Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 25 (1970)

Heft: 5

Artikel: Über hebbare Unstetigkeiten

Autor: Fricker, François

DOI: https://doi.org/10.5169/seals-27358

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Case 1. There exists a $u-u_1$ path in G-E(C) not containing v_1 or a $u-v_1$ path in G-E(C) not containing u_1 . Without loss of generality, we assume the former, denoting the path by P. The graph G-E(C)-E(P) has exactly two odd vertices, namely v and v_1 , which necessarily belong to the same component G' of G-E(C)-E(P). Furthermore, the degree of v_1 is the same in G-E(C)-E(P) as in G. Let G be a v-G eulerian trail in G'; the trail G is therefore maximal from G in G. Let G be a maximal trail from G in G in G in G is also maximal in G in G. However, G in G is contradictory.

Case 2. There exists no $u-u_1$ path in G-E(C). If there exists a $u-v_1$ path in G-E(C), then we are in Case 1 and a contradiction results. Hence we may assume that G-E(C) has a u-v path P containing neither u_1 nor v_1 . If P has a vertex of C different from u or v, then G has a cycle containing only one odd vertex, namely u, which is impossible. Now the cycle C determines two edge-disjoint u-v paths P_1 and P_2 . Since G is connected, there exists in G either a $u-u_1$ path not containing v or a $v-u_1$ path not containing u; assume the former, denoting the $u-u_1$ path by P_3 . We further suppose that P_3 does not contain v_1 ; otherwise, we let P_3 denote the resulting $u-v_1$ path. The path P_3 has at least one edge which is also an edge of C; furthermore, P_3 contains vertices of only one of P_1 and P_2 (with the exception of the vertex u), for otherwise G has a cycle containing only one odd vertex. Suppose P_1 contains a vertex of P_3 different from u or v so that P_2 has no such vertex. The u-v paths P and P_2 combine to form a cycle C_1 containing u and v but neither u_1 nor v_1 . However, a $u-u_1$ path exists in $G-E(C_1)$ returning us to Case 1 which yields a contradiction and completes the proof.

GARY CHARTRAND¹) and ARTHUR T. WHITE, Western Michigan University

REFERENCES

- [1] L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. I. Petropol. 8, 128-140 (1736).
- [2] F. HARARY, Graph Theory (Addison-Wesley, Reading 1969).
- [3] O. Ore, A Problem Regarding the Tracing of Graphs, El. Math. 6, 49-53 (1951).

Über hebbare Unstetigkeiten

Die vorliegende Note ist als Beitrag zur Sammlung pathologischer Beispiele der Analysis gedacht, wie sie etwa in [1] gegeben wird.

Wir betrachten die Menge $\mathcal{F}[a, b]$ der auf dem abgeschlossenen Intervall [a, b] definierten Funktionen, die in jedem Punkt von [a, b] unstetig sind. Eine solche Funktion ist beispielsweise

$$f(x) = \begin{cases} +1 & \text{für } x \in \mathbf{Q} \\ -1 & \text{für } x \in \mathbf{R} - \mathbf{Q}, \end{cases}$$

¹⁾ Research supported in part by National Science Foundation, grant GP-9435.

wenn wir wie üblich mit Q die Menge der rationalen und mit R die Menge der reellen Zahlen bezeichnen. Bei gegebenem $f \in \mathcal{F}[a,b]$ definieren wir die beiden folgenden Mengen: 1) $\mathcal{H}[f]$ als Menge derjenigen Punkte von [a,b], in denen die Unstetigkeit von f hebbar ist, also derjenigen $x \in [a,b]$, für die $\lim_{\xi \to x} f(\xi)$ existiert; 2) $\mathcal{U}[f] = [a,b] - \mathcal{H}[f]$, also die Menge derjenigen Punkte von [a,b], in denen die Unstetigkeit von f nicht hebbar ist, somit derjenigen $x \in [a,b]$, für die $\lim_{\xi \to x} f(\xi)$ nicht existiert.

Wir werden sehen, dass es Funktionen $f \in \mathcal{F}[a, b]$ gibt, für die $\mathcal{H}[f]$ «sehr umfassend» ist. Es gilt aber auf jeden Fall der folgende

Satz: Für jedes $f \in \mathcal{F}[a, b]$ ist $\mathcal{U}[f]$ dicht in [a, b].

Beweis: Es genügt offenbar zu zeigen, dass für jedes Intervall [a, b] stets $\mathcal{U}[f] \neq \phi$, wenn $f \in \mathcal{F}[a, b]$. Zum Beweise nehmen wir an, es sei $\mathcal{U}[f] = \phi$. Dann existiert also $\lim_{\xi \to x} f(\xi)$ für jedes $x \in [a, b]$.

Deshalb ist die Funktion

$$F(x) = \lim_{\xi \to x} f(\xi)$$

auf ganz [a, b] erklärt. F besitzt folgende drei Eigenschaften:

- 1) F ist stetig in [a, b],
- 2) zu jedem $x_0 \in [a, b]$ und $\varepsilon > 0$ existiert $\delta > 0$ mit $|F(x) f(x)| < \varepsilon$ für $0 < |x x_0| < \delta$,
- 3) zu jedem c > 0 gibt es höchstens endlich viele $x \in [a, b]$ mit $|F(x) f(x)| \ge c$.

Ad 1). Es sei $x_0 \in [a, b]$ und $\varepsilon > 0$ beliebig vorgegeben. Nach der Definition von F existiert $\delta > 0$ mit $|f(\xi) - F(x_0)| < \varepsilon/2$ für $0 < |\xi - x_0| < \delta$. Für dieses δ gilt nun $|F(x) - F(x_0)| < \varepsilon$, falls $|x - x_0| < \delta$. Um das einzusehen, wähle man ein x mit $0 < |x - x_0| < \delta$ beliebig aus, denke es sich aber fest gehalten. Wiederum nach Definition von F existiert $\delta' > 0$ mit $|f(\xi) - F(x)| < \varepsilon/2$ für $0 < |\xi - x| < \delta'$. Aufgrund dieser Konstruktion existiert ein Punkt ξ_0 mit $0 < |\xi_0 - x_0| < \delta$ und $0 < |\xi_0 - x| < \delta'$. Dann ergibt sich aber in der Tat

$$|F(x) - F(x_0)| \leqslant |F(x) - f(\xi_0)| + |f(\xi_0) - F(x_0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Ad 2). Einerseits existiert nach 1) ein $\delta_1 > 0$ mit $|F(x) - F(x_0)| < \varepsilon/2$ für $0 < |x - x_0| < \delta_1$ und andrerseits nach Definition von F ein $\delta_2 > 0$ mit $|f(x) - F(x_0)| < \varepsilon/2$ für $0 < |x - x_0| < \delta_2$. Wird nun $\delta = \text{Min}(\delta_1, \delta_2)$ gesetzt, so gilt in der Tat für $0 < |x - x_0| < \delta$

$$|F(x)-f(x)| \leqslant |F(x)-F(x_0)| + |F(x_0)-f(x)| < \varepsilon.$$

Ad 3). Angenommen es existierten unendlich viele $x \in [a, b]$ mit der Eigenschaft $|F(x) - f(x)| \ge c$, so besässen diese x einen Häufungspunkt x_0 in [a, b]. Nach 2) existiert sodann ein $\delta > 0$ mit |F(x) - f(x)| < c für $0 < |x - x_0| < \delta$. Andrerseits besitzt x_0 als Häufungspunkt die Eigenschaft, dass für jedes $\delta > 0$ ein Punkt x_1 mit $0 < |x_1 - x_0| < \delta$ existiert, für den $|F(x_1) - f(x_1)| \ge c$ zutrifft. Unsere Annahme ist also falsch und deshalb die Eigenschaft 3) richtig.

Nach 3) ergibt sich insbesondere, dass es nur endlich viele $x \in [a, b]$ mit $|F(x) - f(x)| \ge 1$ gibt, etwa: $x_1^{(1)}, x_2^{(1)}, \ldots, x_{n(1)}^{(1)}$. Ebenso gibt es zu jedem natürlichen $k \ge 2$ nur endlich viele $x \in [a, b]$ mit $1/(k-1) > |F(x) - f(x)| \ge 1/k$, etwa:

 $x_1^{(k)}, x_2^{(k)}, \ldots, x_{n(k)}^{(k)}$. Man setze noch n(1) = 0 bzw. n(k) = 0, falls es kein $x \in [a, b]$ mit $|F(x) - f(x)| \ge 1$ bzw. $1/(k-1) > |F(x) - f(x)| \ge 1/k$ gibt, und weiter $S(i) = \sum_{j=1}^{i} n(j)$ für $i = 1, 2, 3, \ldots$ Wäre nun |F(x) - f(x)| > 0 für alle $x \in [a, b]$, so bekäme man durch

$$x_l = \begin{cases} x_l^{(1)} & \text{für } 1 \leqslant l \leqslant S(1) \\ x_{l-S(i)}^{(i+1)} & \text{für } S(i) < l \leqslant S \ (i+1) \end{cases}$$

eine Abzählung des Kontinuums [a, b]. Es muss deshalb einen Punkt $x_0 \in [a, b]$ mit $|F(x_0) - f(x_0)| = 0$, also mit $F(x_0) = f(x_0)$ geben. Das widerspricht aber unserer Voraussetzung $f \in \mathcal{F}[a, b]$. Also muss in der Tat $\mathcal{U}[f] \neq \phi$ sein. – q.e.d.

Gewissermassen als Gegenstück zu unserem Satz soll nun anhand von Beispielen gezeigt werden, dass es Funktionen $f \in \mathcal{F}[a, b]$ gibt, für die $\mathcal{H}[f]$ «sehr umfassend» ist. Dabei können wir unsere Beispiele ohne Einschränkung der Allgemeinheit auf das Intervall [0, 1] beziehen. Denn ist $f \in \mathcal{F}[a, b]$, so betrachten wir die Funktion $\varphi(x) = a + x \ (b - a)$, die [0, 1] topologisch auf [a, b] abbildet. Dann ist aber

$$g(x) = f(\varphi(x)) \in \mathcal{F}[0, 1]$$

und es gilt

$$\mathbf{\mathcal{U}}[f] = \left\{ x \mid g\left(\frac{x-a}{b-a}\right) \in \mathbf{\mathcal{U}}[g] \right\}
\mathbf{\mathcal{H}}[f] = \left\{ x \mid g\left(\frac{x-a}{b-a}\right) \in \mathbf{\mathcal{H}}[g] \right\}.$$
(1)

Ausgangspunkt unserer Beispiele ist die auf [0, 1] durch

$$F(x) = \begin{cases} 1 & \text{für } x = 0 \text{ oder } x = 1 \\ 0 & \text{für } x \in \mathbb{R} - \mathbb{Q} \\ x & \text{für } x \in \mathbb{Q} \text{ und } 0 < x < 1/2 \\ 1 - x & \text{für } x \in \mathbb{Q} \text{ und } 1/2 \leqslant x < 1 \end{cases}$$

definierte Funktion F. Offenbar ist $F \in \mathcal{F}[0, 1]$ und

$$\mathcal{H}[F] = \{0, 1\}.$$

Es sei zunächst eine endliche Anzahl von Punkten $a_1, a_2, \ldots, a_n \in (0, 1)$ vorgegeben, die so numeriert seien, dass $a_i < a_{i+1}$ für $i=1,2,\ldots,n-1$. Dann gibt es stets eine Funktion $f \in \mathcal{F}[0,1]$ mit $\mathcal{H}[f] = \{0,1,a_1,a_2,\ldots,a_n\}$ nämlich

$$f(x) = F\left(\frac{x-a_i}{a_{i+1}-a_i}\right)$$
 für $a_i \leqslant x \leqslant a_{i+1}$ und $i = 0, 1, ..., n$,

wenn noch $a_0 = 0$ und $a_{n+1} = 1$ gesetzt wird. Dies ist eine unmittelbare Folge von (1). Soll 0 bzw. 1 nicht zu $\mathcal{H}[f]$ gehören, so braucht man nur die Abänderung

$$f(x) = \begin{cases} F\left(\frac{1}{2}\left(1 + \frac{x}{a_1}\right)\right) & \text{für } 0 \leq x < a_1 \\ F\left(\frac{1}{2}\left(\frac{x - a_n}{1 - a_n}\right)\right) & \text{für } a_n < x \leq 1 \end{cases}$$

vorzunehmen.

Um ein weiteres Beispiel zu geben, definieren wir die Funktionen $F_0=F$, F_1 , F_2 , F_3 , $\ldots\in \mathcal{F}[0,1]$ durch die Rekursion

$$F_k(x) = \begin{cases} 1 & \text{für } x = 0 \\ \frac{1}{l} F_{k-1}(l(l+1)x - l) & \text{für } \frac{1}{l+1} \le x \le \frac{1}{l} & \text{und } l = 1, 2, 3, \dots \end{cases}$$

Für $\mathcal{H}[F_k]$ erhalten wir wegen (1) die Rekursion

$$\mathcal{H}[F_k] = \bigcup_{l=1}^{\infty} \{x \mid l \ (l+1) \ x - l \in \mathcal{H}[F_{k-1}]\} \ \bigcup \ \{0\}$$

oder auch

$$\mathcal{H}[F_k] = \bigcup_{l=1}^{\infty} \left\{ \frac{x+l}{l(l+1)} \mid x \in \mathcal{H}[F_{k-1}] \right\} \bigcup \left\{ 0 \right\}. \tag{2}$$

Zur Abkürzung setzen wir $\mathcal{H}[F_k] = \mathcal{H}_k$. Wir wissen schon

$$\mathcal{H}_0 = \{0, 1\}$$
.

Daraus folgt nach (2)

$$\mathcal{H}_1 = \{0\} \cup \left\{\frac{1}{l} \mid l \in \mathbb{N}\right\},$$

wenn N wie üblich die Menge der natürlichen Zahlen bezeichnet. Wiederum wegen (2) ergibt sich zunächst

$$\mathcal{H}_2 = \{0\} \ \mathbf{U} \left\{ \frac{1}{l+1} \ \middle| \ l \in \mathbf{N} \right\} \ \mathbf{U} \left\{ \frac{1+l_1 l_2}{l_1 l_2 (1+l_2)} \ \middle| \ l_1, \ l_2 \in \mathbf{N} \right\}.$$

Da aber $1+l_1\,l_2/l_1\,l_2\,(1+l_2)$ sich für $l_1=1$ auf $1/l_2$ reduziert, vereinfacht sich \mathcal{H}_2 zu

$$\mathcal{H}_2 = \{0\} \ \mathbf{U} \left\{ \frac{1 + l_1 l_2}{l_1 l_2 (1 + l_2)} \ \middle| \ l_1, \ l_2 \in \mathbf{N} \right\}.$$

Es gilt nun allgemein für $k \geqslant 2$

$$\mathcal{H}_{k} = \{0\} \cup \left\{ \frac{Z(l_{1}, l_{2}, \dots, l_{k})}{N(l_{1}, l_{2}, \dots, l_{k})} \middle| l_{1}, l_{2}, \dots, l_{k} \in \mathbb{N} \right\}$$
(3)

wobei

$$Z(l_1, l_2, \dots, l_k) = \begin{cases} 1 + l_1 l_2 & \text{für } k = 2 \\ 1 + l_1 l_2 + \sum_{i=3}^{k} l_1 l_2 \dots l_i & (1 + l_2) & (1 + l_3) \dots & (1 + l_{i-1}) & \text{für } k \geqslant 3 \end{cases}$$

und

$$N(l_1, l_2, \ldots, l_k) = l_1 l_2 \ldots l_k (1 + l_2) (1 + l_3) \ldots (1 + l_k)$$

Die Formel (3) beweist man durch vollständige Induktion. Für k=2 ist die Formel bewiesen. Sie sei demnach richtig für k. Nach (2) folgt dann

$$\mathcal{H}_{k+1} = \{0\} \cup \mathcal{M} \cup \mathcal{N}$$

wobei

$$m = \left\{ \frac{1}{l+1} \mid l \in \mathbb{N} \right\}$$

und

$$\mathcal{H} = \left\{ \frac{l_{k+1} + \frac{Z(l_1, l_2, \dots, l_k)}{N(l_1, l_2, \dots, l_k)}}{l_{k+1} (1 + l_{k+1})} \middle| l_1, l_2, \dots, l_k, l_{k+1} \in \mathbb{N} \right\}.$$

Für $l_1 = l_2 = l_3 = \dots = l_k = 1$ ist

$$Z(l_1, l_2, \ldots, l_k) = 1 + 1 + 2 + 2^2 + \ldots + 2^{k-2} = 2^{k-1}$$

und

$$N(l_1, l_2, \ldots, l_k) = 2^{k-1}$$

so dass $\mathcal{M} \subset \mathcal{N}$. Zudem ergibt sich

$$\begin{split} \frac{l_{k+1} + \frac{Z(l_1, l_2, \dots, l_k)}{N(l_1, l_2, \dots, l_k)}}{l_{k+1} \left(1 + l_{k+1}\right)} &= \frac{l_{k+1} \, N(l_1, l_2, \dots, l_k) + Z(l_1, l_2, \dots, l_k)}{l_{k+1} \left(1 + l_{k+1}\right) \, N(l_1, l_2, \dots, l_k)} \\ &= \frac{1 + l_1 \, l_2 + \sum_{i=1}^{k+1} l_1 \, l_2 \dots l_i \, (1 + l_2) \, (1 + l_3) \dots (1 + l_{i-1})}{l_1 \, l_2 \dots l_k \, l_{k+1} \, (1 + l_2) \, (1 + l_3) \dots (1 + l_{k+1})} &= \frac{Z(l_1, l_2, \dots, l_k, l_{k+1})}{N(l_1, l_2, \dots, l_k, l_{k+1})} \, . \end{split}$$

Zusammen bedeutet dies die Richtigkeit von (3).

Es soll nun noch auf einige Eigenschaften der Mengen \mathcal{H}_k eingegangen werden. Wegen

$$\begin{split} Z(1,\,l_1,\,l_2,\,\ldots\,,\,l_{k-1}) &= 1 + l_1 + \sum_{i=2}^{k-1} l_1\,l_2\,\ldots\,l_i\,(1+l_1)\,\ldots\,(1+l_{i-1}) \\ &= (1+l_1)\,\big(1+l_1\,l_2 + \sum_{i=3}^{k-1} l_1\,l_2\,\ldots\,l_i\,(1+l_2)\,\ldots\,(1+l_{i-1})\big) \end{split}$$

ergibt sich

$$\frac{Z(1, l_1, l_2, \dots, l_{k-1})}{N(1, l_1, l_2, \dots, l_{k-1})} = \frac{Z(l_1, l_2, \dots, l_{k-1})}{N(l_1, l_2, \dots, l_{k-1})}.$$

Das bedeutet aber

$$\mathcal{H}_{k-1} \subset \mathcal{H}_k$$
, $k \in \mathbb{N}$. (4)

Es gilt sogar, wenn wir die Menge der Häufungspunkte einer Menge $\mathcal{A} \subset \mathbb{R}$ mit \mathcal{A}' bezeichnen,

$$\mathcal{H}_{k-1} - \{1\} \subset \mathcal{H}'_k$$
, $k \in \mathbb{N}$ (5)

so dass \mathcal{H}_k «sehr rasch» anwächst.

Dass $0 \in \mathcal{H}_k'$, ist wegen $\mathcal{H}_1 \subset \mathcal{H}_k$ klar. Es sei also jetzt ein Punkt

$$\frac{Z(l_1, l_2, \dots, l_{k-1})}{N(l_1, l_2, \dots, l_{k-1})} \in \mathcal{H}_{k-1} - \{0, 1\}$$

vorgegeben. Wegen $Z(1,1,\ldots,1)=N(1,1,\ldots,1)$ ist mindestens eine der Zahlen l_1,l_2,\ldots,l_{k-1} grösser als 1. Es gibt also genau ein natürliches $m\leqslant k-1$ derart, dass $l_1=l_2=\ldots=l_{m-1}=1$ aber, $l_m\geqslant 2$. Es sei zuerst m=1. Dann ist

$$\lim_{l \to \infty} \frac{Z(l, l_1 - 1, l_2, \dots, l_{k-1})}{N(l, l_1 - 1, l_2, \dots, l_{k+1})}$$

$$\begin{split} =&\lim_{l\to\infty}\frac{1+l\left(l_{1}-1\right)+l\left(l_{1}-1\right)\,l_{2}\,l_{1}+\sum_{i=3}^{k-1}l\left(l_{1}-1\right)\,l_{2}\,\ldots\,l_{i}\,l_{1}\left(1+l_{2}\right)\,\ldots\,\left(1+l_{i-1}\right)}{l\left(l_{1}-1\right)\,l_{2}\,\ldots\,l_{k-1}\,l_{1}\left(1+l_{2}\right)\,\ldots\,\left(1+l_{k-1}\right)} \\ &=\frac{l_{1}-1+\left(l_{1}-1\right)\,l_{2}\,l_{1}+\sum_{i=3}^{k-1}\left(l_{1}-1\right)\,l_{2}\,\ldots\,l_{i}\,l_{1}\left(1+l_{2}\right)\,\ldots\,\left(1+l_{i-1}\right)}{\left(l_{1}-1\right)\,l_{2}\,\ldots\,l_{k-1}\,l_{1}\left(1+l_{2}\right)\,\ldots\,\left(1+l_{k-1}\right)} \\ &=\frac{1+l_{1}\,l_{2}+\sum_{i=3}^{k-1}l_{1}\,l_{2}\,\ldots\,l_{i}\left(1+l_{2}\right)\,\ldots\,\left(1+l_{i-1}\right)}{l_{1}\,l_{2}\,\ldots\,l_{k-1}\left(1+l_{2}\right)\,\ldots\,\left(1+l_{k-1}\right)} =\frac{Z\left(l_{1},\,l_{2},\,\ldots\,,\,l_{k-1}\right)}{N\left(l_{1},\,l_{2},\,\ldots\,,\,l_{k-1}\right)}\,. \end{split}$$

Ist m > 1, so ergibt sich nach dem Beweis von (4)

$$\frac{Z(l_1, l_2, \dots, l_{k-1})}{N(l_1, l_2, \dots, l_{k-1})} = \frac{Z(l_m, \dots, l_{k-1})}{N(l_m, \dots, l_{k-1})} \in \mathcal{H}_{k-m} - \{0, 1\}$$

Nach dem eben Bewiesenen und (4) folgt daraus

$$\frac{Z(l_1, l_2, \dots, l_{k-1})}{N(l_1, l_2, \dots, l_{k-1})} \in \mathcal{H}'_{k-m+1} \subset \mathcal{H}'_k$$

womit (5) bewiesen ist.

Wir zeigen weiter: Jedes abgeschlossene Teilintervall von [0,1] mit der Länge $1/2^k$ enthält mindestens einen Punkt von $\mathcal{H}_k - \{1\}$. Für k=0 und k=1 ist diese Behauptung klar. Sie sei also allgemein für k bewiesen. Dann betrachten wir ein Teilintervall von [0,1] mit der Länge $1/2^{k+1}$, etwa: [a,b]. Enthält dieses Intervall den Punkt 0 oder einen Punkt 1/l mit $l-1 \in \mathbb{N}$, so ist wegen $\mathcal{H}_{k+1} \supset \mathcal{H}_1$ nichts zu beweisen. Ebenso ist nichts zu beweisen, falls b=1. Denn dann ist einerseits $a=1-(1/2^{k+1})$ und andrerseits für $l_1=2$, $l_2=l_3=\ldots=l_{k+1}=1$

$$\frac{Z(l_1, l_2, \ldots, l_{k+1})}{N(l_1, l_2, \ldots, l_{k+1})} = \frac{1+2+2^2+\ldots+2^k}{2^{k+1}} = \frac{2^{k+1}-1}{2^{k+1}} = 1 - \frac{1}{2^{k+1}} \in \mathcal{H}_{k+1} - \{1\}.$$

In allen andern Fällen gibt es genau ein $l \in \mathbb{N}$ mit 1/(l+1) < a und 1/l > b.

Wir betrachten nun das Intervall [c,d] mit c=l (l+1) a-l und d=l (l+1) b-l. Wegen (l+1) a>1 und l b<1 ist $[c,d]\subset [0,1]$. Zudem ist d-c=l (l+1) $(b-a)\geqslant 1/2^k$. Nach Induktionsvoraussetzung existiert dann ein Punkt $x\in [c,d]\cap \mathcal{H}_k-\{1\}$. Dann ist aber $a\leqslant x+l/l$ $(l+1)\leqslant b$ und wegen (2) auch x+l/l $(l+1)\in \mathcal{H}_{k+1}-\{1\}$, womit der Induktionsschluss vollständig durchgeführt ist. Daraus folgt jetzt leicht: Ist ε , $0<\varepsilon<1$, beliebig vorgegeben, so enthält für genügend grosses k jedes Teilintervall von [0,1] mit der Länge ε unendlich viele Punkte von \mathcal{H}_k .

Für genügend grosses k ist nämlich $1/2^{k-1} < \varepsilon$. Deshalb enthält nach vorigem jedes Teilintervall von [0, 1] mit der Länge ε im Innern mindestens einen Punkt von $\mathcal{H}_{k-1} - \{1\}$, also wegen (5) unendlich viele Punkte von \mathcal{H}_k .

Diese letzte Tatsache legt die Frage nahe, ob es sogar eine Funktion $f \in \mathcal{F}[a, b]$ gibt, für die $\mathcal{H}[f]$ dicht ist in [a, b]. Bislang konnte ich jedoch dieses Problem nicht entscheiden.

Es mag noch eine Verallgemeinerung des beschriebenen Rekursionsverfahrens zur Gewinnung der F_k angegeben werden.

Dazu gehe man von einer streng monoton gegen Null konvergierenden Zahlenfolge a_l mit $a_1=1$ aus und definiere ausgehend von $F_0=F$

$$F_k(x) = \begin{cases} 1 \text{ für } x = 0 \\ \\ \frac{1}{l} F_{k-1} \left(\frac{x - a_{l+1}}{a_l - a_{l+1}} \right) & \text{für } a_{l+1} \leqslant x \leqslant a_l \text{ und } l \in \mathbb{N} \end{cases}.$$

Die so gegebenen $\mathcal{H}[F_k]$ besitzen ganz analoge Eigenschaften wie im behandelten Fall $a_l=1/l$. Ausserdem wächst $\mathcal{H}[F_k]$ für $k \to \infty$ «um so stärker» an, «je langsamer» a_l gegen Null konvergiert. François Fricker, Basel

LITERATURVERZEICHNIS

[1] Gelbaum-Olmsted, Counterexamples in Analysis (Holden-Day Inc., San Francisco 1964).

Kleine Mitteilungen

A New Condition for Consecutive Primitive Roots of a Prime

In [1] we have shown that if p > 3 is a prime such that $\varphi(p-1)/(p-1) > 1/3$ then there is at least one pair of consecutive primitive roots modulo p. In this note we shall give a new condition that there be consecutive primitive roots for primes of the form 4n + 1.

Theorem 1. If the prime p = 4 n + 1 has 2 as a primitive root then there is at least one pair of consecutive primitive roots modulo p.

Proof. If g is a primitive root of a prime p, then the congruence $g x \equiv 1 \pmod{p}$ has $x \equiv g^{p-2}$ for its unique solution; since (p-2, p-1) = 1, x is also a primitive root of p. If $p \equiv 1 \pmod{4}$, it is well known that if g is a primitive root of p, then so is -g.

Let p = 4 n + 1 be a prime and 2 a primitive root of p. Then -2 is also a primitive root and the congruence (-2) $g \equiv 1 \pmod{p}$, has a primitive root g for its solution. It follows then that $2(g + 1) \equiv 1 \pmod{p}$, so that g + 1 is also a primitive root of p.

The following theorem may also be of interest here.

Theorem 2. If the prime p = 4 n + 1 has exactly one pair of consecutive primitive roots, then 2 is a primitive root of p.

Proof. Let 0 < g < g + 1 < p be consecutive primitive roots of p. Then 0 are also consecutive primitive roots of <math>p. Since there is exactly one pair of consecutive primitive roots of p, we obtain p - (g + 1) = g, or (-2) $g \equiv 1 \pmod{p}$. Thus -2, and hence 2, is a primitive root of p.

EMANUEL VEGH, U.S. Naval Research Laboratory, Washington, D.C.

REFERENCE

[1] E. Vegh, Pairs of Consecutive Primitive Roots Modulo a Prime, Proc. Am. Math. Soc. 19, 1169-1170 (1968).