Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 25 (1970)
Heft: 4
Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

82 J.E.WerzeL: Triangular Covers for Closed Curves of Constant Length — Kleine Mitteilungen

Added in proof: Shortly after this paper was submitted, the author found the
problem of characterizing the best triangular covers for closed curves of unit
length (solved in theorems 2 and 5) posed in H. T. CROFT’s mimeographed 1969
‘Addenda’ to his well-known 1967 ‘Research Problems’.

J. E. WETZzEL, University of Illinois, Urbana, Illinois, USA
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Kleine Mitteilungen

Zu einem Satz liber rdumliche Fiinfecke

Der Satz lautet: Ein vaumliches Fiinfeck ABCDE, in dem alle Seiten gleich a und alle
Winkel gleich o sind, ist eben. Die Rolle, die «Einfall und Uberlegung» beim Beweis dieses
Satzes spielten, hat B. L. vAN DER WAERDEN aufgezeigt!). Der gruppentheoretische
Aspekt gibt dem Beweis von van der Waerden seine besondere Eleganz. Der Satz ldsst sich
aber auch mit den Methoden der elementaren Schulgeometrie gewinnen, wobei allerdings
etwas gerechnet werden muss.

Es ist klar, dass alle Diagonalen die gleiche Linge d = A a4 haben. Wir betrachten
eine Normalprojektion des Fiinfecks, von dem das Dreieck ACD in der Projektionsebene
liegt. Die Umklappungen B® und E° sind eindeutig bestimmt. J sei der Winkel zweier
aneinanderstossender Diagonalen, ¢ der Neigungswinkel der Ebenen 4 BC und AED
gegen die Projektionsebene; wegen CE = DB = Aa ist die Mittelsenkrechte zu CD
Symmetrieachse der (ebenen) Figur. Man bestitigt sofort:

o A a_l/w4—1"3 6 1 é Var—1

S5 =7 0085 7 Sy =g 2 22

1) Dieses Heft S. 73-78.
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Die Strecken DA, DC, DE bilden ein Dreikant mit den Seiten «, 90° — «/2, 90° — §/2
und dem Gegenwinkel 180° — @ der Seite a.
Der Seiten-Cosinussatz?) liefert

cosa = sin a/2 sin /2 — cos a/2 cos §/2 cose ,

oder
2 1 YEr=1) t-n
L= =% 4 T eose.
woraus
A (242 — 3)
COS = o
FVerEr-DE-m
und
" P A(222—3)
= - 4*—}.2 COSs i s ————
P=7 / LA Vaar—1

Hieraus ergibt sich fiir die Koten 4 g der Punkte B und E
2 = a2 (1 __}i__ A% (2 2% — 3)2 ): g — A+ 22+ 2321
4 4 (422 -1) 42 -1
Unter diesen Bedingungen sind vier Diagonalen des Fiinfecks gleich. Nun muss auch
die fiinfte BE gleich A a sein. Zunichst findet man

, Aa A(22* —3)a
SE' = £ e+ ) = +( Vir—1 © 2fam-1 )
A(A2—1)
-~ Fyar-1 °

B und E koénnen gleiche oder entgegengesetzt gleiche Koten haben.
Im ersten Fall ist

A1=B'E'=2'SE"COS%= + a (A2-—1).
Die Bedingung
ai= 4 a(A?2—-1)
liefert
BFA-1=0.

Die positiven Wurzeln der beiden Gleichungen ergeben die Werte von A fiir das ebene
Fiinfeck und fiir das ebene Pentagramm.
Im zweiten Fall ist

43 = 43 + 4 ¢*
= g2 [(;_2 —1)2 4

—4M+8M+8P—4]

47 — 1
, — M+ 14225
= a
42 -1
Die Bedingung
A% = a® A2

fithrt auf die Gleichung fiir A2
AM—3424+1=0,
deren Wurzeln die Quadrate der Werte von 4 fiir das ebene Fiinfeck und das ebene

Pentagramm sind.
W. Ltssy und E. Trost, Technikum Winterthur

) Die Berechnung von cosg mittels eines Satzes der sphirischen Trigonometrie ist besonders
einfach, natiirlich lisst sie sich auch mit ebener Trigonometrie durchfiihren.
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Affine Scheitel von Ovalen

Als Anwendung des in Aufgabe 493 bewiesenen Satzes hat GUGGENHEIMER [2] gezeigt,
dass die zentro-dquiaffine Krimmung % eines Ovals K mindestens 4 Extremstellen hat,
wenn das Zentrum o der Flichenschwerpunkt von K oder der des beziiglich o polaren
Ovals K* ist. Beide Aussagen erweitern wir zu einem 6-Scheitelsatz, indem wir sie auf den
Satz von den sextaktischen Punkten zuriickfiihren.

Wir stellen kurz das Notwendige aus der affinen Differentialgeometrie zusammen
(vgl. [1], [5]). Auf einer wende- und flachpunktfreien ebenen Kurve fithrt man, hinreichende

Differenzierbarkeit vorausgesetzt, durch die Forderung
[#, "] = 11)
die Affinlinge als Parameter ein. Hieraus ergibt sich durch Differentiation
¥, "] =0, x*"+ka=o0.

Fiir das Tangentenbild y = #’ gilt dann
[y, 9]=1, ¥y +ky=o0. (1)

k heisst Affinkrimmung vor x. Durch (1) ist auf y ein zentro-dquiaffiner Parameter s
charakterisiert, welcher den doppelten vom Radiusvektor iiberstrichenen Inhalt angibt,
und % ist eine zentro-dquiaffine Invariante, welche mit der in [2] betrachteten zentro-
dquiaffinen Kriimmung von y(s) iibereinstimmt (vgl. [1, S. 32]). Ist eine o umschliessende,
nicht notwendig konvexe Kurve y(s) vorgegeben, so wird %(s) genau dann ein Oval, wenn
x(s) geschlossen ist, d.h. wenn

fyas=Fyondy—yady) =3[ yaydy, = o

gilt. Dies bedeutet, dass der Schwerpunkt von y(s) in o liegt. Es ergibt sich die Aquivalenz
der beiden folgenden Sitze.

Satz von den sextaktischen Pumnkten: Ein flachpunktfreies Oval x(s) besitzt mindestens
6 Extrema der Affinkriimmung. [1, S. 43]

Satz 1: Eine den Ursprung o umschliessende, keine Tangente durch o sendende Kurve
¥(s) hat mindestens 6 Extrema der zentro-dquiaffinen Kriimmung, wenn o Fldchenschwer-
punkt von y(s) ist.

Statt der zu y(s) polaren Kurve betrachten wir das zentro-dquiaffine Tangentenbild
z(s) = y’(s). Aus

3, ¥]=nys— v 1=1
ergibt sich, dass y’ aus y durch Polaritit am Einheitskreis um o und Drehung um /2

entsteht. Zur Berechnung der zentro-iquiaffinen Kriimmung % von 2(s), filhrt man den (1)
entsprechenden Parameter ¢ ein,

dt , ]
Ti:g‘=[z’z]"‘[y:y]—k:

und erhdlt nach kurzer Rechnung

- dz  diz dt \3
= | =2 221 = ’ " et — p—1

k [dt' dtﬂ] [z’z](ds) k2
Wendet man daher Satz 1 auf z(s) an, so erhdlt man

1) Die Klammern bezeichnen die Determinante.
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Satz 2: Liegt das Zentrum o innerhalb des Ovals y(s) so, dass der Flichenschwerpunkt
des zentro-dquiaffinen Tangentenbildes z(s) = y’(s) auf o fillt, so hat y(s) mindestens
6 Extrema der zentro-dquiaffinen Kriimmung.

Dass man in jedem Oval das Zentrum auf genau eine Weise so wihlen kann, folgt,
wie schon in [2] gesagt, aus der von SANTALG [6] gelosten Minimumaufgabe (s. auch [3]).
In Satz 1 ist Konvexitdt nicht verlangt. Dementsprechend kann man Satz 2 auch fiir
Kurven formulieren, deren Tangenten sich in stets derselben Weise drehen und o nicht
treffen, die aber Doppelpunkte und Spitzen haben kénnen.

In einem Oval gibt es i.allg. noch weitere Punkte, fiir die man 6 Extrema der zentro-
dquiaffinen Kriimmung erhilt, z.B. den Mittelpunkt der grdssten einbeschriebenen
Ellipse. Hier kann man ohne Bezug auf den Satz von den sextaktischen Punkten mittels
einer Methode von MUKHOPADHYAYA [4] hyperoskulierende Zentralkegelschnitte finden,
die den Extrema entsprechen.

E. Her, TH Darmstadt
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Uber eine spezielle Differenzengleichung

Vorgelegt sei die Differenzengleichung k-ter Ordnung
u(n+k)=-]t~[u(n+k—~1)+u(n+k—2)+-~~|—u(n)] (1)

mit den Anfangswerten #(0) = u,, ..., u(k — 1) = u;_,.
Fiir das asymptotische Verhalten der Losungen von (1) gilt
Satz: Es existiert limoou(n) fiir beliebige Anfangswerte und
n-—>

I u(n)_u0+2u1+3u2+---+kuk_1
ulgnoo - 14+24+34---+ 4%

d.h. lim u(n) ist ein gewogenes arithmetisches Mittel der Anfangswerte.
Die charakteristische Gleichung von (1) ist

1
¢t=5 @+t gt (2)

oder

f(q)=q"——,13—(q"‘1+-~+ =20, (3)
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Es wird gezeigt:
a) f(¢g) nimmt auf dem Einheitskreis nur fiir ¢ = 1 den Wert 0 an.
b) Mit Ausnahme von g = 1 liegen alle Nullstellen von f(g) innerhalb des Einheitskreises.

c) f(q) hat keine mehrfachen Nullstellen.
Zu a). Setzt man auf beiden Seiten von (2) Betragstriche, so folgt aus |¢g| =1, ¢ = 1.
Zu b)

/()
qg—1

1
= 2 g (B 1) ¢t e 4 20+ 1] 4

f(q)__ —_ _Vdﬂ }_ k k—1
?1”qu<q4~q + -+ 9
Da die Nullstellen der Ableitung p’(g) eines Polynoms p(g) im Inneren jeder konvexen
Kurve liegen, innerhalb welcher auch die Nullstellen von p(gq) liegen, ergibt sich zusammen
mit a), dass f(q)/(g — 1) nur Wurzeln innerhalb des Einheitskreises hat.

Zuc). Setzt man k(q):=kq*¥(q— 1) — (¢*— 1) soist h(q) =k (¢ — 1) f(q).
Aus den héheren Ableitungen von %(g) erkennt man, dass k(g) eine einzige Mehrfach-

wurzel besitzt, und zwar die Doppelwurzel ¢ = 1. f(q) = k(q)/k (g — 1) hat demnach nur
Nullstellen erster Ordnung.

Ausa), b), c) folgt, dass die Losung von (1), die zu den Anfangswertenu,= ... =u,_,; =0
gehort, stabil, jedoch nicht attraktiv ist [1].
Die Nullstellen von f(g) seien x,, x,,..., %, mit x;, = 1. Da simtliche Nullstellen

wegen c) voneinander verschieden sind, folgt fiir u(n) die Darstellung
u(n) = a, x7 + -+ a, %, n=20,12,....
Wegen a) und b) ist nl_i_r)noou(n) = Gy s

Die Koeffizienten a,, a,, ..., a; hingen mit den Anfangswerten durch das folgende
lineare Gleichungssystem zusammen

%, 11 1 ‘a,
L
k-1 k-1 k-1
Up_y L 20 7 P 7 a;

Die Determinante des Systems, eine Vandermondesche Determinante, werde mit
A(xy, x4, ..., %;) bezeichnet. Wegen

Ay, Zgy oo X)) = (W — X ) oo (3, — %) . (B —2y), § >4

und ¥; # x; ist 4 + 0, das System somit eindeutig 16sbar.

- A(xl, “ee ,xk)
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Definiert man

xy .. A
Xy .. %
Af: = | 451 P
x;+1 x]’e+l
x’;‘l x’,:_l
k-1
so gibt die Entwicklung von Z nach der ersten Spalte Z =2ur (— 1)r 4;.
r=0
Fir A7 gilt A7 = S;_ (%5, %5, ..., %) A(xg, ..., %))
mit S (¥, ..., %) =¥ % ... %, 1+ "+ X, 1. %,_1 4, als elementarsymmetri-
scher Funktion m-ter Ordnung von #,, ..., #, [2]. Somit gilt
. k-1
Z=) u, (= 1) S, _,_ (%, ...,%) A(xg, ..., %) . (5)
r=0

Die Nennerdeterminante von a, ergibt sich aus (5) fiir die speziellen Werte #y = u, = ++- =
Mk__l == 1 .
k-1
Ay =1, %, oo, %) = D (= 17 Sy (W, oov s %) Ay, oon, 7).

r=0
Man erhalt

k—1
2 ", (_ 1)r Sk—l—r(x2r ey xk)

&= rk=—01
PN CE VN A
r=0
Der Vergleich von (4) mit
I4C)
‘]fl = (g — %) ... (g — #p) 29'(“1'“ P Sko1-r(Fe, ooy )
fithrt schliesslich zu
2 — o+ 2uy + 3uy+ -0+ Rug_,
1 142+ ---+ k. )

Eine Untersuchung der Gleichung (1) findet man auch bei MARKOFF [3]. — Die Methode,
nach der der Grenzwert in der vorliegenden Mitteilung hergeleitet wurde, ldsst sich
unmittelbar auf Differenzengleichungen iibertragen, deren charakteristisches Polynom
den Bedingungen a), b), c) geniigt.

H. WiMMER, TH Graz

LITERATURVERZEICHNIS

[1] W. HanN, Stability of Motion (Berlin, Heidelberg und New York 1967).

[2] F. NEe1ss, Determinanten und Matvizen, 5. Auflage (Berlin, Gottingen und Heidelberg
1959), S. 40.

[3] A. A. MARKOFF, Differenzenrechnung (Leipzig 1896).



	Kleine Mitteilungen

