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128 Ungelöste Probleme—Kleine Mitteilungen

Dreiecks der Seitenlange 2/3(1 — t) der Spanne t Fur Flächeninhalt und Umfang
ergeben sich die Formeln

f(t) 3/3(l-*2) + nt2, l(t) 6/3(1-0 + 2nt.
Offensichtlich sind / /(0) 3/3 und l 1(0) 6/3 die Masszahlen des Normalnsses

P' von P Mit passender Integration gewinnt man

V=[(6p+Tz)l3]h,
n/Z

F 3/3 (1 + h) +ti + 3 f ]/l + h2 - 4 cosie; (1 - cosw) dw

o

Mit naheliegender einfacher Abschätzung resultiert

i^<(3/3 + 7r) (l + )/l + h2)

sodass sich gemäss (1)

9/T 4- 37. /1 4- ]/i~+~W
12 / 3" + 2tt \ h

ergibt Mit h -> oo schhesst man nach (2) auf

0O < (9/3 + 3 tz)I(12]/3 + 2tz) —0,924 (5)

sodass also jedenfalls pQ < 1 ausfallt
Schliesslich wollen wir noch darauf hinweisen, dass sich die Frage nach dem Wert

von p0 nicht etwa dadurch tnviahsiert, dass p beliebig kleine Werte annehmen kann,
sodass p0 0 wäre, sondern dass gezeigt werden kann, dass stets p > 1/2 gilt Der
Nachweis kann an dieser Stelle nicht gefuhrt werden Im Hinblick hierauf wird mit
Sicherheit

Po > 1/2 (6)

gelten Das hier vorgelegte ungelöste Problem lautet also Welches ist der Wert des

mit (2) angesetzten Infimums p0 (0,500 < p0 < 0,924) H Hadwiger

Kleine Mitteilungen

An Elementary Set Partition Problem

In an earher note R Schneiderreit [2] considers the problem of distnbutmg the
numbers 1, 2, n mto two boxes so that not more than m consecutive numbers are m
the same box, permutmg the numbers in a box or mterchangmg the boxes does not give
a new distnbution If Fm(n) denotes the number of such distributions it is shown that

Fm(n)-Fm(n~l)+^ +Fm(n~m), n>m (1)
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with Fm(n) 2n~1 for 1 <^ n ^ m. In the particular case m 2 relation (1) with F2(n)
f(n) becomes f(n) f (n - 1) + f (n - 2) with /(l) 1, f(2) 2, /(w) bemg the well-
known Fibonacci number

By treatmg the above problem as a partition problem a more general result is herein
obtained. Indeed, the method of proof is quite elementary and direct.

Denote by gm(n, r), m, n, r positive integers, the number of partitions of {1, 2, n}
mto r non-empty mutually disjomt subsets or parts such that no part contains more than
m consecutive mtegers. Equivalently gm(n, r) is the number of ways of distributmg n
unhke numbered objects 1,2, ,n mto r like cells such that no cell is empty and no cell
contains more than m consecutively numbered objects. Clearly gm(n, r) 0 when n < r.

Assume m < n In a partition counted by gm(n, r), either object n is m a part not
contammg object n — 1, or object n is m a part contammg object n—l but not object
n — 2, or object wisina part contammg n — 1, n — 2 but not n — 3, or object wis m a
part contammg n — 1, n — 2, ,n — m+ 1 but not n — m. Now the number of partitions
such that n, n— l,..,n — i+l but not n — i, 1 ^ i ^m, are m the same part is

gm(n-i,r- 1) + (r- 1) gm (n - i, r) (2)

smce the first number counts those partitions for which n, n — 1, n ~ i + 1 are m
the same part with no other objects and (r — 1) gm (n — i, r) counts those partitions for
which n, n — 1, n — i + 1 but not n — i are in the same part with that part contammg
at least one other object Summmg (2) over alli, 1 ^ i ^ m we have for m < n the relation

gm(n> r)= gm(n-l,r -1) + gm(n-2,r-l) + •- + gm(n-m,r-l) +
+ (r ~ fem (n - 1>r) + Sm (n - 2> r) + ' * * + Sm (n ~ m> rK • (3)

With r 2 m (3) we have

gjn, 2) =gm{n- 1, 1) + gm (n - 1, 2) + ••• 4- gm (n ~ m, 1) + gm (n - m, 2) (4)

Lettmg Fm(n) gm(n, 1) 4- gm(n, 2), i e. the number of partitions of {1, 2, n) mto at
most two parts with not more than m consecutive integers in any part, then for m < n,
gm(n, 1) 0 and from (4) we obtain relation (1)

Defmmg gm(n, r) 0 when n ^ 0, then relation (3) holds for all positive integral
vafties of m. When m > n — r there are no restnctions on the partitions and gm(n, r) is
simply the number of partitions of a set of n elements mto r non-empty, mutually disjomt
subsets or parts. With m n — r + 1, and S(n, r) gm(n, r) we have from (3) the relation
S(n, r) S (n - 1, r - 1) + S (n - 2, r - 1) + • • • 4- S (r - 1, r - 1) 4-

4- (r - 1) [5 (n - 1, r) + S (n - 2, r) + • • • 4- S (r - 1, r)] (5)

Smce the number of ways of distributmg n unhke objects mto r unhke cells with none
r-l

empty is easily seen to be, by the pnnciple of mclusion and exclusion, YJ (— 1)J l (r —;)",

we have the known expression (cf. [1])

Therefore for m ^ n, Fm(n) S(n, 1) + S(n, 2) 2n~1 as noted m [2]. It is easy to see
that (5) is equivalent to the relation

S(n, r) S (n - 1, r - 1) + r S (n - 1, r) (6)

where S (n — 1, r — 1) counts those partitions with »in a part by ltself while r S (n — l,r)
counts those partitions with n in a part contammg at least one other element. Of course
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the numbers S(n, r) with n, r integers, S(n, r) 0 for r > n and r < 1, are the well known
Stirling numbers of the second kmd (cf [1]) sometimes defined by

n

£S(n, r) x{r) xn n > 0

r 1

where x^ x (x — 1) (x — r + 1)

Morton Abramson, York University, Toronto, Canada
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Two More Tetrahedra Equivalent to Cubes by Dissection
Some tetrahedra can be divided by plane cuts mto a finite number of pieces which can

be assembled to form a cube A tabulation of the known cases was published by the
author [1] It included the findmgs of Hill [2] and Sydler [4] Smce then, a supplementary
hst of five new tetrahedra was published by Lenhard [5] The list is not complete Two
more cases, described in the following, were discovered m connection with another problem

A classic problem in polyhedra is the determmation of those polyhedral shapes which
can fill space by rephcation of a Single shape As a special case, Sommerville denved the
space-fillmg tetrahedra [6] Another modification is the allowance of the use of isometrie
tetrahedra, that is, those tetrahedra which are mirror images of each other These were
described recently by Davies [7]

The following defmitions and Symbols will be used m the preparation of a tabulation
of the Solutions

DEFINITION A space-filhng tetrahedron (designated by SFT) is one which, together
with other congruent tetrahedra, can fill space without overlappmg

DEFINITION A space-fillmg twm-tetrahedron (designated by SFTT) is one, which
together with congruent tetrahedra and their mirror images, can fill space without
overlappmg

Table 1 Tabulation of Space hllmg tetrahedra

No Descnption Type Illustrated by

Sommerville [6] Davies [7]

1

2
3
4
5
6

Hill, first type
Hill, first type, a n\3
Hill, second type, a n\4
Hill, special
Sommerville
Davies (1/2 of Sommerville)

SFTT
SFT
SFT
SFT
SFT
SFTT

Figure 7

Figure 9
Figure 8

Figure 10

Top p 51

Top p 51
Bot p 51
Bot p 51
Bot p 51
Bot p 51

Rephcations of the foregomg space-fillmg tetrahedra, Nos 2 to 5, can be assembled
to form a parallelepiped. Therefore, each such tetrahedron is also dissectible to form a
cube, as was shown by Sydler [3, pp 269-270] Another exposition of this proof is given
by Boltyanskii [11, pp 60-63] The tetrahedron, designated as No 6, can be eut mto
twelve pieces to form its isomer, as was shown by Bricard [8] Hence, two tetrahedra of
this type can be made mto one of No 5 Therefore, all of the tetrahedra m Table 1 are
dissectible to form cubes. However, Numbers 5 and 6, described by Sommerville and
Davies, have been overlooked m the previous tabulations of dissectible tetrahedra
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The hst of all the tetrahedra which can be dissected to form cubes, known at the
present time, is given m Table 2 It is not known whether this hst is exhaustive Bricard [8]
and Dehn [9] have shown that a necessary condition on the dihedral angles A, B, C, D,
E, F, now known as one of Dehn's conditions, requires that

mx A + m2 B + mz C + m4 D + m5 E + m6 F k ti

where the mt and k integers Sydler [10] has shown that this condition, plus another
Dehn condition on the lengths of the edges, is sufficient. However, it should be noted that,
in Table 2, at least two of the dihedral angles of each tetrahedron are rational fractions of n.
Furthermore, in all of these cases, m 27 A k n This is a stronger condition than the
Dehn condition on the angles in which the coefficients may be different integers It is an
open question whether this stronger condition is necessary

An excellent summary and exposition of the earher papers on the subject of the
dissection of polygons and polyhedra to form other polygons and polyhedra is given by
Boltyanskii [11].

In the table, r Q/5 4- l)/2, aisa free variable,

ot! fe 50°, tanax= 1/7/5, cos 2^ - 1/6,

oc2 fe 65°, tan<x2= ]/9 - 2]/5, cos4a2 - 3 (^5 - l)/20 - 3 t^/IO,

a3 fe 75°, tana3= ]/9 + 2^5 cos4oc3 3()/5 4- l)/20 3 t/10,

oc4 fe 101°, tana4 - 3 - YJ= - 2 t2;

a6 fe 117°, tana6= — 2,

a6 fe 143°, tana6 =-34- V* ~ 2 T"2> a4 4- aB 4- a6 360°,

a7 fe 48°, cosa7= 2/3
M. Goldberg, Washington, D.C.
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fe-Tuples of the First n Natural Numbers
In connection with the problems of infinite sets mvestigated by Erdos and Hajnal

in [1], Erdos proposed a problem of the Ä-tuples of a finite set. This problem in its most
general form can be formulated as follows Take a System of Ä-tuples of the first n natural
numbers Suppose that the set of the ix-st, t2-nd, zrth (J< h — 1) numbers of an
arbitrary ß-tuple of the System does not coincide with the set of the /x-st, ;2-nd, ;^-th numbers
of another Ä-tuple of the System. At most how many Ä-tuples can the System contain
In this paper we solve the problem m a special case.

Denote by / (n, k) the maximal number of Ä-tuples which can be chosen from the first n
numbers (1 < k < n) such that the last k—1 numbers of a Ä-tuple do not coincide with
the first k—1 numbers of another selected Ä-tuple.

It is trivial that f(n, 1) n.
It will be proved that if k > 2 then

/<•¦*>-__; ("-„_"_2m\

The proof uses induction on n. If n k, f(k, k) 1 If n — k + 1, only the ß-tuple of
the first and the Ä-tuple of the last k numbers cannot be selected at the same time,
consequently f(k+l,k)=^k Thus the statement holds for n k, k + 1, and it may be
supposed that n > k + 2 and it holds for the numbers less than n.

Put N {1, 2, n} and M {2, 3, n — 1}. Consider a maximal System 9t of
Ä-tuples of JV, satisfymg the condition. Denote by x a (k — 2)-tuple. x c N and x C M
will mean that the elements of x are in N and M, respectively. Divide the (k — l)-tuples
of _V mto two classes 91 and 33. If a (k — l)-tuple consists of the first k — 1 elements of a
Ä-tuple of 9t, then put the (k — l)-tuple mto 91, otherwise mto 93. Denote by cc(x) the
number of (k — l)-tuples of 91, the last k — 2 elements of which form x, and similarly ß(x)
denotes the number of (k — l)-tuples of 93, the first k — 2 elements of which form x.
Because of the maximahty of 9t if x consists of the last k — 2 elements of a (k — l)-tuple
of 91 and it is at the same time the set of the first k — 2 elements of a (k — l)-tuple of 58,

then 91 contains the Ä-tuple which is the union of these two (k — l)-tuples It is obvious
that this is a unique representation of the elements of 91 as certain unions of elements of 91

and 58. Consequently
f(n,k)=2J*(x)ß(x).

xcN

If x contains 1, ol(x) 0 and if x contains n, ß(x) 0. Thus it can be supposed that
x c M in the sum above. On the other hand ii x c M, the (k — l)-tuple consistmg of 1

and of the elements of x must belong to 91 So if a'(x) denotes the number of (k — l)-tuples
of 91 in M, having x as the Ist k — 2 elements, then <x(x) ol'(x) + 1. The number ß'(x) is
defined similarly and ß(x) ß'(x) + 1. But then

f(n, k) =2>W ß^ =2>'M + X> (£» + X>

xQM xQM

Y*'(x) ß'(x) +£(*'(x) + ß'(x)) +JTl < f(n - 2, k) + (n2 \)
xQM xQM xQM X* '

' n- 2\ „ LX In- 1\
+ (;:«)- /<»-.») +g:I).
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Usmg the mductional hypothesis this gives

n — 1 — 2 m\n«.k)<Z ("V-i").
m 0

To prove the converse inequality take the following System 9t* of k tuples of JV

If /, / and m are the first, last and an arbitrary middle element of a A-tuple, respectively
then 9t* contains this Ä-tuple if and only ii n — l < m < w — / Following the previous

[-_____*_]

proof it is immediate by induction that 9t* has exactly Y I I elements

This proves the required result
Now consider Systems of Ä-tuples of JV satisfymg the following condition there are no

two Ä-tuples m a System, say xx and x2, such that the last element of xx is a middle element
of x2 and the first element of x2 is a middle element of xx Denote by g(n, k) the maximal
number of elements of these Systems

As this condition is much stronger then the previous one, f(n, k) > g(n k) must hold
It is fairly surpnsmg that equality holds m this inequality

f{*,k)=g(n,k)
This follows simply from the construction given above, smce 9t* satisfies the stronger

condition too For suppose that flt /2, llt l2 are the first and last elements of two k tuples
of 9t* for which f2 is between fx and llt furthermore lx is between /2 and l2 But then
n — lt < /2, lx < n — /2, consequently n — f2 < lx < n — f2, so this shows there are no
such two Ä-tuples, i e 9t* satisfies the stronger condition

It is hkely that the complete Solution of the original problem is very difficult and it
needs an entirely different method

Bela Bollobäs, Research Institute of Mathematics Budapest
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Sur l'equation diophantienne (*2-l)2+ (;y2-l)2 (z2-l)2
W Sierpinski a expose* dans [1], p 55, les quelques resultats connus concernant

l'equation
(x2 - l)2 4- (y2 - l)2 (z2 - l)2 x, y, z entiers > 1 (1)

et not6 que, pour x, y, z impairs, x 2 a + 1, y 2 b + 1, z 2 c + 1, cette Equation
pouvait s*6cnre

«+<J /! a, b, c entiers > 0 tu=
U {u + X)

(2)

Dans une pr6c6dente note [2], nous avons dömontre Timpossibilite de (2) si deux au
moms des trois nombres a, b, c sont consecutifs

Supposant x < y < zt ce qui est loisible puisque x =*= y, nous prouvons cette fois que

(A) (1) est impossible avec y — x 1
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(B) (x, y, z) (10, 13, 14) est la seule Solution de (1) avec z — y 1.

(C) (1) est impossible avec y — xouz — youz — x=2.
(A) Nous allons montrer que l'equation:

(X* - l)2 4- (y2 - l)2 u2 x, y, u entiers > 1 (3)

n'a, pour y — x 1, que la Solution (x, y, u) (3, 4, 17). Le resultat s'ensuivra immediatement

puisque z2 — 1 4= 17.

Avec y x + 1 donc u impair, u — 2 v + 1, (3) devient tv — t\. Or W. Ljunggren [3]
puis J. W. S Cassels [4] ont montre que t0, tx, t8 tl) sont les seuls nombres triangulaires
qui sont les carres de nombres triangulaires. Donc x — 3, v 8, u 17.

(B) Si z y + 1, l'equation

u2 + (y2 - l)2 - (z2 - l)2 u, y, z entiers > 1 (4)

peut s'ecnre (2 y + 1) (2 y2 + 2 y - 1) u2 Posons P 2y + 1, Q=2y2+2y-l.
On a PQ u2 avec P, Q entiers > 0, d'oü P dPx2, 0 dQ\ avec rf (P, Q) et Pt, 0X
entiers > 0 Comme P2 — 2 Q — 3 on obtient fmalement •

d2P\ - 2 dQ\ 3 avec rf 1 ou 3

Comme rf, Px, 0X sont impairs onal — 2 rf 3 (mod. 8) donc d 3 et 3 Px4 — 2 0f 1,

equation qui vient d'etre resolue par R T. Bumby [5] et qui donne (Plf Qt) (1, 1) ou
(3, 11). La premiere Solution est ä ecarter car eile conduit ä y 1. La seconde fournit
(u, y, z) — (99, 13, 14), seule Solution de (4) avec z — y + 1. En revenant ä (1), on a
x2 - 1 99 soit x 10.

(C) 1°) Si z — x 2, alors y — x 1 et (1) est impossible d'apres _4.

2°) Si y — x 2,xety ont meme parite et z est impair. x et y ne peuvent etre pairs car
(£2 — l)2 =£ 2 (mod. 4). Ainsi (1) a heu avec #, y x + 2, z impairs et implique (2) avec
b a + 1, ce qui est impossible d'apres [2]

Remarquons qu'en revanche l'equation (3) possede une infinite de Solutions avec
y x + 2 car alors, x etant impair pour la meme raison que ci-dessus, x 2 p — 1,

p entier > 1, eile s'ecnt 32 p2 (p2 + 1) u2, d'oü on tire successivement 2 (p2 + 1) v2,

v pair > 2, v 2 w, soit fmalement l'equation de PELL p2 — 2 w2 — — 1, de Solution
fundamentale (p, w) — (1, 1).

3°) Si z - y 2, les Solutions de l'equation (4) sont (w, y, z) (8 v3, 2 ?;2 - 1, 2 v2 + 1),
v entier > 1, car cette equation devient u2 \2 (y + l)]3. Alors (1) a heu avec x, y, z

y + 2 impairs et implique (2) avec c b + 1, ce qui est impossible d'apres [2].
M. E. Blanpain, Lille

REFERENCES

[1] W. Sierpinski, Elementary Theory of Numbers, Monografie Matematyczne, Tome 42,
Warszawa (1964).

[2] M. E. Blanpain, Sur le probleme de Zarankiewicz, El. Math. 23, 135 (1968). Un
resultat important concernant ce probleme a ete obtenu recemment par V. Dimiev [6].

[3] W. Ljunggren, Solution compUte de quelques equations du sixibme degri ä deux mditer-
mmies, Areh. Math. Naturv. 48, 177-211 (specialement 202-205) (1946).

[4] J. W. S. Cassels, Integral Points on Certain Elliptic Curves, Proc. London Math. Soc.

14A, 55-57 (1965).
[5] R. T. Bumby, The Diophantine Equation 3x*-2y2= 1, Math. Scand. 21,144 -148 (1967).
[6] V. Dimiev, Right Triangles whose Sides are Triangulär Numbers (Bulgare. R6sum6s

russe et fra^ais), Godi§mk. Vis§. Tehn. Ucebn. Zaved. Mat. 7 (1964), kn. 3, 9-14 (1965);
Math. Rev. 36 (aoüt 1968)


	Kleine Mitteilungen

