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Case 1. There exists a u — uy path in G — E(C) not containing vy or a u — v, path in
G — E(C) not containing u; . Without loss of generality, we assume the former, denoting
the path by P. The graph G — E(C) — E(P) has exactly two odd vertices, namely v
and v,, which necessarily belong to the same component G’ of G — E(C) — E(P).
Furthermore, the degree of v, is the same in G — E(C) — E(P) as in G. Let T be a
v-v, eulerian trail in G’; the trail T is thereforc maximal from v in G. Let T, be a
maximal trail from » in G — E(C) — E(T), necessarily terminating at ;. Then 7} is
also maximal in G — E(T). However, E(T) U E(T;) # E(G), which is contradictory.
Case 2. There exists no u — u, path in G — E(C). If there exists a # — v, path in
G — E(C), then we are in Case 1 and a contradiction results. Hence we may assume
that G — E(C) has a u#-v path P containing neither %, nor v,. If P has a vertex of C
different from # or v, then G has a cycle containing only one odd vertex, namely «,
which is impossible. Now the cycle C determines two edge-disjoint #-v paths P; and
P,. Since G is connected, there exists in G either a ¥ — u; path not containing v or a
v — u; path not containing #; assume the former, denoting the # — «; path by P;.
We further suppose that P; does not contain v;; otherwise, we let P, denote the
resulting # — v, path. The path P, has at least one edge which is also an edge of C;
turthermore, P, contains vertices of only one of P, and P, (with the exception of the
vertex u), for otherwise G has a cycle containing only one odd vertex. Suppose P,
contains a vertex of P, different from u or v so that P, has no such vertex. The » — v
paths P and P, combine to form a cycle C; containing # and v but neither %, nor v,.
However, a # — u, path exists in G — E(C,) returning us to Case 1 which yields a
contradiction and completes the proof.
GARY CHARTRAND!) and ARTHUR T. WHITE, Western Michigan University
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Uber hebbare Unstetigkeiten

Die vorliegende Note ist als Beitrag zur Sammlung pathologischer Beispiele der
Analysis gedacht, wie sie etwa in [1] gegeben wird.

Wir betrachten die Menge F|a, b] der auf dem abgeschlossenen Intervall [a, b]
definierten Funktionen, die in jedem Punkt von [a, b] unstetig sind. Eine solche
Funktion ist beispielsweise

I+1 fir xeQ

f(x)zl-—l fir xeR - Q,
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wenn wir wie iiblich mit Q die Menge der rationalen und mit R die Menge der reellen
Zahlen bezeichnen. Bei gegebenem fe F[a, b] definieren wir die beiden folgenden
Mengen: 1) H[f] als Menge derjenigen Punkte von [a, ], in denen die Unstetigkeit
von f hebbar ist, also derjenigen x € [a, b], fiir die Elgr}{ f(&) existiert; 2) U[f] =

(a, b] — H([f], also die Menge derjenigen Punkte von [a, 6], in denen die Unstetigkeit
von f nicht hebbar ist, somit derjenigen x € [a, b], fiir die éh_r)n f(&) nicht existiert.

Wir werden sehen, dass es Funktionen fe F[a, b] gibt, fiir die H[ f] «sehr umfassend »
ist. Es gilt aber auf jeden Fall der folgende

Satz: Fiir jedes f € F[a, b] ist U[f] dicht in [a, b].

Beweis: Es geniigt offenbar zu zeigen, dass fiir jedes Intervall [a, b] stets U[f] + ¢,
wenn f € Fla, b]. Zum Beweise nehmen wir an, es sei U[f] = ¢. Dann existiert also
gl_{r; f(&) fiir jedes x € [a, b].

Deshalb ist die Funktion

F(x) = lim £(§)

E—x

auf ganz [a, b] erklirt. F besitzt folgende drei Eigenschaften:

1) F ist stetig in [a, 8], ‘

2) zu jedem x, € [a, b] und & > 0 existiert § > 0 mit | F(x) — f(x)| < e fiir
0<|x— 7| <9,

3) zu jedem ¢ > 0 gibt es héchstens endlich viele x € [a, b] mit | F(x) — f(x)| > c.
Ad 1). Esseix, € [a, b] und ¢ > 0 beliebig vorgegeben. Nach der Definition von F

existiert 4 > 0 mit |f(&) — F(x,)| << ¢/2 fiir 0 << | & — x| << 4. Fiir dieses § gilt nun

| F(x) — F(%)| < e, falls |x — x| < . Um das einzusehen, wihle man ein x mit

0 < |x — x| << & beliebig aus, denke es sich aber fest gehalten. Wiederum nach

Definition von F existiert ¢’ > 0 mit |f(&) — F(x)| < e¢/2 fir 0 <|&— x| <.

Aufgrund dieser Konstruktion existiert ein Punkt &, mit 0 < | &, — x,| << 6 und

0 < | &, — x| < ¢'. Dann ergibt sich aber in der Tat

|F(x) — Flxo)| < |F(x) — f(Eo) | + |1&) — Flao)| < 5 + 5 =¢.

Ad 2). Einerseits existiert nach 1) ein §; > 0 mit | F(x) — F(x,)| << ¢/2 fiir 0 < |«
— %,| << 6, und andrerseits nach Definition von F ein 8, > 0 mit |f(x) — F(xo)| < &/2
fir 0 < |x — x,| <8,. Wird nun 6 = Min(4,, d,) gesetzt, so gilt in der Tat fiir
0<|x—1x| <$

| F(x) — f(#)| < |F(®) — F(xo) | + | Flxo) — f(2) | <e.

Ad 3). Angenommen es existierten unendlich viele x € [a, b] mit der Eigenschaft
| F(x) — f(x)| = ¢, so besissen diese » einen Hiufungspunkt x, in [a, b]. Nach 2)
existiert sodann ein 8 > 0 mit | F(x) — f(x)| < ¢ fitlr 0 < |x — x,| < 8. Andrerseits
besitzt x, als Hiufungspunkt die Eigenschaft, dass fiir jedes 6 > 0 ein Punkt x; mit
0 << |#; — %| < 0 existiert, fiir den | F(x,) — f(x;)] = ¢ zutrifft. Unsere Annahme
ist also falsch und deshalb die Eigenschaft 3) richtig. ‘

Nach 3) ergibt sich insbesondere, dass es nur endlich viele x € [a, b] mit
| F(x) — f(x)| = 1gibt, etwa: 2, 5}, ..., 21),. Ebenso.gibt es zu jedem natiirlichen
k> 2 nur endlich viele xe[a,b] mit 1/(k—1) > |F(x) — f(x)] = 1/k, etwa:
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2P, 1P, ..., 2. Man setze noch #(1) = 0 bzw. n(k) = 0, falls es kein x € [a, b] mit
| F(x) — f(x)| >1bzw. 1/(k— 1) > | F(x) — f(»)| = 1/k gibt, und weiter S() = 2 n(j)
=1

firi=1,2,3,.... Wéare nun | F(x) — f(x)| > O fiir alle x € [a, b], so bekdme man durch
'xﬁ” fir 1 <7< S(1)

1=

| %)) fir SG) <1< SG+1)

eine Abzdhlung des Kontinuums [a, b]. Es muss deshalb einen Punkt x, € [a, ] mit

| F(%) — f(%)] = 0, also mit F(x,) = f(x,) geben. Das widerspricht aber unserer

Voraussetzung f € F[a, b]. Also muss in der Tat U[f] + ¢ sein. — q.e.d.
Gewissermassen als Gegenstiick zu unserem Satz soll nun anhand von Beispielen

gezeigt werden, dass es Funktionen f € F[a, b] gibt, fiir die H[f] «sehr umfassend» ist.

Dabei kénnen wir unsere Beispiele ohne Einschrankung der Allgemeinheit auf das

Intervall [0, 1] beziehen. Denn ist f € F[a, b], so betrachten wir die Funktion ¢(x) =

a + x (b — a), die [0, 1] topologisch auf [a, b] abbildet. Dann ist aber

glx) = f(p(x)) € F(0, 1]

und es gilt
uf] = e g (5=5) e i)
y—a (1)
HP = {x |g (T=2) € Higl}.
Ausgangspunkt unserer Beispiele ist die auf [0, 1] durch
1 fir x=0 oder x=1
0 fir xeR—-Q
F(x) = |
x fir xeQ und 0 <x < 1/2
1—«x fir xeQ und 1/2<x <1
definierte Funktion F. Offenbar ist F € F[0, 1] und
Es sei zunichst eine endliche Anzahl von Punkten a,, a,, ..., 4, € (0, 1) vorgegeben,
die so numeriert seien, dass a; < a,,, fir¢ =1, 2, ..., #n — 1. Dann gibt es stets eine
Funktion f € F[0, 1] mit #[f] = {0, 1, a4, a,, ..., a,} ndmlich
f(x) =F( ro A ) fir o, <x<a;,, und ¢:=0,1,...,n,
Ait1— ;)

wenn noch a, = O und a, ., = 1 gesetzt wird. Dies ist eine unmittelbare Folge von (1).
Soll 0 bzw. 1 nicht zu H[f] gehoren, so braucht man nur die Abdnderung

" 1}«‘(_12_(14-{?)) fir 0<y <ay
x) =
llr (; (_{15{1‘1)) fir a, <¥ <1

vorzunehmen.
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Um ein weiteres Beispiel zu geben, definieren wir die Funktionen F, =
F,F,,F, F,, ... € J0,1] durch die Rekursion

1 fir x=0
B =
)

1 <! und 1=1,23,..

Fk~~l(l (l+ 1) X — l) fiir ‘m‘ <x < 7

Fiir #[F,] erhalten wir wegen (1) die Rekursion

uwaiﬁwua+nm4emmdnuw}

oder auch
oo

uF) = U iy [ xe #FCa) U (o). @

Zur Abkiirzung setzen wir H[F,] = H,. Wir wissen schon

H,={0,1}.
Daraus folgt nach (2)

#—{U{; 1N},

wenn N wie iiblich die Menge der natiirlichen Zahlen bezeichnet. Wiederum wegen (2)
ergibt sich zunichst

He 0 UL 1N U LA s

Da aber 1 + 7, l,[l, I, (1 + I,) sich fiir /; = 1 auf 1//, redu21ert, vereinfacht sich H, zu

#o— (U (505 b ke N}

Es gilt nun allgemein fiir £ > 2

%:mu{ u%yd..lew (3)

1 ’ l2
wobei

141, 1, fir k=2

VA A b
1+AQ+ZﬁJ%HQu+@u1+@.“a+hd)Mrk>3
1=3

und
N, by oo ) =0y . . LA+ 10) A+1)... A+1).

Die Formel (3) beweist man durch vollstindige Induktion. Fiir £ = 2 ist die Formel
bewiesen. Sie sei demnach richtig fiir 2. Nach (2) folgt dann

7“1:+1:{O}U‘mun»

wobel

i

1
"=l
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und
lk+1+ Z((llll;ll,;))_
O R R s W R LU AL L
Firl,=l,=L=..=1[=1ist
Z(, g, o L) =14+ 14+ 24224 .., 2k-2=2k-1
und

N(ll) lz, ceey lk) — Zk—l
so dass M c N. Zudem ergibt sich
Z(llr Zg ceey lk)

l _
R N by ) by Ny, e ) + 20, 2,.:.,1,3)
k+1 (1 + lk+l) lk+1 (1 + lk+1) N(ll’ l2’ lk)
k+1
1+zz+2:z L) (LA L)  (Hy)

Z(lp lz s Uy lk+1)

e S = e —

Ll Ll (U0 A+ L) . (L F ) N(ll,l,...,lk,lHl) :

Zusammen bedeutet dies die Richtigkeit von (3).

Es soll nun noch auf einige Eigenschaften der Mengen ¥, eingegangen werden.
Wegen
k-1

ZO, L by ) =1+ L+ YL LA+ ) (4
i=2

k=1
:(1+l1)(1+lll+zll L(L+1y) ... (1+119)
ergibt sich
Z by, e by 2y, e be)
N L,y s by N(ll,lg,...,lk_l)'
Das bedeutet aber
U CH, keN. (4)

Es gilt sogar, wenn wir die Menge der Hiufungspunkte einer Menge 4 C R mit 4’
bezeichnen,

—~{1}CH,, keN (5)

so dass H, «sehr rasch» anwichst.
Dass 0 € H;, ist wegen H; C H, klar. Es sei also jetzt ein Punkt

il bl cq 0,1
vorgegeben. Wegen Z(1,1,...,1) = N(1,1,..., 1) ist mindestens eine der Zahlen

Li,ly, ..., b, grosser als 1. Es gibt also genau ein natiirliches m < % — 1 derart,
dass l, =ly=...=1,_, = 1aber, I, > 2. Es sei zuerst m = 1. Dann ist
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1. Z(l, ll— 1, 12, ...’l.’E:_l_)__

e N T =1, Iy, s L)
k-1
L+ 0 -+t —Dhh+ D=V L+ 1) L+
= lim 3
P Tl =0y b LA+l (A )

k-1
h=14 G-+ -V L (14D . (L4
1-=3

=Dl b AF ) (F+ I,y

k-1
b bily+ Dl 1 (L dy) oo (L4 4, y)
1=3

Ll ol (40 L+ T N(l, by o L)

Z(ly, by oo, )

Ist m > 1, so ergibt sich nach dem Beweis von (4)

Z(ll’ lz, ...,lk___l) Z(lm, -")Zk_..l)

= € — 40,1
N, Iy eon b)) NG, by e — {0, 1}
Nach dem eben Bewiesenen und (4) folgt daraus

Z(l, by, oo Ikd)
N, lyy ooy ly)

€ ?‘l;——m—%l C u;e

womit (5) bewiesen ist.

Wir zeigen weiter: Jedes abgeschlossene Teilintervall von [0, 1] mit der Léinge
1/2F enthilt mindestens einen Punkt von ¥, — {1}. Fir 2 =0 und % =1 ist diese
Behauptung klar. Sie sei also allgemein fiir £ bewiesen. Dann betrachten wir ein Teil-
intervall von [0, 1] mit der Lénge 1/2*¥+1, etwa: [a, b]. Enthilt dieses Intervall den
Punkt O oder einen Punkt 1/l mit / — 1€ N, so ist wegen ., D H, nichts zu be-
weisen. Ebenso ist nichts zu beweisen, falls b = 1. Denn dann ist einerseits a =
1 — (1/2%+1) und andrerseits fir l, =2, ly=l;=... =] ;=1

Z(ly, by, oo, k) 14+ 24224 ... 4 2 2k+1__ 1 1
(AP A g = g 17 e € e — {1

In allen andern Fillen gibt es genau ein /€ N mit 1/(/ + 1) < a und 1/I > .

Wir betrachten nun das Intervall [¢,d] mit c=!(l+ 1)a—lundd=I1({+1)b—1I
Wegen (I+1)a> 1undlb << list[¢,d] C[0,1]). Zudem istd —c=1(l+1) (b—a) >1/2*,
Nach Induktionsvoraussetzung existiert dann ein Punkt x € [¢, 4] 0 H, — {1}. Dann
ist aber a <x+ I (l+ 1) <b und wegen (2) auch x+ 1/l (I 4+ 1)e W, ., — {1},
womit der Induktionsschluss vollstindig durchgefiihrt ist. Daraus folgt jetzt leicht:
Ist &, 0 << & < 1, beliebig vorgegeben, so enthilt fiir geniigend grosses % jedes Teil-
intervall von [0, 1] mit der Linge ¢ unendlich viele Punkte von .

Fiir geniigend grosses % ist ndamlich 1/2¥-1 < g. Deshalb enthilt nach vorigem
jedes Teilintervall von [0, 1] mit der Linge ¢ im Innern mindestens einen Punkt von
H,._, — {1}, also wegen (5) unendlich viele Punkte von ¥,.
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Diese letzte Tatsache legt die Frage nahe, ob es sogar eine Funktion fe F[a, b]
gibt, fiir die H[f] dicht ist in [a, b]. Bislang konnte ich jedoch dieses Problem nicht
entscheiden.

Es mag noch eine Verallgemeinerung des beschriebenen Rekursionsverfahrens zur
Gewinnung der F, angegeben werden.

Dazu gehe man von einer streng monoton gegen Null konvergierenden Zahlen-
folge @, mit a, = 1 aus und definiere ausgehend von F, = F

1firx=0

Fylx) =1 4 ¥—a
l_l Fo_, ( aml;ﬁllh) fir a,,, <x<a, und leN.

Die so gegebenen H[F,] besitzen ganz analoge Eigenschaften wie im behandelten Fall

a, = 1/l. Ausserdem wichst H[F,] fiir £ > oo «um so stirker» an, «je langsamer» a,

gegen Null konvergiert. Frangols FRICKER, Basel
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Kleine Mitteilungen

A New Condition for Consecutive Primitive Roots of a Prime

In [1] we have shown that if p > 3 is a prime such that ¢(p — 1)/(p — 1) > 1/3 then
there is at least one pair of consecutive primitive roots modulo p. In this note we shall give
a new condition that there be consecutive primitive roots for primes of the form 4 » 4 1.

Theorem 1. If the prime p = 4 » + 1 has 2 as a primitive root then there is at least one
pair of consecutive primitive roots modulo p.

Proof. If g is a primitive root of a prime p, then the congruence g + = 1 (mod p) has
x = gP~? for its unique solution; since (p — 2, p — 1) = 1, x is also a primitive root of p.
If p =1 (mod 4), it is well known that if g is a primitive root of p, then so is — g.

Let p =4 n + 1 be a prime and 2 a primitive root of p. Then — 2 is also a primitive
root and the congruence (— 2) g = 1 (mod $), has a primitive root g for its solution. It
follows then that 2 (g + 1) = 1 (mod p), so that g 4+ 1 is also a primitive root of p.

The following theorem may also be of interest here.

Theorem 2. If the prime p = 4 » + 1 has exactly one pair of consecutive primitive
roots, then 2 is a primitive root of p.

Proof. Let 0 < g < g+ 1 < p be consecutive primitive roots of p. Then
0<p—(g+1) <p—g < p are also consecutive primitive roots of p. Since there is
exactly one pair of consecutive primitive roots of p, we obtain p — (g+ 1) =g, or
(— 2) g =1 (mod p). Thus — 2, and hence 2, is a primitive root of p.

EMANUEL VEGH, U.S. Naval Research Laboratory, Washington, D.C.
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