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Kleine Mitteilung

Zwei Resultate über Trigonalzahlen
Die Gesamtheit der Losungen (x, y, z) der Gleichung x2 + y2 z2 in natürlichen und

teilerfremden Zahlen x, y, z mit geradem y und ungeraden x, z ist vollständig bekannt (vgl
etwa [2], S 41, Theorem 1) Jede derartige Losung heisse ein primitives pythagoreisches
Tripel, kurz ppT Ferner bezeichne th h (h + l)/2 fur h 0, 1, die h-te Trigonalzahl

Khatri [1] hat gefunden, dass fur alle k 0, 1, folgende drei Relationen bestehen

hk + hk+i ~ hk+i> hk+i "+" *i2£ + 9 ^i3A; + io» hbk + 9 + ^8/t+4 ^ tX7k+X0 (0)

Dabei ist jedes der (3, 4, 5), (5, 12, 13), (15, 8, 17) em ppT Man wird vermuten, dass
hinter den Identitäten (0) allgemeinere Gesetzmassigkeiten stehen, diese smd präzisier* m

Satz 1. Zu jedem p p T (px, p2, ps) gibt es genau zwei verschiedene Tripel (qXj, q2j, qZj)
(; 1, 2) ganzer Zahlen mit 0 < qtJ < pt (* 1, 2, 3, ; 1, 2) derart, dass fur alle k
0, 1, gilt

hik + qij + tptk + ltj tpsk + q3j (/ 1, 2) (1)

Der Beweis dieses Satzes zeigt, dass und wie sich zu vorgegebenem ppT (P\,pz> Pz)
die beiden Tripel (qXj, q2j, fr7) effektiv berechnen lassen

Sierpinski [3] hat die Aufgabe gestellt zu zeigen, dass sich zu jeder natürlichen Zahl m
eme Trigonalzahl finden lasst, die sich mindestens auf m Arten als Summe zweier Trigonalzahlen

schreiben lasst Der folgende aus Satz 1 abgeleitete Satz 2 verschärft diese Aussage
erheblich

Satz 2. Zu jeder natürlichen Zahl m gibt es unendlich viele Trigonalzahlen, die sich auf
mindestens m verschiedene Arten als Summe zweier Trigonalzahlen darstellen lassen

Beweis von Satz 1 (1) ist gleichbedeutend mit der Forderung

(p\ + p\~ pi) k*+((2qx+ 1) px +(2q2+ 1) p2 - (2 q3 + 1) />,) k + qx (qx + 1) +
+ fr (?2 + i) - fr (fr + ° (2)

für k 0, 1, dabei wurde der zweite Index ; der q s unterdruckt Da (px, p2, pB) em
p p T ist, verschwindet der Koeffizient von k2 m (2) und (2) zerfallt m die beiden
Forderungen

Pb fr -Piqi- P2 qt (Pi + P*~ p*)fi > (3a)

qx (qi +!) + *• tei + i) - fr tos + i) o (3b)

Berechnen wir fr aus (3a) und setzen den entsprechenden Ausdruck in (3b) ein, so
erhalten wir nach einigen Umformungen folgende quadratische Gleichung

^a+ (p2-Pt)U-pxp2/2=0 mit U p2qx-pxq2, (4)

die folgende Losungen hat

p2qij~Piq*j (Px-p2+(-l)JPz)l2 (7=1.2) (5)

Es sei angemerkt, dass rechts m (3a) und (5) ganze Zahlen stehen Da (px, p2, pz) als

p p T. vorausgesetzt wurde, smd px und p2 teilerfremd Bekanntlich kann man daher fur
/ 1, 2 eme Losung (qJ ql) von (5) aus der regulären Kettenbruchentwicklung der
rationalen Zahl — pjpi finden Alle ganzzahligen Losungen (qXj, q2j) von (5) ergeben sich
dann m der Form qXj q\j + t pt, q2j — qy + tp2, wo t alle ganzen Zahlen durchlauft.
Daher kann man fur ; 1, 2 genau eine Losung (qx q2ß von (5) finden mit 0 < qXj < px — 1

Wir haben noch 0 < q2j < p% fur / — 1, 2 zu zeigen Wegen px < pz < px + p2 liefert (5)
fur | 1

0< Px 9n P% fn + (Pz +P*~ Pi)ß <PiP*+ (Pz ~Px~ P%)fi <PiPz>
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was 0 < q2X < p2 impliziert. Fur ; 2 ergibt (5): px q22 p2 qX2 + (p2 - px - p3)/2.
Wegen qX2 > 0 und p3 < px + p2 folgt hieraus px q22 > —px, was q22 > 0 nach sich zieht.
Andererseits erhalt man px q22 < pxp2 — (px + p2 + pz)/2 < pxp2, was wieder q22 < p2
liefert. (Man kann übrigens sogar 1 < q2j < p2 — 2 fur ; 1, 2 erhalten.)

Jeder ganzzahligen Losung (qXj, q2j) von (5) entspricht vermöge (3a) genau ein rationales
q3j, das nach (3b) auch ganzalgebraisch (vom zweiten Grad) ist. Daher ist fr ganzrational,
wir haben noch 0 < qZj < p3 zu zeigen. Wegen (3a) und px + p2 > p3 ist sogar q3j > 1,
weiter folgt aus (3a) sowie q < pt — 1 fur i 1, 2.

Psqzj < Pi(Pi-l) + Pi(Pt-l) + tPx+P*~P*)ß PI ~ (Pi+£2+£3)/2 < />,(/>,-1).
was sogar q3J < £3 — 2 impliziert. Wegen (5) ist ersichtlich (qxx, q2X) 4= (qX2, q22), so dass
erst recht (qxx, q2X, q3X) 4= (qX2, q22, q32) ist, womit Satz 1 vollständig bewiesen ist.

Beispiel. Gehen wir vom p p.T. (3, 4, 5) aus und nehmen (5) fur ; 1, so wird aus (5):
4 fri ~~ 3 fri — 3, was frx 0, <?21 1 impliziert. Diese Werte m (3a) eingesetzt liefern
q3X — 1 und wir erhalten aus (1) die erste Identität (0) von Khatri. Analog erhalten wir
aus (5) fur ; 2 die Identität t3k + 2 + tik + 2 — tbk + 3 fur k 0, 1,

Beweis von Satz 2. Ist m 1, so liefert jede der Relationen (0) unsere Behauptung.
Sei jetzt m > 2. Fur alle n 1, m ist (p1>n, />2,n, £3,n) (22* - 1, 22"~1+i, 22" + 1)

em p. p. T. Jedem derartigen Tripel ordnen wir eines der beiden nach Satz 1 existierenden
«/-Tripel zu, das wir mit (qx>n, fr,„, fr,n) bezeichnen, derart, dass gilt

^1,A + <?1.« + '*2,„*„ + *2,» tp3,nkn'%n ^
für alle Än 0, 1, n 1, ra.

Aus bekannten Eigenschaften der Fermat-Zahlen folgt die Teilerfremdheit von p3,n
und p3,nf fur 1 <w,tt'<m,tt4=tt'. Daher gibt es nach dem Chinesischen Restsatz genau

nt
eine ganze Zahl Q mit 0 < Q < % p3,n P) derart, dass simultan die Kongruenzen

n 1

Q fr>n (m°d />*„) («=!....,*»)
bestehen. Dies heisst. Es gibt eindeutig bestimmte k% (n 1, m) mit 0 < ÄJJ < P/p3,n
derart, dass gilt

0 _V, *! + ?..„ («-1..».«). (7)

Fur jedes n 1, m betrachten wir nur noch die

k„ rP/P3,„+kBn, r=0,l,... (8)

entsprechenden Gleichungen (6) weiter. Setzen wir fur 7 1, 2 abkürzend

P}.nP/P3.n=P\n). Pj.nK + lj'n^Q^.
so behalten wir aus der Menge der Gleichungen (6) mit Rucksicht auf (7) und (8) also nur
noch die r 0, 1, entsprechenden Gleichungen (9) bei:

KpW v QM + 'ri>|»> + Q2n) trP+Q (n=l, ,m) (9)

Nun bemerken wir, dass fur ;, /' 1, 2 gilt: PJn) 4= PJf* fur alle Paare (n, n') mit
1 < n, n' < m und tt 4= nf. Sonst wäre namhch p3nf pJtn p3>n py ,n'\ da p3>n und p3,n'

teilerfremd smd, folgt p3,n \ pJfn, was nicht geht. Da ausserdem P[n) 4= P^tt) fur n l,...,m
gilt, sind sämtliche 2 m Zahlen PJw) (; 1, 2, n 1, m) voneinander verschieden.

Schliesslich zeigen wir: Ist r > P, so ist r P<w) + 0<w) 4= r Pj,*'* + Qf'] fur ; 1, 2 und
1 < w, w' < m mit n 4= n'. Sonst konnte man o.B.d.A. PJn) > PJ?'* voraussetzen und

hätte dann P < r (P<w) - P<,w/>) 0<*'> - Qf\ was wegen 0 < 0Jw), 0<,n,)< P nicht sein
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kann. Daher lasst sich fur jedes ganze r mit r > P die Trigonalzahl Up+q nach (9) auf
mindestens m verschiedene Arten als Summe zweier Trigonalzahlen darstellen, was
Satz 2 beweist. Peter Bundschuh, Freiburg i. Br.
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Aufgaben

Aufgabe 606. Eine notwendige Bedingung für die Existenz von drei linear
unabhängigen periodischen Lösungen von

^-^+(H-^V-tä!b()' p(t + a>) p(t) p(t) + 0 (1)
P P

ist

[yi+ p* dt > 2n. (2)
0

H. Guggenheimer, Polytechmc Institute of Brooklyn

Lösung des Aufgabenstellers: Es seien drei linear unabhängige periodische Lösungen
von (1) gegeben. Dann sind alle Lösungen von (1) periodisch. Daher gibt es einen
periodischen Vektor x(t) (xx(t), x2(t), xz(t)) mit den Anfangsbedingungen x(0) ex,
x'(0) =_ e°2, x"(0) - e\ + p(0) e%) e® • e* dtJ. Die Anfangsbedingungen bestimmen
x(t) eindeutig.

Man integriere das System

0 P) - (eXeW^e». (3)
0 -P 0/ \ej

Die (vollständig stetige) Lösung ist sogar für integrables, also sicher für differenzierbares

p eindeutig. Durch Elimination folgt, dass ex(t) die Gleichung (1) erfüllt. Daher

x^ex.
Da die Matrix in (3) schiefsymmetrisch ist, folgt e{(t) • e^t) dtJ wegen

(d/df)(et -Cj) =0. Also ist 11^(2) || 1, und et(t) beschreibt eine sphärische Kurve der
Krümmung ||«*|| |/l + p*.

Nach Fenchels Theorem folgt (2); das Gleichheitszeichen stünde für ebene

Kurven, die hier ausgeschlossen sind.
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