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Uniqueness Theorems for Power Equations
The uniqueness of the Solution for the System of power equations

n

2Jxk 0, £ 1, 2, ,n
* i

is well known. Flanders [1] in a classroom note states that the Newton formulae are
not quite so elementary and gives a more elementary proof using the Vandermonde
determinant. In this note, we give an elementary proof of a generalization which uses

only part of the Newton formulae. Then by use of the complete set of Newton formulae,
we give further extensions.

If Tx, T2, denote the elementary Symmetrie functions of xx, x2, xn, i.e.,

P(*) 17> - *,) *n - TiXn~x + T2x-2 + (- 1)" Tn

and if

sk=Z*l.
t=i

then the Newton formulae [2, 3] are

(A) sk - Ii St_a + T2 Sk_2 -¦••+(- I)*-1 Tk_t S1 + (- 1)* *_;=-(„< »),

(B) sk - Tx Sk_x + T2 S,_2 -...+(- 1)- r. Sk_n 0 (* > n)

To obtain (B), we merely sum over the roots xt of the equation

xm (xn - Tx xn~x + T2 xn~2 -... + (- 1)« Tn) 0 (here * m + n)

To obtain (A) requires considerably more work. The proof in [2] is based on knowing
the formula and using properties of the elementary Symmetrie functions to confirm it.
The proof in [3] derives the formula by an expansion of the identity

p>) f-_____.
\ / Amt % — Xt

We now give a considerable simplification of the latter proof and obtain both (A)
and (B). We start from the different expansion

-**(*) y> i Ä Jl A 4. _§* _i_ m
P(x) f^x x - xt x ^ x2 ^ x9 ^ ' ' ' K }

Changing x to 1/x and simphfying, we obtain

~l-TxX+T2X2-~.+ (-l)nTnxn -^1+^2*+^* + •

Now by multiplying both sides by the denominator and equating coefficients of like

powers of x, we obtain both (A) and (B).
Using just (B), we can establish
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Theorem 1: If Sk 0 (k r + 1, r + 2, r + n), then xt 0 (i 1, 2, n).
Proof: From (B) with k n + r, it follows that Tn Sr 0. Thus either Tn or

Sr 0. If Sr 0, then (B) with k n + r-l implies that Tn Sr_x 0. It now
follows inductively that Tn 0 or equivalently that at least one of the xjs is zero.
Repeating the same argument for the set of the remaining (n—l) xjs, we get
inductively that all the xjs are zero.

We could have also proven Theorem 1 in the manner of Flanders using the
Vandermonde determinant. Another proof is based on the somewhat interesting
elementary

Lemma: If P(x) denotes a polynomial of degree n > 0, then the power expansion
of exp [P(#)] does not have n consecutive zero coefficients.

Proof: Suppose otherwise that

eP{x) A0 + Ax x + • • • + Amxm + 0(xm+n^1)

where _4m + 0 and P(x) a0 + ax x + • • • + an xn, an 4= 0. Differentiating, we obtain

P'(x) eP{x) Ax + 2A2x+ +mAmxm-1+ 0(xm+n)

and that the coefficient of xm+n~1 is zero. On the other hand,

P'(x) ep{x)= {ax + 2a2x+ \-nanxn~1} {AQ + Ax x + • • • + Am xm + 0(xm+n + l)},

so that the coefficient of xm+n ~1 is n an Am + 0. This contradiction completes the proof.
Corollary: If the expansion of expl^ x + a2x2 + • • • + an xn} has n consecutive zero
coefficients, then ax a2 =-••• an 0.

For our alternate proof of Theorem 1, we integrate (1) to give

log-^i C - ^ ^-r + 0(x-r~-1)ö xn x r xr v '

so that
P(x) A xn exp - {SJx + • • • + Srjr xr) + 0(x~r~1)

Smce P(x) is an nth order polynomial, the terms in x~n~1, x~n~2, x~n~r, must be

absent from the expansion of

exp - {SJx + • • • + Srjr xr)

By the previous corollary, Sx S2 • • • Sr 0. Consequently, P(x) Axn + 0(x~r-1),
and again since P(x) is a polynomial, P(x) A xn, which entails that xt 0, i 1,

2, n.
The proof of the next generalization uses both (A) and (B).

n n
Theorem 2: If £ x\ £ a\ (k 1, 2, n), argiven, then aside from permuta-

»=i *=i
tions (xx, x2, xn) (ax, a2, an).

Proof: It follows from Newton's formulae that Sk is given uniquely as a function
of TltT2, ,Tk and also that Tk is given uniquely as a function oi Slt S2, Sk.

Explicit representations in the form of determinants is given in [2]. Consequently, the
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elementary Symmetrie functions of the ajs must be identical to the elementary
Symmetrie functions of the xjs. Whence,

n n

JJ(x-xj) IJ{x- aj)
t-i «=i

which gives the desired result.
Theorem 2 is not unexpected in light of Bezout's theorem [4], i.e., 'N polynomial

equations of degrees nx,n2, ,nN in N variables have in general nxn2... nN
common Solutions. When the number is greater than this, it is infinite/ If the ajs are
distinct, then counting all the permutations there are 1,2,3 n Solutions. If some
of the ajs were equal, then the number of permutations would be less than n! Solutions
or eise each Solution could have a multiplicity. An example where there are less than

nxn2... nN Solutions is given by the system

x + y 1 x3 + y3 1

The only two Solutions are (1, 0) and (0,1) and these cannot have any multiplicity.
We cannot extend the validity of Theorem 2 by changing the ränge k 1, 2,..., n

to k r + 1, r + 2, r + n as in Theorem 1. A simple counterexample is given
by the System

x2 + y2 1 x3 + y3 1

The 2- 3 Solutions of this set are given by

x 0 f y 1] x =¦ 1 y 0;

___

x + A2
___

A (*+ A2>
•

___
ÄSL±JlL JL±ilX ~*

1 + A8 ' y ~ l + P ' X~~
1 + A3 ' y"l + A3

where 3 A 1 ± 2 i ]/2. Again this is not unexpected since by Bezout's theorem,
there are (r + 1) (r + 2) (r + n) Solutions in general.

As an application of Theorem 2, we give a Solution to Aufgabe 591 (El. Math.
24, 20 (1969): For which real values of a is the implication

*-l *«1 t«=l 1=1

valid if the xt are real
It follows, as in the proof of Theorem 2, that the set of equations

Yf% bk, k^l,2,...,n
has a unique Solution, aside from permutations.

From (A) and (B) with k n and n + 1, we get

s,-r1s._1+... + (-i)»*rII o,

s,+i-r1s. + + (-i)-s1r,«o.
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Since St ol for all i, we get by subtraction that Tn (n — ol) 0. Thus, either
ol n or Tn 0. If a n, then by Theorem 2, xt 1, i 1, 2, n. If Tn 0, at
least one of the xjs is zero. We cancel this xt out and repeat the argument. Thus,

¦*-> Xa + 1 ~~ Xoc + 2 —ol 0, 1, 2, n. And for these oc's, % x2 • • • :

*„ 0.

A simpler Solution can be gotten by considering £ %T as r increases without bound.
It then follows easily that the xjs can only be 0 or 1. However, in the former Solution
it follows without any further argument that there was no need to restrict a and the
xjs to be real.

We now consider Systems of equations where there are more variables than
equations.

n
Theorem 3: If £ xkr 0, k 1, 2, n — 1, then aside from permutations,

r l
x A e2nirfn

Proof: From A, it follows that

r1 r2=... r„_1 o.

Thus, xn -{ (—l)nTn 0 and the #r's are proportional to the nth roots of unity.
n

Corollary: Ii £x^ 0, k 1,2, n — l,mn, then the xr's are zero.
r-l

n n
Theorem 4: If JJ xkr 0, k 1, 2, n - 2, (« > 4) then S^ Z xt ° where

f-l r 1

» + 1, w + 2, ,2n -3
2n+l, 2n + 2, ,3n~ 4

rn + l, r n + 2, (r + 1) n — r -- 2 (r ^.n — 3)

Proof: Since Tx T2 • • • Tn _ 2,

*« + (_i)-i(*_;_1-rj o. (2)

Multiplying (1) by x, x2, xn~3 and summing over the roots xt, we get

S^-0, £ « + 1, w + 2, 2 » - 3

We now multiply (2) by %n+1, ^n + 2, x2n~4 and sum over the xjs to give

S^==0, ^ 2 tt + 1, 2tt + 2, 3 « - 4

We then continue in the same manner to obtain the remaining values of p.
In a similar way, we can extend Theorem 4 to
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Theorem 5: If % xhr 0, * 1, 2, n - m, (n^2m), then Sp 0 where

tt + 1, tt + 2, ...,2tt+l-2w,
2tt+l, 2tt + 2, ...,3tt+2-3w,

p

r n + 1, r n + 2, (r + 1) n + r — (r + 1) m

and r (m — 1) ^ (n —- 1 — m)

Our last theorem will concern consecutive odd power sums. As to be expected,
we cannot give comparable uniqueness results as before.

Theorem 6: If £ x2j2k-1 0, k 1,2, n, then aside from permutations, the

roots occur in pairs such that xt + x3 0.

Proof: Using the Newton formulae

-1 ~~ -*i ^2 + T2 S2 J2m-3 -•¦• + 5x7,, (2*-l)L-. 0

for m =1,2, ,n and the hypothesis, it follows by induction that

r1=r, r1,_1 o.
2n

Thus, ri{*- XJ) =x2n+ T2x2n~2+ T±x2n-*+ =0.
«-=1

Since the equation is even, the theorem is proved.
As an application, the only Solutions, aside from permutations, of the System of

equations
x + y + z + w a + b + c + d,

x3 + y3 + z3 + w3 a3 + b3 + c3 + d3

x5 + y5 + z5 + w5 a5 + bb + c5 + d5

x1 + yl + z1 + W1 d1 + W + c1 + dn,

where a, b, c, d are given and none of the sums a + b, a + c, a + d, b + c, b+d, c + d

are zero, are

(x, y, z, w) (a, b, c, d).

Ifc + ^ 0 4= a+b, then x a, y b, z + w 0

M. S. Klamkin and D. J. Newman
Ford Scientific Laboratory and Yeshiva University

references
[1] H. Flanders, An Application of the Vandermonde Determinant, Amer. Math. Monthly,

Dec 1953, p. 708.
[2] A. Mostowski, M. Stark, Introduction to Higher Algebra (Pergamon, London 1964),

p. 360-361.
[3] S. Barnard, J. M. Child, Higher Algebra (MacMillan, London 1949), p. 297.
[4] J. L. Coolidge, A. Treatise on Algebraic Plane Curves (Dover, N. Y. 1959), p. 10.


	Uniqueness theorems for power equations

