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Kleine Mitteilungen

Sur l'equation diophantienne xn — d2yn 2 d

Dans cette note, nous prouvons le th6or&me suivant:

Thiorbme: L'equation:

xn _ ß&yn 2 d; x, y, d, n dans Z; x y + 0; n > 1 (1)

ne possede, outre les Solutions triviales:

x — y d +1, n impair, (2)

que les quatre Solutions:

x 2 e, y e, d 2 e ou — 4 e, n 3 (e ± 1) (3)

En particulier, en prenant d 2 e et en 6changeant x et y, on deduit immediatement de ce
theoreme le resultat suivant, d€]k etabli dans [1]:

Corollaire: L'6quation:

xn — yn — + 1; x, y, n dans Z; x y j= 0; n > 1

ne possede que les deux Solutions:

(x, y, n) (— 1, — 2, 3) correspondant au signe supeneur,

(x,y,n) — (1, 2, 3) correspondant au signe inferieur.

Dimonstration du thdoreme:
Comme y 4= 0, (1) Equivaut ä xn yn — d2y2n 2 dyn soit k

(dyn+ l)2 (x y)n + 1

Or Chao Ko [1] a montr6 que l'equation:

X2 Y« + 1; X,Y,n dans Z, X Y * 0; n > 1

ne possede que les deux Solutions (X, Y, n) (+ 3, 2, 3). Ici Y x y #= 0. Donc, si X —

dyn 4.14. 0, on aura

dy"+l=+3; xy=2; n=3
d'oü on tire ais6ment les Solutions (3).

Le cas, 6cart6 ci-dessus, oü dyn +1 0 donne (x y)n — 1 donc x y — 1 et n impair
et conduit aux Solutions (2).

M. E. Blanpain, Lille

R1_F_.RENCE

[1] Chao Ko, On the Diophantine Equation x2 yn + 1, x y 4= 0, Sei. Sinica 14, 457-460
(1965).
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Zur Partialbruchzerlegung rationaler Funktionen

Der Beweis fur die Existenz der Partialbruchzerlegung rationaler Funktionen uber
dem Korper der reellen oder komplexen Zahlen ist meist mit einiger Muhe verbunden,
wahrend die Eindeutigkeit der Partialbruchzerlegung schnell durch Grenzübergänge zu
erledigen ist1). Wir geben daher im folgenden einen Beweis an, nach dem die Existenz der
Partialbruchzerlegung aus ihrer Eindeutigkeit folgt.

Es sei die rationale Funktion R(x) A(x)/C(x) vorgelegt, wo A(x) und C(x) Polynome
vom Grad m bzw n mit m < n smd und

C PJ...PV.ßi«.. QU

die PrimfaktorzerleFiing des Nenner m Linearfaktoren Pk und quadratische (irreduzible)
Faktoren Qi darstel! Es ist also

Wir setzen mit Konstanten akt, bl und c{ die Partialbruchzerlegung von R(x) in der
Form

m-ZZ^ + ZZ^r^k-i * i ^k j-i i Sei

an. Indem wir die rechte Seite auf den Hauptnenner C(x) bringen, erhalten wir als Zahler
em Polynom (n — l)-ten Grades in x2) Koeffizientenvergleich ergibt somit n lineare
Gleichungen fur die £ ik+ 2 £ 1i ^ n Koeffizienten akl, btJ und c{j Ware dieses
(inhomogene) Gleichungssystem im Falle emer gewissen rationalen Funktion R(x) nicht
losbar, so musste die Koeffizientendeterminante verschwinden, und daher hatte das mit
denselben Koeffizienten gebildete homogene Gleichungssystem eme nichttriviale Losung.
Das homogene Gleichungssystem entspricht aber dem Fall, dass wir die Partialbruchzerlegung

bei identisch verschwindendem Zahlerpolynom A(x) suchen Es hatte also die
Funktion 0 eine nichttriviale Partialbruchzerlegung, was im Widerspruch zur Eindeutigkeit

der Partialbruchzerlegung steht.
Anmerkung. Diese Überlegung ist offensichtlich nicht auf den Korper der komplexen

oder reellen Zahlen beschrankt G. Eisenreich, Leipzig

1) Das gilt durchaus auch im Falle des Korpers der reellen Zahlen Von einer komplexen Nullstelle des

Nennerpolynoms der gegebenen rationalen Funktion können wir namhch, indem wir nötigenfalls durch eine
Translation zu emer neuen Vanablen übergehen, stets ohne Beschrankung der Allgemeinheit annehmen,
dass sie rein imaginär ist, der zugehörige Faktor des Nennerpolynoms also x2 + a% mit a > 0 lautet. Durch
Erweitern einer rationalen Funktion mit C{— x) (C{x) zugehöriges Nennerpolynom) können wir erreichen,
dass der Nenner eme Funktion von x2 wird Daher lasst sich die fragliche Partialbruchzerlegung auch in der
Form

A{x2) + xB{x2) ^ Aj(x2) + x Bj(x2)-ZN{x2) 4f Nj{x*)

schreiben, und durch Anwendung der Substitution x -> — x folgt sofort, dass diese Gleichung m zwei
Gleichungen fur die AfN bzw. BjN allein aufspaltet Auf diese Gleichungen lasst sich aber das traditionelle
Beweisverfahren anwenden, das auf dem Grenzübergang y x2 -> — a2 beruht (die zunächst fur positive
y-Werte geltende Gleichheit zwischen den entsprechenden Polynomen muss 3 a auch fur negative y bestehen
bleiben).

a) Indem wir von der fur den Zahler entstehenden Gleichheit zu Kongruenzen mod Pk (k l,...,f)
bzw. mod Qt (l l,...,s) übergehen, erhalten wir übrigens ein System von Kongruenzen, aus dem gleichfalls

sofort die Eindeutigkeit der Partialbruchzerlegung folgt.
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