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Ein Satz {iber riumliche Fiinfecke!)

I

Der Satz lautet: Ein rdaumliches Fiinfeck ABCDE, in dem alle Seiten gleich a und
alle Winkel gleich o sind, ist eben.

Bewers. Ich betrachte a und « als gegeben. Im Dreieck BCD sind jetzt zwei Seiten
und der eingeschlossene Winkel gegeben, also ist die Diagonale d bekannt: alle
Diagonalen sind gleich d. '
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Im Dreieck ABD sind die drei Seiten bekannt, also ist das Dreieck bis auf eine
starre Bewegung eindeutig bestimmt. Also ist auch BM = e bekannt, wo M die Mitte
von AD ist. Ebenso ist DN = f bekannt, wo N die Mitte von BC ist.

Weil MB = MC = e ist, liegt M in der mittelsenkrechten Ebene zu BC, also ist
MN | BC. Weil NA = ND = f ist, liegt N in der mittelsenkrechten Ebene zu AD,
also ist MN | AD. Die Gerade MN liegt also in beiden mittelsenkrechten Ebenen.

Nehmen wir nun an, dass A BCD nicht in einer Ebene liegen, so sind die beiden
mittelsenkrechten Ebenen verschieden, also ist M N ihre Schnittlinie. Aber auch E
liegt in beiden Ebenen, also liegt E auf MN. Die Umdrehung (Zweierdrehung) um
MN fiihrt also E in sich, 4 in D und B in C iiber. Also gilt:

1) Vortrag im Mathematischen Kolloquium Ziirich am 10. Februar 1970.
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Lemma. Wenn vier von den 5 Punkten, etwa A BCD, nicht in einer Ebene liegen, so gibt
es eine Zweserdrehung, die E fest lisst und A mit D und B mit C vertauschi.

Wir unterscheiden 3 Fille:

a) Alle 5 Punkte liegen in einer Ebene. Dann sind wir fertig.

b) Vier von den 5 Punkten, etwa 4 BCD liegen in einer Ebene, aber FE liegt nicht in
dieser Ebene.

c) Keine vier von den 5 Punkten liegen in einer Ebene.

Im Fall b) liegt E nicht in der Ebene A BC, also gibt es nach dem Lemma eine
Zweierdrehung S, die D fest ldsst und E mit C und 4 mit B vertauscht. Ebenso liegt E
nicht in der Ebene BCD, also gibt es eine Zweierdrehung 7', die A fest ldsst und B
mit E und C mit D vertauscht.

Die gleichen Schliisse gelten im Fall c). Wir kénnen also die Félle b) und ¢) zu-
sammen behandeln.

Die Drehung S vertauscht die 5 Ecken nach der Permutation (4 B) (CE), die
Drehung T nach der Permutation (CD) (BE). Also bewirkt das Produkt R=S-T
die zyklische Permutation (4 BCDE). Der Schwerpunkt der 5 Punkte geht bei der
Bewegung R in sich iiber, also ist R eine Drehung. Da die 5 Punkte durch die Drehung
zyklisch vertauscht werden, liegen sie in einer Ebene senkrecht zur Drehungsachse.

Damit ist die Behauptung in allen drei Fillen bewiesen.

Zusatz. Der Drehwinkel der Drehung R kann nur + 72° oder -+ 144° sein. Im
ersten Fall ist das Fiinfeck ein einfaches reguldres Fiinfeck mit dem Winkel a = 108°.
Im zweiten Fall haben wir ein reguldres Sternfiinfeck mit dem Winkel a = 36°.
Andere Werte von a sind nicht moglich.

IT

Ich moéchte nun erzdhlen, wie ich auf den Satz und seinen Beweis gekommen bin,
und damit einen weiteren kleinen Beitrag zur Psychologie des mathematischen
Denkens liefern?).

Kurz vor Weihnachten 1969 besuchten mich zwei Chemiker: A. DREIDING und
J. D. Dunitz. Der letztere erzihlte mit einiges iiber starre und bewegliche Formen
von ringférmigen Verbindungen wie Zyklo-Hexan und Zyklo-Oktan. Er erwidhnte
auch den Fiinfring (Zyklo-Pentan) und stellte die Behauptung auf, ein Fiinfeck mit
gleichen Seiten und gleichen Winkeln sei notwendig eben. Dreiding und ich waren
dariiber sehr erstaunt und fragten ihn nach seinen Griinden. Dunitz erklirte uns:
«Wenn ich annehme, dass der Fiinfring eine Zweierachse oder eine Spiegelung ge-
stattet, dann kann ich beweisen, dass er eben sein muss. Ausserdem behaupte ich,
dass die Planaritit des allgemeinen Fiinfrings mit gleichen Seiten und gleichen
Winkeln aus der Tatsache folgt, dass alle Torsionswinkel bis auf das Vorzeichen
gleich sein miissen.»

Nach dieser Bemerkung war es nur natiirlich, dass ich bei meinen Beweisver-
suchen zunidchst darauf ausging, die Existenz einer Zweierachse oder einer Spiegel-
ebene zu beweisen.

%) Vgl. meine Broschiire ¢« Einfall und Uberlegung. Drei kleine Beitrige zur Psychologie des mathemati-
schen Denkens». Birkhiuser,Basel 1968.
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Sodann zeigte Dunitz uns den Anfang eines Beweises. Er bemerkte zuerst: Wenn
a und o gegeben sind, so ist durch die Formel

d2=2a%— 2 a?cosa

die Diagonale d bestimmt; alle Diagonalen des Fiinfecks sind also gleich.

Der nichste Schritt war die Berechnung der Torsion. Sind a, b, ¢ drei aufeinander-
folgende Seitenvektoren des Fiinfecks, so sind @ x b und b X ¢ die Normalenvektoren
der Ebenen durch @ und b bzw. durch b und c. Der Winkel zwischen diesen beiden
Ebenen oder, was dasselbe ist, zwischen den Normalenvektoren, ist der Torsions-
winkel bei b. Liegen die drei Vektoren in einer Ebene, so ist der Torsionswinkel 0 oder
180°. In jedem Fall kann man 4% durch den Cosinus des Torsionswinkels 8 ausdriicken
und aus der erhaltenen Formel schliessen, dass cosf durch d? eindeutig bestimmt ist.
Die 5 Torsionswinkel § sind also alle gleich 4 f,, wo f, durch 4 und « eindeutig
bestimmt sind. Ist ein Torsionswinkel 0 oder 180°, so sind alle 0 oder 180°, und das
Fiinfeck ist eben. Geometrisch bedeutet das: Wenn vier von den 5 Ecken in einer
Ebene liegen, so liegen alle in einer Ebene.

Diese Ausfiihrungen von Dunitz machten es mir sehr viel leichter, den Beweis zu
finden. Ich wusste nun, dass alle Diagonalen gleich sind und alle Torsionen bis auf das
Vorzeichen gleich, und ich wusste auch, dass der Fall b), der im obigen Beweis zu-
nichst einige Schwierigkeiten bereitete, in Wirklichkeit gar nicht auftreten kann.

Nach einigen vergeblichen Beweisversuchen hatte ich den Einfall, die Diagonale
AD festzuhalten und zu sehen, welche Bewegungsfreiheit der Streckenzug A BCD
dann noch hat. Vom Dreieck 4 BC sind alle drei Seiten a, d, d gegeben, also kann B
sich nur noch auf einem Kreis um die Achse A D drehen. In der Figur 3 ist dieser Kreis
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in senkrechter Projektion als Strecke B’B” gezeichnet. Ebenso durchlduft C bei der
Rotation einen Kreis C'C” um die gleiche Achse AD. Die beiden Kreise liegen in
parallelen Ebenen. Das Dreieck A BD beschreibt bei der Rotation einen Doppelkegel,
ebenso das Dreieck ACD. Diese beiden Doppelkegel mit Spitzen in 4 und D sind in
der Figur 3 eingezeichnet.

Welche Bewegungsfreiheit hat der Streckenzug ABCD? Die Punkte B und C
kénnen sich nicht unabhingig voneinander auf ihren Kreisen bewegen, denn die
Strecke BC muss die feste Linge a haben. Wird B festgehalten, so gibt es fiir C
jeweils zwei mogliche Lagen, die spiegelbildlich in bezug auf die Ebene 4 BD liegen.
Hat man sich einmal fiir eine der beiden Lagen entschieden, so ist die einzige Freiheit,
die man fiir den Streckenzug A BCD hat, eine beliebige Drehung um die Achse AD.
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Es kann vorkommen, dass der Abstand zwischen den beiden parallelen Kreis
ebenen genau ¢ ist. In diesem Fall liegt der ganze Streckenzug A BCD in einer Ebene,
Ich wusste schon, dass in diesem Fall das ganze Fiinfeck eben ist.

Im anderen Fall kann man den Streckenzug A BCD so weit um AD drehen, bis
BC parallel zur Zeichenebene der Figur 3 zu liegen kommt. Diese Lage ist in
Figur 3 gezeichnet.

Es ist anschaulich klar, dass in dieser Lage die Figur 3 in der Projektion eine
Symmetrie hat. Sie geht namlich bei der Umdrehung um die Mitte M der Strecke AD
in sich iiber. Fiir die rdumliche Figur bedeutet das, dass sie eine Symmetrieachse g hat,
namlich die Verbindungsgerade M N der Mitten von AD und BC.

Die Symmetrie der Figur in bezug auf die Achse g war fiir mich, nachdem ich mir
die Figur im Raum anschaulich vorgestellt hatte, evident. Sie musste aber noch be-
wiesen werden. Definiert man g als Verbindungslinie M N, so muss man beweisen, dass
g senkrecht zu AD und BC ist oder, was damit dquivalent ist, dass g in den beiden
mittelsenkrechten Ebenen zu AD und BC liegt. Es gibt viele Moglichkeiten, diesen
Beweis zu fiihren; eine davon habe ich im Abschnitt I gewahlt.

Damit war die Existenz einer Zweierdrehung, die 4 mit D und B mit C vertauscht,
bewiesen. Es war noch zu beweisen, dass diese Zweierdrehung den Punkt E fest ldsst,
d.h. dass E auf der Drehungsachse liegt. Der Beweis ist leicht: E liegt gleich weit von
A und D entfernt und auch gleich weit von B und C, also liegt E in den beiden mittel-
senkrechten Ebenen zu 4D und BC, also auf deren Schnittlinie g.

Damit war also die Existenz einer Zweierdrehung, die Dunitz als Voraussetzung
fiir seinen Beweis brauchte, gezeigt. Mit derselben Methode erhilt man aber nicht nur
eine, sondern gleich fiinf Umdrehungen. Wer die endlichen Drehungsgruppen kennt,
sieht sofort, dass die von diesen 5 Umdrehungen erzeugte Gruppe nur eine Dieder-
gruppe Dj sein kann. Das Produkt von zwei Umdrehungen aus dieser Gruppe ist eine
Fiinferdrehung. Sobald man einmal eine Fiinferdrehung hat, die die 5 Punkte zyklisch
vertauscht, ist es klar, dass sie in einer Ebene senkrecht zur Drehungsachse liegen.
Damit waren die Grundgedanken des Beweises gegeben.

Beim Aufschreiben des Beweises tauchten einige kleine Schwierigkeiten auf, die
aber leicht behoben werden konnten. Zunichst: wenn die vier Ecken 4 BCD in einer
Ebene liegen, die fiinfte Ecke aber nicht, so fallen die beiden mittelsenkrechten
Ebenen von AD und BC zusammen. In diesem Fall, den ich anfangs Fall b) genannt
habe, gelingt die Konstruktion einer Umdrehung, die E invariant ldsst, nicht ohne
weiteres. Ich wusste aus der Torsionsiiberlegung von Dunitz, dass der Fall b) nicht
vorkommen kann, aber ich wollte diese etwas komplizierte Uberlegung lieber um-
gehen. Das war leicht moglich, denn von den 5 Umdrehungen braucht man nur zwei
(S und 7). Diese lassen sich aber auch im Fall b) ohne weiteres angeben, wie unter I
gezeigt wurde.

Eine weitere Schwierigkeit liegt darin, dass das Produkt ST von zwei Drehungen
Sund T im allgemeinen keine Drehung, sondern eine Schraubung ist. Eine Schraubung
wiirde, Ofter wiederholt, das Fiinfeck beliebig weit weg bringen. Die Bewegung
R = ST fiihrt aber das Fiinfeck in sich iiber, also kann R keine Schraubung sein.

Das einfachste Mittel, zu beweisen, dass R wirklich eine Drehung ist, ist die
Betrachtung des Schwerpunktes, der bei R fest bleiben muss. Die Betrachtung des
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Schwerpunktes ist ein alter Kunstgriff in der Theorie der endlichen Bewegungs-
gruppen.

II1  Noch einmal: Einfall und Uberlegung

Die Hauptfrage in meiner unter ) zitierten Untersuchung «Einfall und Uberlegung»
war: Wie kann man die bewussten Uberlegungen, die ein Mathematiker anstellt, ab-
grenzen gegen die Einfille, die der Uberlegung manchmal plstzlich eine neue Richtung
weisen ?

In dem Fall, iiber den ich hier berichtet habe, ist es relativ leicht, die Einfille auf-
zuzeigen. Der erste und wichtigste Einfall stammte von Dunitz. Er sagte sich: Wenn
ich erst einmal wiisste, dass es eine Zweierachse oder Spiegelebene gibt, so wire es
nachher viel leichter zu beweisen, dass das Fiinfeck eben ist.

Durch diesen Einfall war das urspriingliche Problem in zwei Teilprobleme aufge-
teilt, ndmlich: zuerst die Existenz einer Zweierachse oder Spiegelebene zu beweisen,
sodann von dieser Existenz ausgehend zu beweisen, dass das Fiinfeck eben sein muss.
Das zweite Teilproblem hatte Dunitz, wie er sagte, schon gel6st. Ich konzentrierte
mich also zunichst auf das erste Teilproblem.

Wenn a und « gegeben sind, so sind alle Diagonalen bekannt und untereinander
gleich; das hatte Dunitz schon bewiesen. Daraus folgt, dass alle Dreiecke wie 4 BC
und ACD bis auf starre Bewegungen bestimmt sind.
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Figur 4

Ich hatte nun den Einfall, die Diagonale AD festzuhalten und zu untersuchen,
welche Bewegungsfreiheit das rdumliche Fiinfeck dann noch hat. Das war der einzige
wesentliche Einfall: alles andere war systematische Uberlegung auf Grund der Raum-
anschauung. Das soll jetzt gezeigt werden.

Wenn AD festgehalten wird, zerfillt das Fiinfeck von selbst in ein Dreieck ADE,
das um 4D rotieren kann, und ein Viereck A BCD. Welche Bewegungsfreiheit hat das
Viereck ? Man sieht sofort, dass B und C je einen Kreis durchlaufen. Stellt man sich
ihre Bewegungen rdumlich vor, so erhdlt man ohne weitere Einfélle die Figur der
beiden Doppelkegel, die in Figur 3 in orthogonaler Projektion gezeichnet ist.

Mein Ziel war von vornherein die Konstruktion einer Zweierdrehung oder einer
Spiegelung. Dass die Figur 3 keine Spiegelung gestattet, ist klar. Also suchte ich cine
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Zweierdrehung und fand sie auch sofort: die Drehungsachse ist die Verbindungslinie
MN der Mitten von AD und BC, die sich in Figur 3 als Punkt projiziert. Dass M N eine
Symmetrieachse der Figur ist, war mir anschaulich evident.

Zwei kleine Aufgaben blieben iibrig. Zunichst musste ich beweisen, dass MN | AD
und MN | BC ist. Wenn man in der Raumgeometrie beweisen will, dass zwei Geraden
senkrecht sind, so macht man das haufig so, dass man zeigt, dass die eine in einer
Ebene senkrecht zur anderen liegt. Ich dachte mir also eine Ebene durch M senkrecht
zu AD. Ich hatte zu zeigen, dass nicht nur M, sondern auch N in dieser Ebene liegt.
Die Ebene durch die Mitte M senkrecht zu AD ist der Ort aller Punkte, die von 4
und D gleich weit entfernt sind; also hatte ich nur noch N4 = ND zu beweisen und
ebenso M B = MC. Der Beweis war leicht. .

So erhielt ich ohne neue Einfille eine Zweierdrehung, die 4 in D und B in C
iiberfithrt. Nun war noch zu zeigen, dass E auf der Drehungsachse liegt, also bei der
Drehung fest bleibt. Wie schon erwdhnt, folgt diese Behauptung sofort aus der
Tatsache, dass E gleich weit entfernt ist von 4 und D und ebenso von B und D.

Der Rest des Beweises ergab sich ganz von selbst ohne neue Einfille, wie unter 11

gezeigt wurde.
B. L. vAN DER WAERDEN, Ziirich

Triangular Covers for Closed Curves of Constant Length

1. We call a compact, convex (plane) set S a’'translation [displacement] cover for
the family € of all closed (plane) curves of fixed length L if for each curve I' € § there
is a translation 7 [displacement?) §] such that (I") C S [6(I") C S]. In this note we
describe the triangular translation and displacement covers for € of prescribed shape
that have least area.

It is a consequence of our results that the smallest triangular translation cover
and the smallest triangular displacement cover are both equilateral, the first with
side 2 L/3 and the second with side L }/3/n.

Along the way we obtain a sharpened version of a theorem of H. G. EGGLESTON's
on the thickness of a triangle that is circumscribed about a curve in € and similar
inequalities for the diameter and area of such triangles.

The translation theory, which depends on a well-known property of the orthic
triangle, is developed in section 2. The displacement theory depends on an inequality
of Eggleston’s and is summarized in section 3.

2. We begin by recalling some formulas from the trigonometry of triangles. Let
P, k,, t,d, T, r and g be the perimeter, altitude to side a, thickness (minimal altitude),
diameter (maximal side), area, inradius, and the perimeter of the orthi¢ (pedal)
triangle, respectively, of a triangle (4 BC). Then

. sina h, = p sinf siny
=? Sina + sinf + siny ° 2™ F sina + sinf + siny ’

1) A displacement, also called a rigid motion, is an orthogonal map of the plane that preserves orientation.
For details see [5; 32].
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