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Distinct Distances Between Lattice Points

How many points (x;,y;), 1 < <k, with integer coordinates 0 < x;, y; < #,
may be chosen with all mutual distances distinct? By counting such distances, and
pairs of differences of coordinates, we have
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so that £ < #, and for 2 <{ # < 7 such a bound can be attained; e.g. for 2 < n <5,
by the points (1,1), (1,2), (3,1), (4,4) and (5,3); for » = 6 by (1,1), (1,2), (2,4), (4,6),
(6,3) and (6,6); and for » = 7 by (1,1), (1,3), (2,3), (3,7), (4,1), (6,6) and (7,7).

However, the fact that numbers may be expressed in more than one way as the
sum of two squares indicates that this bound cannot be attained for » > 15. A result
of LANDAU [4] states that the number of integers less than x expressible as the sum of
two squares is asymptotically ¢, x (logx)~'2, so we can replace the right member of (1)
by ¢, n? (logn)~12 and we have the upper bound

k <cyn (logn)~v4, (2)

where ¢; is in each case a positive constant.
A heuristic argument can be given to support the conjecture

() R <cyn*(logn)'e, (3)

but it lacks conviction since the corresponding argument in one dimension gives a
false result.
On the other hand we can show

k> n¥3=¢ 4)

for any ¢ > 0 and sufficiently large #, by means of the following construction. Choose
points successively; when % points have been chosen, take another so that

k
(a) it does not lie on any circle having one of the % points as centre and one of the (2)

distinct distances determined by these points as radius.

(b) it does not form, with any of the first % points, a line with slope b/a, (a, b) = 1,
|a] < n18,|b| < n1B. Note that in particular no two points determine a distance less
than n/.
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(c) it is not equidistant from any pair of the first £ points.
We may choose such a point provided that all #»2 points are not excluded by these

conditions.
s k : : k\ .
Condition (a) excludes at most & (2) nes/lo8log » noints, since there are (2> circles

round each of k points, and each circle contains at most n%/1°%61%8 # lattice points?).
Condition (b) excludes at most

nins

k24qo(a) % < cg k Y3
a=1

points, since a line with slope b/a, b < a, (4, b) = 1, contains at most #/a lattice points.
Condition (c) excludes at most (lze) n?3 points, since there are (2) lines of equidi-

stant points, each of which has slope b/a, (4, b) = 1, |a| > »'® and such a line con-
tains at most #n/|a| < n?? lattice points.
Hence, so long as

%_ k3 nc5/10glog " + Ce k n4/3 e _% k2 %2/3 < %2 ,

there remain eligible points, and this is the case if 2 < #2/3~¢. The lower bound (4)

is thus established.
For the corresponding problem in one dimension, the existence of perfect difference

sets [6] shows that for #» an even power of a prime,
k>=nl24 1,
so that generally
B> nl2(1—¢g). (5)
On the other hand it is known [2, 5] that
B < ntl2 4 pylla 41, (6)
In d dimensions, d > 3, we may replace Landau’s theorem by the theorems on
sums of three or four squares, giving an upper bound
kB <c,dV2n, (7)
while the corresponding heuristic argument suggests the conjecture
(?) k< cgd?3n?3 (logn)l/s. (8)

The construction, with (hyper)spheres and (hyper)planes, corresponding to that
given above, yields the same lower bound (4) as before.

One can also ask for configurations containing a minsmum number of points,
determining distinct distances, so that #o point may be added without duplicating

1) 1t is well known that the number of solutions of # = 2? + 4% is less than or equal to d(n), the number
of divisors of # [3] and d(n) < nc/loglog » by a well known result of WicerT [3].
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a distance. Can this be done with as few as O(#1/2) points; or with O(»/3) points in one
dimension?

Another open problem [1] is given any » points in the plane (not necessarily
lattice points) [or in 4 dimensions], how many can one select so that the distances
which are determined are all distinct? P. ErDOs and R. K. Guy, Budapest
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Note on a Diophantine Equation

ScHINZEL and SIERPINSKI [1] have given the general solution of the diophantine
equation

The purpose of this paper is to obtain a complete solution of the diophantine equation

— 2 2
@ +a) 02+ = [a(257) + 2], (1
where a and b are any two given integers.
Let X=x—19, Y=2x+1v; then X =Y (mod 2) and (1) becomes
BP(X2+2XY+Y2+4a)(X2—2XY+Y2+4a)=(a X2+ 40592,
This equation reduces to
b‘((Yz— X224+ 8a (Y2 — X?) + 16a2) = (@ X2+ 4 0"% — 16 a b* X?
and we have
B2(Y2— X2+ 4a)=+4 (a X?—40Y).
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