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F. HoneNBERG: Die Hexaeder und Tetraeder im Dodekaeder 101

5.1. Die Fiinfecke von /1, bestehen aus Wiirfelkanten in den Seitenflichen von 17,

daher ist ﬁl — II. Auch IT 3 st ein Dodekaeder, denn g5, ist Verbindungsebene von
Wiirfelkanten in 5 Schnittpunkten IIT und g, ist zur Seitenfliche 01234 von IT

parallel. IT. 5 geht aus IT durch (/5 — 2)-fache Streckung aus M hervor.
5.2. In allen 9 in Figur 1 enthaltenen Schnittpunkten I’, IT’, III’ von Tetraeder-

kanten ist deren Verbindungsebene die Ebene 326879. Diese Ebene ist zugleich die
Ebene ¢,, von Figur 2b, sie enthilt die Wiirfelkanten 39, 78, 62, die sich in 3 Ecken I

von IT, schneiden. Daher sind I7T,, IT L8 ]-I_é, ﬁé ein und dasselbe Ikosaeder (Mittel-
punkt M, Inkugelradius = Inkugelradius der Tetraeder = d/2)/3). Dieses ITkosaeder
1st die Durchschnitismenge der zehn Tetraeder tm Dodekaeder.

5.3. Die Ebenen von /1, bilden die Seitenflichen der 5 Wiirfel. IT; entsteht aus
11, durch Polarisieren an der Inkugel der 5 Wiirfel, ist also ein Rhombentriakontaeder
(Mittelpunkt M, Inkugelradius = d/2). Dieses Rhombentriakontaeder ist die Durch-
schnittsmenge der fiinf Wiirfel im Dodekaeder.

Fritz HOHENBERG, Graz

Randomly Traversable Graphs
1. Introduction

A graph G is eulerian if it possesses a circuit containing all vertices and edges of G.
These graphs are named for LEONHARD EULER [1], who encountered them while
giving a solution to the Koénigsberg Bridge Problem. It is well known that a graph is
eulerian if and only if it is connected and each of its vertices is even.

Similar to the eulerian graphs are the traversable graphs. A graph G is fraversable
if it possesses an open trail containing all vertices and edges of G. Traversable graphs
are characterized (see [2], p. 65) by the properties of being connected and containing
exactly two odd vertices. It is an elementary fact that every graph has an even
number of odd vertices. A connected graph G with odd vertices is called n-fraversable
if there exist # open trails but no fewer which partition the edge set of G. Hence the
1-traversable graphs and the traversable graphs are identical. It follows (see [2], p. 65)
that a connected graph G is n-traversable, n > 1, if and only if G has exactly 2 » odd
vertices.

In [3] ORE introduced an interesting class of eulerian graphs. An eulerian graph G
is randomly eulerian from a vertex v of G if the following procedure always results in an
eulerian circuit of G: Begin a trail at v by choosing any edge incident with v. Next
(and at each step thereafter), the trail is continued by selecting any edge not already
chosen which is adjacent with the edge most recently selected. The process terminates
when no such edge is available. Equivalently, a graph G is randomly eulerian from v if
every trail of G beginning at v can be extended to an eulerian circuit of G.

It is the object of this paper to study eulerian graphs which are randomly eulerian
from one or more of their vertices and to extend this concept to traversable graphs
and to n-traversable graphs in general.
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2. Fundamental Terminology

In order to make this article self-contained, we present here those fundamental
definitions which are most pertinent to our discussion. For basic graph theory
terminology we follow [2].

For vertices # and v of a graph G, a u-v trail of G is an alternating sequence

U=y, €, Uy, Co, Ug, ... ,Up_1,€, 1, U, =1V (1)

of vertices and edges of G, beginning with # and ending with v, such that each edge is
incident with the two distinct vertices immediately preceding and following it and
such that no edge is repeated. It should be noted that while no edge may be repeated
in a trail, vertices may be repeated. Further, we may represent the trail (1) more
simply as

W=y, Uy, Ug, ..., Uy_q1, U, =17, (2)

since the edges of the trail are then evident. In general, we assume that every trail
contains at least one edge and, therefore, at least two vertices. A u-v path, u + v,is a
u-v trail in which no vertices are repeated.

A graph G is connected if for every two distinct vertices # and v of G, there exists a
u-v trail (or u-v path) in G. A maximal connected subgraph of a graph G is called a
component of G.

A wu-v trail is closed if u = v; otherwise, it is open. A closed trail is also referred
to as a circurt. A circuit in which no vertex is repeated is called a cycle.

A circuit containing all edges of a connected graph G is an eulerian circuit of G,
while an open trail containing all edges of G is an eulerian trail of G.

Finally, the degree of a vertex v in a graph G, denoted degv, is the number of edges
in G incident with v; the vertex v is even or odd depending on whether degu is even or
odd.

3. Randomly Eulerian Graphs

We have already noted that an eulerian graph G is randomly eulerian from a
vertex v of G if and only if every trail beginning at v can be extended to an eulerian
circuit of G. In Figure 1 are shown four eulerian graphs, each of which has six vertices.
The graph G, is randomly eulerian from no vertices, G, is randomly eulerian from
exactly one vertex, namely #«, G, is randomly eulerian from the two vertices v and w,
while G, is randomly eulerian from each of its vertices.

ORrE [3] showed that an eulerian graph G is randomly eulerian from a vertex v of G
if and only if every cycle of G contains v. With the aid of this result, it is easy to verify
that the graphs of Figure 1 have the indicated properties. Moreover, it follows
immediately that an eulerian graph is randomly eulerian from each of its vertices if
and only if it is a cycle. We now show that the graphs of Figure 1 represent all
possibilities regarding the number of vertices from which an eulerian graph is randomly
eulerian.

Theorem 1. Let G be an eulerian graph with $ (= é) vertices. Then the number of
vertices from which G is randomly eulerian is 0, 1, 2 or 5.
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Proof. There is obviously nothing to prove if p = 3, so we assume p > 4. Suppose
the result to be false so that there exists an eulerian graph H with $ (> 4) vertices

such that H is randomly eulerian from three vertices, say %, v and w, but not from all
vertices. Hence H is not itself a cycle.

Figure 1

Since H is randomly eulerian from each of «, v and w, it follows by Ore’s theorem
that every cycle of H contains %, v and w. Furthermore, there exists a vertex x from
which H is not randomly eulerian; therefore, not all cycles of H contain x. Let C; be
a cycle not containing ». Because H is eulerian, there is a circuit containing x (namely
an eulerian circuit) and therefore a cycle C, containing x. Necessarily, #, v and w also
lie on C,. Thus the distinct cycles C; and C, have at least three vertices in common.

The cycle C, determines two paths P, and P, connecting x with C,. Suppose P,
is an ¥ — x; path while P, is an x — x, path, where then x; is the only vertex of C, on
P,, for ¢ = 1, 2; moreover, %, % x,. At least one of #, v and w is neither x, nor x,;

_suppose # is such a vertex. Hence. C, determines two x; — %, paths, only one of which
contains #; suppose Q is the x; — x, path not containing «. Hence, if we begin with P,,
follow Q, and then proceed from x, to x along P,, we have a cycle not containing #,
which produces a contradiction.

4. Randomly Traversable Graphs

We define a traversable graph G to be randomly traversable from a vertex v if every
trail in G with initial vertex v can be extended to an eulerian trail of G. Naturally, such
a vertex v is necessarily an odd vertex of G, implying that a traversable graph is
randomly traversable from at most two of its vertices. Figure 2 shows traversable
graphs H,, H,, H, such that H,, k=0, 1, 2, is randomly traversable from % of its
vertices. A traversable graph G is said to be randomly traversable if it is randomly
traversable from both of its odd vertices.
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It is possible to characterize traversable graphs which are randomly traversable
from a given vertex in much the same way as ORE did for randomly eulerian graphs.

Theorem 2. Let u and v be the two odd vertices of a traversable graph G. Then G is
randomly traversable from # if and only if every cycle of G contains v.

Figure 2

Proof. Suppose G is randomly traversable from #, and assume G has a cycle C
not containing v. Denote by H the graph obtained by removing the edges of C from G.
Necessarily, each vertex of H has the same parity as it does in G; therefore, # and v
are the only two odd vertices of H and thus belong to the same component H, of H.
Hence H, is traversable and has a #-v trail P, containing all edges of H,. Since P,
contains all edges of G incident with v, the trail P, cannot be extended to an eulerian
trail of G, contradicting the fact that G is randomly traversable from «.

Conversely, suppose every cycle of G contains v, and assume G is not randomly
traversable from #. Hence there exists a maximal trail P of G beginning at » which
cannot be extended to an eulerian #-v trail. Thus P is a »-v trail not containing all
edges of G. By deleting the edges of P from G, a nonempty graph G’ results in which
every vertex is even and v is isolated. There exists a nontrivial component H' of G';
thus H' is eulerian, contains an eulerian circuit, and therefore contains a cycle C.
Since C does not contain v, a contradiction results.

Corollary 2a. Let u and v be the two odd vertices of a traversable graph G. Then G
is randomly traversable if and only if every cycle of G contains both # and v.

5. Randomly n-Traversable Graphs

Just as m-traversable graphs constitute a generalization of traversable graphs,
we now introduce the concept of randomly n-traversable graphs as a generalization
of randomly traversable graphs.

For a graph G, we denote its edge set by E(G). Similarly, the edge set of a trail T
of a graph G is denoted E(T). By G — E(T) we mean the graph obtained by deleting
the edges of T from G. A trail T of a graph G, having initial vertex v and terminal
vertex w, is said to be maximal from v if every edge of G incident with w belongs to T.

An n-traversable graph G (which necessarily then has 2 # odd vertices) is randomly
n-traversable from an odd vertex v if for every sequence v,, v,, ..., v, of n odd vertices
of G for which v, = v and for every = trails 7;, T,, ..., T, such that 7] is maximal
from v, in G and 7; is maximal from v; in

G-UET), i=23..,n,
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it follows that E(G) = | E(T;). A graph is randomly n-traversable if it is randomly
i-1

n-traversable from each of its odd vertices. We note then that the randomly 1-
traversable graphs coincide with the randomly traversable graphs. The following
theorem gives a necessary condition for a graph to be randomly #n-traversable from
one of its odd vertices.

Theorem 3. 1f G is a graph which is randomly #-traversable from an odd vertex v,
then every cycle of G contains an odd vertex other than v.

Proof. Let C be an arbitrary cycle in G, and consider G — E(C), which has 2 » odd
vertices. Let 7] be a trail in G — E(C) which is maximal from its initial vertex v,
while for 7=2,3,...,n, let T; be a trail maximal from an odd vertex v; in

G — E(C) — U E(T)). Each of these trails necessarily terminates in an odd vertex

""_
of G. Either T, is not maximal in G or T, is not maximal in G U E(T)) for some
1=2,3,...,n; for if all » trails are maximal in these respectlve graphs, then
U E(T)) + E(G), which contradicts the fact that G is randomly »n-traversable from v.

f hus the terminal vertex of at least one trail 7; lies on C so that C contains an odd
vertex of G other than v.

The necessary condition for a graph to be randomly traversable given in Theorem 2
now follows as a corollary to Theorem 3. From Theorem 3 we may now derive a
necessary condition for a graph to be randomly #-traversable.

Corollary 3a. If G is a randomly n-traversable graph, then every cycle of G contains
at least two odd vertices.

Proof. Let C be a cycle of G. By Theorem 3, C contains at least one odd vertex,
say #. By hypothesis, G is randomly #n-traversable from # so that, again by Theorem 3,
C contains an odd vertex other than #, completing the proof.

Next we present a sufficient condition for an n-traversable graph to be randomly
n-traversable from one of its odd vertices.

Theorem 4. Let G be an n-traversable graph with odd vertex v. If every cycle of G
contains at least # odd vertices other than v, then G is randomly n-traversable from v.

Proof. Let v, v,, ..., v, be n odd vertices of G, where v, = v, and let T}, T,, ..., T,
be # trails so that 7; is maximal from v, in G and 7', is maximal from v; in

i—-1
G-UET), i=23..,n
i1

Since T;,7=1, 2, ..., n, is a trail which is maximal from v;, it must terminate at a
vertex w; having degree zero in

,-(7~UE

Because every vertex which is even in G is also even in H; _,, w; is necessarily odd in G.
Furthermore, H; has exactly 2 n — 21 odd vertices. Hence H, has only even vertices.

If H, has no edges, then E(G U E(T;), which produces the desired result. Suppose,
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then, that H, has edges. In this case, H, contains cycles; thus let C be a cycle in H,,.
By hypothesis, C contains at least # odd vertices of G other than v. Since G has
exactly 2 # odd vertices, C must contain a vertex w,, 1 << k& < n. However, w, has
degree zero in H, as well as in H,,. This produces a contradiction, completing the proof.

The sufficient condition for a graph to be randomly traversable given in Theorem 2
now follows as a corollary to Theorem 4. ‘

The converse of the preceding theorem does not hold, in general. For example,
the 2-traversable graph G of Figure 3 is randomly 2-traversable from v; however, the
only cycle of G contains only one odd vertex.

VO — e —0
Figure 3

Corollary 4a. 1f every cycle of an n-traversable graph G contains at least # + 1 odd
vertices, then G is randomly #n-traversable.

The number of odd vertices in the statement of Corollary 4a cannot be reduced,
as the following example shows. Let G be the graph consisting of a cycle C:
Uy, Vg, -+, Uy, U1, # additional vertices #,, #,,...,u,, and the edges u;v;, i =
1.2, ..., n. Figure 4 illustrates the graph G for the case n = 5. Although G is #n-
traversable, and the only cycle of G contains exactly # odd vertices, G is not randomly
n-traversable. For example, the » trails v;, %;, =1, 2, ..., n do not partition the
edge set of G.

Figure 4

We conclude by verifying the converse of Corollary 4a for the case n = 2.

Theorem 5. 1f G is a randomly 2-traversable graph, then every cycle of G contains
at least three odd vertices. ‘

Proof. By Corollary 3a, every cycle of G contains at least two odd vertices. Suppose
there exists a cycle C in G containing exactly two odd vertices, say # and v, and let u;
and v, be the remaining odd vertices of G. We consider two cases,
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Case 1. There exists a u — uy path in G — E(C) not containing vy or a u — v, path in
G — E(C) not containing u; . Without loss of generality, we assume the former, denoting
the path by P. The graph G — E(C) — E(P) has exactly two odd vertices, namely v
and v,, which necessarily belong to the same component G’ of G — E(C) — E(P).
Furthermore, the degree of v, is the same in G — E(C) — E(P) as in G. Let T be a
v-v, eulerian trail in G’; the trail T is thereforc maximal from v in G. Let T, be a
maximal trail from » in G — E(C) — E(T), necessarily terminating at ;. Then 7} is
also maximal in G — E(T). However, E(T) U E(T;) # E(G), which is contradictory.
Case 2. There exists no u — u, path in G — E(C). If there exists a # — v, path in
G — E(C), then we are in Case 1 and a contradiction results. Hence we may assume
that G — E(C) has a u#-v path P containing neither %, nor v,. If P has a vertex of C
different from # or v, then G has a cycle containing only one odd vertex, namely «,
which is impossible. Now the cycle C determines two edge-disjoint #-v paths P; and
P,. Since G is connected, there exists in G either a ¥ — u; path not containing v or a
v — u; path not containing #; assume the former, denoting the # — «; path by P;.
We further suppose that P; does not contain v;; otherwise, we let P, denote the
resulting # — v, path. The path P, has at least one edge which is also an edge of C;
turthermore, P, contains vertices of only one of P, and P, (with the exception of the
vertex u), for otherwise G has a cycle containing only one odd vertex. Suppose P,
contains a vertex of P, different from u or v so that P, has no such vertex. The » — v
paths P and P, combine to form a cycle C; containing # and v but neither %, nor v,.
However, a # — u, path exists in G — E(C,) returning us to Case 1 which yields a
contradiction and completes the proof.
GARY CHARTRAND!) and ARTHUR T. WHITE, Western Michigan University
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Uber hebbare Unstetigkeiten

Die vorliegende Note ist als Beitrag zur Sammlung pathologischer Beispiele der
Analysis gedacht, wie sie etwa in [1] gegeben wird.

Wir betrachten die Menge F|a, b] der auf dem abgeschlossenen Intervall [a, b]
definierten Funktionen, die in jedem Punkt von [a, b] unstetig sind. Eine solche
Funktion ist beispielsweise

I+1 fir xeQ

f(x)zl-—l fir xeR - Q,
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