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Case 1 I here exists au — ux path mG — E(C) not contammg v^or a u — vx path in
G — E(C) not contammg ux Without loss of generality, we assume the former, denotmg
the path by P The graph G — E(C) — E(P) has exactly two odd vertices, namely v
and vx, which necessarily belong to the same component G' of G — E(C) — E(P)
Furthermore, the degree of vx is the same in G — E(C) — E(P) as in G Let 7 be a

v-vx eulerian trail m G', the trail T is therefore maximal from v m G Let I x be a
maximal trail from u in G — E(C) — E(T), necessarily terminatmg at u} 1 hen Tx is
also maximal in G — E(T) However, E(T) \J E(TX) =# E(G), which is contradictorv

Case 2 There exists no u — ux path in G — E(C) If there exists & u — vx path in
G — E(C) then we are in Case 1 and a contradiction results Hence we may assume
that G — E(C) has a u-v path P contammg neither ux nor vx If P has a vertex of C

different from u or v, then G has a cycle contammg onlv one odd vertex, namely u,
which is impossible Now the cycle C determines two edge disjomt u-v paths Px and
P2 Smce G is connected, there exists m G either a u — ux path not contammg Dora
v — ux path not contammg u, assume the former, denotmg the u — ux path by P3
We further suppose that P3 does not contain vx, otherwise, we let P3 denote the
lesultmg u — vx path The path P3 has at least one edge which is also an edge of C,
furthermore, P3 contams vertices of onl\ one of Px and P2 (with the exception of the
vertex u), for otherwise G has a cycle contammg only one odd vertex Suppose P1
ontams a vertex of P3 different from u or v so that P2 has no such vertex I he u — v

paths P and P2 combine to form a cycle Cx contammg u and v but neither ux nor vx

However, a u — ux path exists in G — E(CX) returnmg us to Case 1 which yields a

contradiction and completes the proof
Gary Chartrand1) and Arthur 1 Whitf, Westein Michigan University
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Über hebbare Unstetigkeiten
Die vorliegende Note ist als Beitrag zur Sammlung pathologischer Beispiele der

Analysis gedacht, wie sie etwa in fl] gegeben wird
Wir betrachten die Menge J\at b] der auf dem abgeschlossenen Intervall [a, b]

definierten Funktionen, die m jedem Punkt von \a, b] unstetig smd Eine solche

Funktion ist beispielsweise

+ 1 für x e Q

-1 fur %eR-Q,
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wenn wir wie üblich mit Q die Menge der rationalen und mit R die Menge der reellen
Zahlen bezeichnen. Bei gegebenem fe3[a, b] definieren wir die beiden folgenden
Mengen: 1) 1t[f] als Menge derjenigen Punkte von [a, b], in denen die Unstetigkeit
von / hebbar ist, also derjenigen xe[a, b], für die lim/(£) existiert; 2) Xl[f]
[a, b] — lt[f]t also die Menge derjenigen Punkte von [a, b], in denen die Unstetigkeit
von/nicht hebbar ist, somit derjenigen xe [a, b], für die lim/(f) nicht existiert.

|—>x

Wir werden sehen, dass es Funktionen/G *3\a, b] gibt, für die tl[f] «sehr umfassend»
ist. Es gilt aber auf jeden Fall der folgende

Satz: Für jedes fe *3\a, b] ist %l[f] dicht in [a, b].

Beweis: Es genügt offenbar zu zeigen, dass für jedes Intervall [a, b] stets %l[f] =¥ <f>,

wenn/e *3\a, b]. Zum Beweise nehmen wir an, es sei *U[f] (f>. Dann existiert also

lim/(|) für jedes x e [a, b].

Deshalb ist die Funktion

F(*) li__/(*)
g—*-x

auf ganz [af b] erklärt. F besitzt folgende drei Eigenschaften:
1) F ist stetig in [a, b],
2) zu jedem xQ E [a, b] und e > 0 existiert ö > 0 mit \F(x) — f(x)\ < e für

0< \x~xQ\ <d,
3) zu jedem c > 0 gibt es höchstens endlich viele x e [a, b] mit | F(x) — f(x) | > c.

Ad 1). Es sei x0 E [a, b] und e > 0 beliebig vorgegeben. Nach der Definition von F
existiert d > 0 mit |/(|) — F(xQ) \ < s/2 für 0 < | £ — xQ\ < <5. Für dieses d gilt nun
\F(x) — F(x0)\ < e, falls \x — xQ\ < d. Um das einzusehen, wähle man ein x mit
0 < \x — x0\ < d beliebig aus, denke es sich aber fest gehalten. Wiederum nach
Definition von F existiert d' > 0 mit |/(f) - F(x)\ < c/2 für 0 < | f - x\ < d'.

Aufgrund dieser Konstruktion existiert ein Punkt f0 mit 0 < |£0 — x0\ < d und
0 < | lo ~~ x\ < <5'- Dann ergibt sich aber in der Tat

\F(x) - F(x0)\ < \F(x)-f(SJ\ + |/(lo) - -FWI < y + \ =*•
Ad 2). Einerseits existiert nach 1) ein öx > 0 mit | F(x) — F(x0) | < e/2 für 0 < | x

— #0| < öx und andrerseits nach Definition von F ein d2 > 0 mit |/(#) — F(#0) | < e\2
für 0 < \% — x0\ < 32. Wird nun <5 Min(<5X, d2) gesetzt, so gilt in der Tat für
0< \x~-x0\ <d

\F(x)-f(x)\ < \F(x) - F(xQ)\ + \F(x0) - f(x)\<e.
Ad 3). Angenommen es existierten unendlich viele xe [a, b] mit der Eigenschaft

\F(x) —f(x)\ > c, so besässen diese x einen Häufungspunkt x0 in [a, b]. Nach 2)

existiert sodann ein d > 0 mit \F(x) — f(x)\ < c für 0 < |x — #0| < d. Andrerseits
besitzt #0 als Häufungspunkt die Eigenschaft, dass für jedes d > 0 ein Punkt % mit
0 < \xt — x0\ < d existiert, für den |F(%) — /(%)| > c zutrifft. Unsere Annahme
ist also falsch und deshalb die Eigenschaft 3) richtig.

Nach 3) ergibt sich insbesondere, dass es nur endlich viele x e [a, b] mit
\F(x) —f(x)\ > 1 gibt, etwa: x^\ x%\ x$iy Ebenso gibt es zu jedem natürlichen
k > 2 nur endlich viele xe[a9 b] mit l/(&- 1) > \F(x) -f{x)\ > 1/k, etwa:
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x[k), xg\ x^\k). Man setze noch n(l) 0 bzw. n(k) 0, falls es kein xE [a, b] mit

| F(x) -f(x) | > 1 bzw. l/(k - 1) > | F(x) - f(x) | > 1/k gibt, und weiter 5(i) JT n(/)
; 1

für i= 1,2,3, — Wäre nun | F(x) — f(x) | > 0 für alle x E [a, b], so bekäme man durch

| xf] für 1 < / < S(l)

Xl~\4-Hx) ^r S(i)<l^S(i + l)
eine Abzahlung des Kontinuums [a, b]. Es muss deshalb einen Punkt x0 e [a, b] mit
I F{xo) ~~ f(xo) | ö, also mit F(x0) f(x0) geben. Das widerspricht aber unserer
Voraussetzung/e *J[a, b]. Also muss in der Tat V[f\ 4= <f> sein. - q.e.d.

Gewissermassen als Gegenstück zu unserem Satz soll nun anhand von Beispielen
gezeigt werden, dass es Funktionen/g 3[a, b] gibt, für die 'Ulf] «sehr umfassend» ist.
Dabei können wir unsere Beispiele ohne Einschränkung der Allgemeinheit auf das

Intervall [0, 1] beziehen. Denn ist/e 3[#, b], so betrachten wir die Funktion (p(x)

a + x (b — a), die [0, 1] topologisch auf [a, b] abbildet. Dann ist aber

g(x) /(?(*) )e?[0,l]
und es gilt

Ausgangspunkt unserer Beispiele ist die auf [0, 1] durch

1 für x 0 oder x 1

(1)

F(x)
0 für xeR-Q
x für xeQ und 0 < x < 1/2

1 - x für x E Q und 1/2 < # < 1

definierte Funktion F. Offenbar ist F e ?[0, 1] und

M {0, 1} •

Es sei zunächst eine endliche Anzahl von Punkten ax, a2, anE (0, 1) vorgegeben,
die so numeriert seien, dass at < at+1 für i 1, 2, n - 1. Dann gibt es stets eine

Funktion fE 3[0, 1] mit #[/] {0, 1, äx, a2, aa} nämlich

0, 1, ,n,f(x) F (—^~ a* für af < x < ä, + 1 und
v at+i ~ ai /

wenn noch a0 0 und an+x 1 gesetzt wird. Dies ist eine unmittelbare Folge von (1).

Soll 0 bzw. 1 nicht zu Ül[f] gehören, so braucht man nur die Abänderung

/(*)

vorzunehmen.
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Um ein weiteres Beispiel zu geben, definieren wir die Funktionen F0
F, Fx, F2, 773, e ?[0, 1] durch die Rekursion

1 für x 0

Fk(*) -
\ \ Fk -i(* {l+l)x-l) für y-i-j- < x < y und Z 1, 2, 3,

Für 1l[Fk] erhalten wir wegen (1) die Rekursion
OO

U[Fk] {J{x\Hl+l)x-le 3^-J} U {0}

oder auch

»ra 0 hfrir I *e *[F*-i])u {0} • (2)

Zur Abkürzung setzen wir T4[Fk] 7fÄ. Wir wissen schon

»o {0, 1} •

Daraus folgt nach (2)

Wi={0}U{-) j^N},
wenn N wie üblich die Menge der natürlichen Zahlen bezeichnet. Wiederum wegen (2)

ergibt sich zunächst

Da aber 1 + lx l2\lx l2 (1 -f- l2) sich für lx — 1 auf l//2 reduziert, vereinfacht sich ?/2 zu

^{0}U(^,y8eN).
Es gilt nun allgemein für k > 2

wobei

und

'

1 + h k Iür * 2

k

l + M.+i^i'a •••*,(! + *•) (* + *.) ..-(l + ^-i) für £>3

N(llfl2f... y M2... /* (1 + y (1 + y (1 + lk)

Die Formel (3) beweist man durch vollständige Induktion. Für k 2 ist die Formel
bewiesen. Sie sei demnach richtig für k. Nach (2) folgt dann

wobei

7M 7+TlH
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und

Z(lul„..^lk)_
^^-.4.4+igN

Für lx l2 l3= lk= 1 ist

Z(llt l2, lk) 1 + 1 + 2 + 2* + + 2*~2 2*-1

und

N(l1,l2,...,lk) 2*-i
so dass TW C Tt- Zudem ergibt sich

; zSl\±}i. ¦¦¦ • h)
k+1^ ¦/(/„/„... /jfc) fc+- 2V(f„ /2 fc) + Z&, /„..., lk)

'*+i (1 + lk+i) h+i (1 + /*+i) N{1„ /„..., y
fc + 1

i + Zi*¦ + 27^'¦ ¦•¦ u1 + « (i + y... (i + /,_!>

_ *-i Z(lx,l2, ,lk,lk^x)
ixi2...ikik+x (i + i2) (i + y (i + zft+1) _v(/lf i2,..., /„/,+1) •

Zusammen bedeutet dies die Richtigkeit von (3).

Es soll nun noch auf einige Eigenschaften der Mengen *Uk eingegangen werden.
Wegen

Z(i,ilti2>...,ik_j i + it +2JI,i2...i, (i + y (i + /,_,)

(l + ix) (i +1, i2 +z;\ i2... i, (i +12)... (i + /,_.))

ergibt sich

Z(l.h,l*±jj'L!t=A_= Z(lx,l2,...,lk_x)
~N(l,lx,l2,...,lk_x) N(lx,l2,...,lk_x) *

Das bedeutet aber

%-iCW», *eN. (4)

Es gilt sogar, wenn wir die Menge der Häufungspunkte einer Menge A C R mit Ä
bezeichnen,

%_i-{l}C«i. ägN (5)

so dass *Uk «sehr rasch» anwächst.
Dass 0 E *U'k, ist wegen *UX C 74 klar. Es sei also jetzt ein Punkt

Z(lx,l2, h-\) *2l _ fa i \

vorgegeben. Wegen Z(l, 1, 1) N(l, 1, 1) ist mindestens eine der Zahlen

lx, l2, lk_x grösser als 1. Es gibt also genau ein natürliches m < k — 1 derart,
dass lx — l2 lm_x — 1 aber, lm > 2. Es sei zuerst m 1. Dann ist
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lim *(*. *i - 1. *«. - k-i)
J-00 N(l,lx- 1, /,, ...,/*+

l + /(/._ l) + /(/. _ i) i%i, + JTl (h - i) /,... /, h (l + h) • •• (i + /,_,)
|. % 3

-/ "~ /(/1-i)/2.../,_I/1(i + /2)...(i + ;,_,)

/t _ 1 + (/. _ 1) /, h+£(h - 1) /, /, /x (1 + /,) (1 + /,_!)
_ t_3

(/x ~ 1) l2 /*-i /i (1 + « (1 + **__J

Ä-l

_ *-3 _ Z(lx, l2, lk_x)
hh--. h-1 (1 + /,)... (1 + /*__) N(/lf /2, /,_!)

Ist w > 1, so ergibt sich nach dem Beweis von (4)

Z(lx, l2, lk_x) Z(lm, lk_x) ~.
__ cq ,\

#('_./_..••.'*-_) N(lm,...,lk_x) EHk-™ t"'1'
Nach dem eben Bewiesenen und (4) folgt daraus

Z(lx, l2, lkz^*i> i2, i,k_X) «jf/ r 11'
N(lx,l2, ...,lk__x) tfti"'" +lL^

womit (5) bewiesen ist.
Wir zeigen weiter: Jedes abgeschlossene Teilintervall von [0, 1] mit der Länge

1/2* enthält mindestens einen Punkt von *Hk —- {1}. Für k 0 und k 1 ist diese

Behauptung klar. Sie sei also allgemein für k bewiesen. Dann betrachten wir ein
Teilintervall von [0, 1] mit der Länge 1/2*+ 1, etwa: [a, b]. Enthält dieses Intervall den
Punkt 0 oder einen Punkt l/l mit / — 1 e N, so ist wegen ?4 + 1 3 %. nichts zu
beweisen. Ebenso ist nichts zu beweisen, falls b 1. Denn dann ist einerseits a
1 — (1/2*+1) und andrerseits für lx 2, l2 — ls — lk + x

1

Z(/lf/tf _./Ä41)_ 1 + 2+2*+ ...+ 2*
_ 2*+i-_l 1 _

N(lx,l2, ,lk+x)
~

2A+1 2*+! 2*+! Hk + 1 *'•
In allen andern Fällen gibt es genau ein / e N mit 1/(1 + 1) < a und l/l > 6.

Wir betrachten nun das Intervall [c, rf] mit c l(l+l)a — l und rf / (/ + 1) b — l-
Wegen (/ + 1) a > 1 und/ b < 1 ist [c, rf] C [0,1]. Zudem ist rf - c / (/ +1) (b - a) > 1/2*.
Nach Induktionsvoraussetzung existiert dann ein Punkt x e \c, rf] O 14k — {1}. Dann
ist aber a < # + 1/1(1+ 1) < 6 und wegen (2) auch x + l/l (l + 1) El4k + X - {1},
womit der Induktionsschluss vollständig durchgeführt ist. Daraus folgt jetzt leicht:
Ist e, 0 < e < 1, beliebig vorgegeben, so enthält für genügend grosses k jedes Teil-
intervall von [0,1] mit der Länge s unendlich viele Punkte von llk.

Für genügend grosses k ist nämlich 1/2* ~1 < e. Deshalb enthält nach vorigem
jedes Teilintervall von [0, 1] mit der Länge e im Innern mindestens einen Punkt von
?4-i — {!}, also wegen (5) unendlich viele Punkte von *Hk.
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Diese letzte Tatsache legt die Frage nahe, ob es sogar eme Funktion fe J[a, b]

gibt, fur die 'Ulf] dicht ist in [a, b] Bislang konnte ich jedoch dieses Problem nicht
entscheiden

Es mag noch eme Verallgemeinerung des beschriebenen Rekursionsverfahrens zur
Gewinnung der Fk angegeben werden

Dazu gehe man von emer streng monoton gegen Null konvergierenden Zahlenfolge

at mit ax 1 aus und definiere ausgehend von F0 F
i 1 fur x 0

^ k\X) | 1 / x _ a, \

i Fk-i\a ir^r/ fur tf/+i^*<tf/ und IeN

Die so gegebenen U[Fk] besitzen ganz analoge Eigenschaften wie im behandelten Fall
al Ijl Ausserdem wachst U[Fk] fur k -> oo «um so starker» an, «je langsamer» at
gegen Null konvergiert Francis Fricker, Basel
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Kleine Mitteilungen

A New Condition for Consecutive Primitive Roots of a Prime
In [1] we have shown that if p > 3 is a prime such that q?(p — l)/(p — 1) > 1/3 then

there is at least one pair of consecutive primitive roots modulo p In this note we shall give
a new condition that there be consecutive primitive roots for primes of the form 4 n + 1

Theorem 1. If the prime p 4 n + 1 has 2 as a primitive root then there is at least one
pair of consecutive primitive roots modulo p

Proof If g is a primitive root of a prime p, then the congruence g x 1 (mod p) has
x gt>-2 for its unique Solution, since (p — 2, p — 1) 1, x is also a primitive root of p
If p 1 (mod 4), it is well known that if g is a primitive root of p, then so is — g

Let p 4 n + lbea prime and 2 a primitive root of p Then — 2 is also a primitive
root and the congruence (— 2) g 1 (mod p), has a primitive root g for its Solution It
follows then that 2 (g + 1) 1 (mod p), so that g + 1 is also a primitive root of p

The following theorem may also be of mterest here

Theorem 2. If the prime p 4 n + 1 has exactly one pair of consecutive primitive
roots, then 2 is a primitive root of p

Proof Let 0<g<gp+l</>be consecutive primitive roots of p Then
0 < p — (g + 1) < p — g < p are also consecutive primitive roots of p Smce there is
exactly one pair of consecutive primitive roots of p, we obtain p — (g + 1) g, or
(— 2) g _= 1 (mod p) Thus — 2, and hence 2, is a primitive root of p

Emanuel Vegh, U S Naval Research Laboratory, Washington, D C
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