. The integer 1 is also considered to be semi-k-free. Let x¥ denote a
real variable =1 and let Q¥ (¥) denote the number of semi-k-free integers < x. The object
of the present note is to prove the following:

Theorem.
Q (%) = of x + O(¥*1)
where
d= T (1 o+ k).
LT = g & s
the product being extended over all primes p.
Let u(n) denote the Mobius function and ¢(x, #) denote the Legendre totient function,
defined to be the number of positive integers <.x which are prime to n. Let ¢(n) = ¢(n, %)

be the Euler totient function. We need the following three lemmas to prove the above
theorem.

Lemma 1. For each s, 0 < s < 1, we have

ol m) = x P10 (w5 a_m),

where o_s(n) is the sum of the s-th powers of the reciprocals of the divisors of #.

Proof: It is well-known that (¥, n) = X' u(d) [x/d]. Since [x] = x + O(x%), for every s with
0 <s <1, we have din

ol ) = t%’u(d) {% ‘o0 (7’;4)} UL, (xS‘%'d'S).

Hence lemma 1 follows.
Lemma 2.

> 1 1

n=1 4

Proof: Since u(n) and @(n) are multiplicative and the series is absolutely convergent,
we can expand the series into an infinite product of Euler type (cf. [1], theorem 286).

Hence, we have
—1
[2 e pm(k+1) ] = H{l - %+—1}’

P
so that lemma 2 follows.

Lemma 3 (cf. [2], theorem 2.4). If g(n) and k(x) are multiplicative, then f,(n) 2 g ) A(0)
is also multiplicative.

(d 6) “

Proof of the theovem. Let q¥(n) = J' u(d). Then by lemma 3, it follows that g () is multi-
dkd=n
(d,0)-1

plicative. Moreover, ¢¥(p*) = 1 or 0 according as a + %k or « = k. Hence ¢f(n) = 1 or 0
according as # is or is not semi-k-free, so that

=Yam =3 3 w@= D} wa

n<x n<x dké—n dkoé<x
(d,6) =1 (d,6)=1

oz g

a<vz 6, dy=1 4<Vz
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Hence by lemmas 1 and 2,

02 = 37 utn) {= S + 0 (w2}
n<Vyx
M(:lfl(n) " O("Zk' %) L0 <x~‘ 4\; “;’,@)
n>Vz n<vVzx

— af x4 O + O (x X ol )>. (1

xR
1D

k__
n<yx

Now, choosing 0 < s < 1/, we obtain

o_s(n) 1 1
nsk 2;‘ nsk Z ds = é‘ —d_é‘(“f—i-‘kﬁsﬁz _kd ds(l—}-k) 2 s

o ad=n do<VE a<vVz K%"_
—\1—sk
1 Vx _ 1 _
A<Vx a<yx
Hence from (1), the theorem follows. D. SURYANARAYANA, Waltair, India
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Bemerkung zu einer Anwendung des Bertrandschen Postulats
in der Zahlentheorie

Durch Anwendung des Bertrandschen Postulats kann man das folgende interessante
Ergebnis beweisen:
Keine der Partialsummen

1 1
sn=1+—2~+~-+—;(n>1)
o0
der harmonischen Reihe J 1/k ist ganz (siehe [1], S. 139, Exercise 2).
k=1

Eine der erwihnten Anwendung des Bertrandschen Postulats dhnliche Methode er-
moglicht uns, einige Ergebnisse iiber Partialsummen einiger Teilreihen der harmonischen
Reihe zu beweisen (die Teilreihen der harmonischen Reihe nennt man Ahmessche Reihen,
vgl. [2]).

Im folgenden bedeutet a, < a; < :-- eine Folge von natiirlichen Zahlen und P(x)
bezeichnet die Anzahl derjenigen Indices i, fiir welche a; < x (» ist eine reelle Zahl) und a;
eine Primzahl ist.
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Satz 1. Haben a, < a, < .-+ und P(%) die vorige Bedeutung und setzen wir voraus,
dass fiir ein geeignetes m die Ungleichung

Pl
()
gilt, dann ist die Summe S, ): 1/a, nicht ganz.

Beweis. Nach Voraussetzung 1st P(an/2) < P(a,). Aus der Definition von P(x) folgt
die Existenz eines Index ¢ < m, mit der Elgenschaft dass a; eine Primzahl p ist und

a
*‘é’f— < p = . (1)
gilt.
Bezeichnen wir mit B das kleinste gemeinsame Vielfache der Zahlen a,, a,, ..., a,
und setzen A, = Bfa, (k =1, 2, ---, m), dann haben wir
A m
Sm - B’ A = k:z»; (2)

Mit (1) sieht man unmittelbar, dass p | B, p* + B und p ¢ a, fiir 2 < m, k + i. Daraus
und aus der Definition der Zahlen 4, folgt p | A, fiirk <m, 2+ tund p + 4,. Infolgedessen

pra. (3)

Falls S, eine ganze Zahl wére, dann wiirde p | 4 aus (2) und p | B folgen. Das steht
aber im Widerspruch zu (3).
Eine leichte Folgerung aus Satz 1 ist

Satz 2. Haben @, < a, < ... und P(x) die vorige Bedeutung und ist

lim inf 28 > 1,
? (%)

m
dann existiert ein m, derart, dass keine der Partialsummen S, = X' 1/a, (m = m,) der
o0
Reihe 3’ 1/a, ganz ist.
k-1

Beweis. Es geniigt festzustellen, dass aus (4) die Unendlichkeit der Folge a; < a, < ...
folgt. Alles iibrige ist klar.

Satz 2 ermoglicht uns eine Aussage iiber die Nicht-Ganzheit der Partialsummen einiger
Ahmesschen Reihen.

Satz 3. Haben g, < a, < ... und P(x) die vorige Bedeutung und existieren zwei
Konstanten ¢, a derart, dass ¢ > 0, « = 0 und

cx

P@) ~ log*x

1) (5)

m
gilt, dann existiert ein m,, so dass keine der Partialsummen S, = 3 1/a, (m = m,) der
=1

Reihe 2 1/a, ganz ist.
Beweis Die Unendlichkeit der Folge a, < a, < ... folgt aus (5). Durch eine leichte
Rechnung bekommt man
P(x) logx — log2 )a__> 2

x) N2( logx

P(—Z—

Satz 3 folgt nun aus Satz 2.

f(x)
glx)

1) {(x) ~ g(x) bedeutet }gnoo
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Mit Hilfe von Satz 3 beweisen wir jetzt den folgenden Satz, welcher eine Erweiterung
des oben erwdahnten Ergebnisses aus [1] darstellt.
Satz 4. Es seien a, d natiirliche Zahlen. Dann existiert ein mo derart, dass keine der

Partialsummen S, Z‘ 1/(a + (B — 1) d) (m = m,) der Reihe Z’ 1/(a + (B — 1) d) ganz ist.

Beweis. Es sei der grosste gememsame Teiler von a, d. In a=a’d, d=d ¢sind die
Zahlen a’, d’ teilerfremd. Nun setzen wira, = a’ + (¢ — 1) d’ (k = 1, 2, ...). P(x) bezeichne
wieder die Anzahl aller Primzahlen p < #, welche in der Folge {ak},‘g"= , enthalten sind.
Bekanntlich ist

x

p(d’) logx ’
wo ¢ die Eulersche Funktion bezeichnet (siehe [3], S. 130).

m
Auf Grund von Satz 3 existiert ein m,, so dass keine der Summen Sy, = 3 1/(a’+ (k— 1) d')
k=1
(m = m,) ganz ist. Die Behauptung des Satzes folgt nun unmittelbar aus S, = (1/6) S

m

Die Tatsache, dass keine der Partialsummen J 1/& (m > 1) der harmonischen Reihe
k=1

ganz ist, fithrt zur Frage, ob eine analoge Aussage auch fiir die Reihen 2 1/a, gilt, wobei

{a;4}%- 1 eine arithmetische Folge (natiirlicher Zahlen) ist.
TiBor SaLAT, Bratilsava, CSSR
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Uber verschwindende Summen von Einheitswurzeln

Fiir die Untersuchung schlichter Komplexzerlegungen endlicher abelscher Gruppen
beweist L. REDpE! ([1], S. 361) folgenden Satz, der auch an sich von Interesse ist:

Satz. Fiir jede natiivliche Zahl n > 1 ist die Gliederzahl einer verschwindenden (nichtleeven)
Summe n-ter (nicht notwendig verschiedener) komplexev Einheitswurzeln nicht kleiner als dey
kleinste Primteiler von n.

Der REpE1sche Beweis dieses Satzes lauft iiber eine Reihe von Summationsumformun-
gen und Fallunterscheidungen und ist «unerwartet miihsamy».

Im folgenden geben wir einen sehr einfachen algebraischen Beweis fiir den schérferen
Satz*. Ist p der kleinste Primteiler der natiivlichen Zahl n > 1, so sind weniger als p paar-
weise verschiedene komplexe n-te Einheitswurzeln iiber dem Kovper K der vationalen Zahlen
stets linear unabhdngig.

Beweis: Wir erinnern zunidchst an einige einfache Resultate der Theorie der Kreis-
teilungskorper (vgl. VAN DER WAERDEN [2], § 42, § 60). Fiir m > 1 bezeichne dazu K, den
m-ten Kreisteilungskorper und {,, eine primitive m-te Einheitswurzel iiber K. Ist g eine
Primzahl und m = ¢ ¢, so gilt fiir den Grad |K,,:K,| von K, iiber K,

g, falls q|¢
g—1, falls g+1¢.

Fiir ¢|¢ ist die Menge M = {1, {,,, ..., (&~ '} eine Basis von K, iiber K,; fiir ¢ + ¢ erhilt
man Basen von K, iiber K,, wenn man aus M jeweils ein Element herausnimmt.

K, K,|=
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Den Beweis des Satzes fithren wir nun durch vollstindige Induktion iiber die Teiler
von n.

Ist m ein Primteiler von #, so gilt nach Voraussetzung ¢ < m und nach der Vorbe-
merkung sind sogar je m — 1 paarweise verschiedene m-te Einheitswuzeln iiber K linear
unabhdngig. Damit ist der Induktionsbeginn erledigt.

Wir nehmen nun an, dass der Satz fiir alle echten Teiler von % richtig sei und setzen

= n/p. Wire nun » < p — 1 und wiren &, ..., &, » paarweise verschiedene linear ab-
hingige n-te Einheitswurzeln iiber K, so hitte man eine Gleichung
a &+ ...+a; 6, +...4a, & =0, (1)

in der die a; rationale Zahlen sind, die wir 0. B.d.A. als von Null verschieden annehmen
diirfen. Jedes &, ldsst sich in der Form

&=y Cf,f (2)

; < p — 1 ist. Wir kénnen daher (1) durch geeignete

darstellen, wo ; e K, und 0 < f,

Zusammenfassung iiberfithren in
So+ S, 8,4+ .+ Sp-1 52 =0. (3)

Hierbei sind die S; entweder leer oder Linearkombinationen ¢-ter Einheitswurzeln. Natiir-
lich sind nicht alle S; leer.

Wegen v < p — 1ist mindestens ein S; leer. Von den Elementen 1, ¢, ..., {§~ 1 treten
daher in (3) hochstens p — 1 Elemente auf. Diese sind aber iiber K, linear unabhingig;
mithin miissen in (3) die nichtleeren S; verschwinden.

Aus (2) ist nun ersichtlich, dass die nichtleeren S; Linearkombinationen paarweise
verschiedener ¢-ter Einheitswurzeln sind. Natiirlich treten in keinem solchen S; mehr als »

Glieder auf, und das ist ein Widerspruch zur Induktionsannahme. Die &, ..., &, sind also
entgegen unserer Annahme linear unabhéingig. E. WittmMANN, Erlangen
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Aufgaben

Aufgabe 618. Ist fiir jede Primzahl p > 2 7 (p) die kleinste natiirliche Zahl £ mit
2k =1 (mod p), E(r) fiir » > 2 die Anzahl der Primzahlen p mit #(p) = » und A4(x, d)
fiir 0 < 8 < 1 die Anzahl aller Primzahlen p mit » < x und 5(p) > #°, so gilt:

\Y

4 X x 1
E(r)<1n2~~lr~l-r—(r 2), A(x,é)z»ir—l—;+o(m) (0<6<~2——)

und
A ! > (1 —-1In2 o( »»»»»»»» == (x = o00)
(x’ _”_) = ( — In ) r _I...._. + ) .

Man beweise diese Behauptungen. G. Jaeschke, Sindelfingen
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