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128 Ungeloste Probleme — Kleine Mitteilungen

Dreiecks der Seitenlinge 2})/3 (1 — ¢) der Spanne ¢. Fiir Flicheninhalt und Umfang
ergeben sich die Formeln

f&) =331 —8) +a2 )=6y3(1—1t)+2nt.

Offensichtlich sind f = f(0) = 3)/3 und / = /(0) = 6}/3 die Masszahlen des Normal-
risses P’ von P. Mit passender Integration gewinnt man
V =1[(6y3+m)/3]h,

73

F=3V§(1+h)+n+3/1/1+h2—4cosw (1 — cosw) dw .
0

Mit naheliegender einfacher Abschidtzung resultiert
F<@Y3+a) 1+y1+hr),

sodass sich gemiss (1)

p <

9Y3 + 3a (1 +VfT7zz>

12)/3 + 2n h

ergibt. Mit 4 - oo schliesst man nach (2) auf
po < (9Y3 + 37)/(12)/3 + 27) ~0,924..., (5)

sodass also jedenfalls p, < 1 ausfillt. |

Schliesslich wollen wir noch darauf hinweisen, dass sich die Frage nach dem Wert
von p, nicht etwa dadurch trivialisiert, dass p beliebig kleine Werte annehmen kann,
sodass p, = 0 wire, sondern dass gezeigt werden kann, dass stets p > 1/2 gilt. Der
Nachweis kann an dieser Stelle nicht gefithrt werden. Im Hinblick hierauf wird mit
Sicherheit

po = 1/2 (6)
gelten. Das hier vorgelegte ungeldste Problem lautet also: Welches ist der Wert des
mit (2) angesetzten Infimums p, (0,500 < py < 0,924)? H. HADWIGER

Kleine Mitteilungen

An Elementary Set Partition Problem

In an earlier note R. SCHNEIDERREIT [2] considers the problem of distributing the
numbers 1, 2, ..., # into two boxes so that not more than m consecutive numbers are in
the same box; permuting the numbers in a box or interchanging the boxes does not give
a new distribution. If F (n) denotes the number of such distributions it is shown that

F,mn=F,m—-1)+ ...+ F, (n—m), n>m (1)
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with ¥, (n) = 2"—1for 1 < # < m. In the particular case m = 2 relation (1) with F,(n) =
f(n) becomes f(n) =f(n — 1) + f (n — 2) with f(1) = 1, f(2) = 2, f(n) being the well-
known Fibonacci number.

By treating the above problem as a partition problem a more general result is herein
obtained. Indeed, the method of proof is quite elementary and direct.

Denote by g,,(n, 7), m, n, r positive integers, the number of partitions of {1, 2, ..., n}
into » non-empty mutually disjoint subsets or parts such that no part contains more than
m consecutive integers. Equivalently g, (%, ) is the number of ways of distributing »
unlike numbered objects 1, 2, ..., » into 7 like cells such that no cell is empty and no cell
contains more than m consecutively numbered objects. Clearly g, (%, ) = 0 when n < 7.

Assume m < #. In a partition counted by g, (n, #), either object # is in a part not
containing object # — 1, or object » is in a part containing object #» — 1 but not object

7 — 2, or object n is in a part containing # — 1, » — 2butnot# — 3, ..., orobject nisin a
part containing# — 1, n — 2,..., 7 — m + 1 but not » — m. Now the number of partitions
such that », n — 1,..., 2 — 7+ 1 but not » — 4, 1 <4 < m, are in the same part is

G (0 —i,7 — 1) 4 (r = 1) g, (0 — 4, 7) (2)
since the first number counts those partitions for which #, » — 1,...,# — 4 4+ 1 are in
the same part with no other objects and (» — 1) g, (# — %, ) counts those partitions for
which#,n — 1,...,# — i + 1 butnot #» — 7 are in the same part with that part containing

at least one other object. Summing (2) overalls, 1 <7 < m we have for m < % the relation

gnn,?) =g, m—1Lv—1)+g, (B—2,v—1) 4+ - +g, (n—mr—1)+
+ -, =17 +g,(n =27+ +g,(n—m7)]. (3)
With » = 2 in (3) we have

g, 2) =g, m—1,1)+¢g, n—1,2)+ - +g,m—m1)+g,n—m2). (4

Letting F, (n) = g,,(»n, 1) + g,(n, 2), i.e. the number of partitions of {1, 2, ..., »n} into at
most two parts with not more than m consecutive integers in any part, then for m < #,
gn(n, 1) = 0 and from (4) we obtain relation (1).

Defining g, (n, ) = 0 when # < 0, then relation (3) holds for all positive integral
valties of m. When m > n — 7 there are no restrictions on the partitions and g, (, #) is
simply the number of partitions of a set of » elements into » non-empty, mutually disjoint
subsets or parts. With m = n — » + 1, and S(», ¥) = g,,(n, ¥) we have from (3) the relation
Sm,r)=Sn—-1,r—1)+Sn—-2,r—1)+++Sr—1,v—-1)+

+r—1D[Sr—-—1,n+Sn—-2,7)+ -+ S{r—1,7)]. (5)

Since the number of ways of distributing » unlike objects into » unlike cells with none
r—1

empty is easily seen to be, by the principle of inclusion and exclusion, 2 (— 1)J (:) (r—1)n,
j=0

we have the known expression (cf. [1])

r—-1

S = X (=1 (7) =i

j=0

Therefore for m = n, F,(n) = S(n, 1) + S(n, 2) = 2"~ as noted in [2]. It is easy to see
that (5) is equivalent to the relation

S, n)=Sn—1,r—1)+rS(n—1,7) (6)

where S (n — 1, » — 1) counts those partitions with » in a part by itself whiler S (n — 1, 7)
counts those partitions with # in a part containing at least one other element. Of course
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the numbers S(n, ) with », » integers, S(x, #) = 0 for » > n and » < 1, are the well known
Stirling numbers of the second kind (cf. [1]) sometimes defined by

n
ZS(n, N =, n>0
r=1

where 2\ = x (v — 1) ... (¥ — 7 + 1).
MorToN ABRAMSON, York University, Toronto, Canada
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Two More Tetrahedra Equivalent to Cubes by Dissection

Some tetrahedra can be divided by plane cuts into a finite number of pieces which can
be assembled to form a cube. A tabulation of the known cases was published by the
author [1]. It included the findings of HirLL [2] and SYDLER [4]. Since then, a supplementary
list of five new tetrahedra was published by LENHARD [5]. The list is not complete. Two
more cases, described in the following, were discovered in connection with another problem.

A classic problem in polyhedra is the determination of those polyhedral shapes which
can fill space by replication of a single shape. As a special case, SOMMERVILLE derived the
space-filling tetrahedra [6]. Another modification is the allowance of the use of isometric
tetrahedra; that is, those tetrahedra which are mirror images of each other. These were
described recently by Davies [7].

The following definitions and symbols will be used in the preparation of a tabulation
of the solutions.

DEFINITION : A space-filling tetrahedron (designated by SFT) is one which, together
with other congruent tetrahedra, can fill space without overlapping.

DEFINITION: A space-filling twin-tetrahedron (designated by SFTT) is one, which
together with congruent tetrahedra and their mirror images, can fill space without
overlapping.

Table 1. Tabulation of space-filling tetrahedra

No. Description Type Illustrated by

SOMMERVILLE [6] DaviEes [7]

1 HiLy, first type SFTT Top. p. 51
2 HivLy, first type, o = ®/3 SFT Figure 7 Top. p. 51
3 HiLi, second type, a0 = n/4 SFT Figure 9 Bot. p. 51
4 HiLw, special SFT Figure 8 Bot. p. 51
5 SOMMERVILLE SFT Figure 10 Bot. p. 51
6 Davies (1/2 of SOMMERVILLE) SFTT Bot. p. 51

Replications of the foregoing space-filling tetrahedra, Nos. 2 to 5, can be assembled
to form a parallelepiped. Therefore, each such tetrahedron is also dissectible to form a
cube, as was shown by SYDLER [3, pp. 269-270]. Another exposition of this proof is given
by BorLtvanskil (11, pp. 60—63]. The tetrahedron, designated as No. 6, can be cut into
twelve pieces to form its isomer, as was shown by Bricarp [8]. Hence, two tetrahedra of
this type can be made into one of No. 5. Therefore, all of the tetrahedra in Table 1 are
dissectible to form cubes. However, Numbers 5 and 6, described by SOMMERVILLE and
Davigs, have been overlooked in the previous tabulations of dissectible tetrahedra.
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The list of all the tetrahedra which can be dissected to form cubes, known at the
present time, is given in Table 2. It is not known whether this list is exhaustive. BRICARD [8]
and DEHN [9] have shown that a necessary condition on the dihedral angles 4, B, C, D,
E, F, now known as one of Dehn’s conditions, requires that

myA+myB+mgC+ myD+ mgE+ mg F=Fkan,

where the m; and % integers. SYDLER [10] has shown that this condition, plus another
DEeHN condition on the lengths of the edges, is sufficient. However, it should be noted that,
in Table 2, at least two of the dihedral angles of each tetrahedron are rational fractions of .
Furthermore, in all of these cases, m X' 4 = k& n. This is a stronger condition than the
DenN condition on the angles in which the coefficients may be different integers. It is an
open question whether this stronger condition is necessary.

An excellent summary and exposition of the earlier papers on the subject of the
dissection of polygons and polyhedra to form other polygons and polyhedra is given by
Bortvanskir [11].

In the table, 7 = (J/5 + 1)/2, « is a free variable,

o, &~ 50° tana,=})7/5; cos2a; = — 1/6;
% A 65° tana,=}/9 — 2)/5; cosday = — 3 ()/5— 1)/20 = — 3 71/10;

ag & 75° tanag=|/9 + 2)/5; cos4a, = 3()5 + 1)/20 = 3 7/10;

ay &~ 101°, tano, = — 3 — J/5 = — 2 2;
oy & 117°, tanay = — 2;
ag & 143°, tanog= — 3 + }/5 = — 2172, o, + az + a5 = 360°;

o, ~ 48° cosa,= 2/3.
M. GoLDBERG, Washington, D.C.
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k-Tuples of the First n Natural Numbers

In connection with the problems of infinite sets investigated by ErRp6s and HajNaL
in [1], ErRDOs proposed a problem of the k-tuples of a finite set. This problem in its most
general form can be formulated as follows. Take a system of k-tuples of the first » natural
numbers. Suppose that the set of the ¢;-st, i,-nd, ..., 7;-th (/< £ — 1) numbers of an arbi-
trary k-tuple of the system does not coincide with the set of the j,-st, j,-nd, ... , j,-th numbers
of another %-tuple of the system. At most how many &-tuples can the system contain ?
In this paper we solve the problem in a special case.

Denote by f(n, k) the maximal number of 2-tuples which can be chosen from the first »
numbers (1 < £ < =) such that the last £ — 1 numbers of a 2-tuple do not coincide with
the first £ — 1 numbers of another selected k-tuple.

It is trivial that f(», 1) = =.

It will be proved that if 2 > 2 then

n—1—2m
=3 (", 707)
m=0

The proof uses induction on »n. If w = &, f(k, ) = 1. If w = & + 1, only the k-tuple of
the first and the A-tuple of the last £ numbers cannot be selected at the same time,
consequently f(k + 1, &) = k. Thus the statement holds for » = &, £ 4+ 1, and it may be
supposed that » > k& + 2 and it holds for the numbers less than #.

Put N={1,2,...,n}and M ={2,3,...,n — 1}. Consider a maximal system N of
k-tuples of N, satisfying the condition. Denote by » a (¢ — 2)-tuple. xC N and x Cc M
will mean that the elements of x are in N and M, respectively. Divide the (¢ — 1)-tuples
of N into two classes: A and B. If a (¢ — 1)-tuple consists of the first £ — 1 elements of a
k-tuple of N, then put the (¢ — 1)-tuple into A, otherwise into B. Denote by a«(x) the
number of (¢ — 1)-tuples of U, the last £ — 2 elements of which form %, and similarly ()
denotes the number of (¢ — 1)-tuples of B, the first £ — 2 elements of which form .
Because of the maximality of R if » consists of the last 2 — 2 elements of a (¢ — 1)-tuple
of 9 and it is at the same time the set of the first # — 2 elements of a (¢ — 1)-tuple of B,
then N contains the k-tuple which is the union of these two (8 — 1)-tuples. It is obvious
that this is a unique representation of the elements of f as certain unions of elements of A

and B. Consequently
fn, k) =D (%) ) -
®CN

If % contains 1, a(x) = 0 and if » contains %, §(x) = 0. Thus it can be supposed that
» C M in the sum above. On the other hand if » ¢ M, the (¢ — 1)-tuple consisting of 1
and of the elements of » must belong to A. So if «’(x) denotes the number of (¢ — 1)-tuples
of A in M, having x as the 1st £ — 2 elements, then a(x) = a’(%) + 1. The number f’(x) is
defined similarly and f(x») = p’(») + 1. But then

k) =D a(x) Bx) =D (@ () + 1) (B() + 1)

xCM *CM
B’ n—2
“,,é;“ x)—%;é;(m (%))t‘cle <f(n—-2,k)+(k_1)
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Using the inductional hypothesis this gives
n—k

[ = ] n—1—2m
m=0

To prove the converse inequality take the following system R* of k-tuples of N.
If f, I and m are the first, last and an arbitrary middle element of a k-tuple, respectively,
then M* contains this A-tuple if and only if » — I < m < » — f. Following the previous

n-k

e . . . [ B ] n—1—2m

proof it is immediate by induction that R* has exactly 3~ ( B_1 ) elements.
m=0

This proves the required result.

Now consider systems of k-tuples of N satisfying the following condition: there are no
two k-tuples in a system, say %, and x,, such that the last element of x, is a middle element
of x, and the first element of %, is a middle element of x,. Denote by g(», &) the maximal
number of elements of these systems.

As this condition is much stronger then the previous one, f(n, ) > g(», k) must hold.
It is fairly surprising that equality holds in this inequality:

f(n, k) = g(n, k) .

This follows simply from the construction given above, since fit* satisfies the stronger
condition too. For suppose that f,, f,, /;, I, are the first and last elements of two k-tuples
of M|* for which f, is between f, and /;, furthermore /, is between f, and /,. But then
n—1I, <f,, !, <n—f,, consequently n — f, < I, < n — f,, so this shows there are no
such two k-tuples, i.e. N* satisfies the stronger condition.

It is likely that the complete solution of the original problem is very difficult and it
needs an entirely different method.

BfLA BorroBAs, Research Institute of Mathematics, Budapest
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Sur I’équation diophantienne (¥?—1)% + (y*-1)? = (22-1)?2

W. S1ErPINSKI a exposé dans [1], p. 55, les quelques résultats connus concernant
Péquation:
2 —1)2+ (2 —1)2= (52— 1)* x,y,zentiers > 1, (1)

et noté que, pour x, y, 7z impairs, ¥ =2a+ 1, y=2b+ 1, 2= 2¢ + 1, cette équation
pouvait s’écrire:
B2+t =1 abcentiers>0, t,= _Mé‘j‘__ll . (2)
Dans une précédente note [2], nous avons démontré I'impossibilité de (2) si deux au
moins des trois nombres a, b, ¢ sont consécutifs. '
Supposant ¥ < ¥ < 2, ce qui est loisible puisque x + y, nous prouvons cette fois que:

(A) (1) est impossible avec y — x = 1.
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(B) (v, 9, 2) = (10, 13, 14) est la seule solution de (1) avec z — y = 1.
(C) (1) est impossible avec y —xouz—9youz —x = 2.

(A) Nous allons montrer que ’équation:
(2 —1)24+ (2 — 1)2=u? x, vy, u entiers > 1, (3)

n’a, pour y — x = 1, que la solution (¥, ¥, u) = (3, 4, 17). Le résultat s’ensuivra immédiate-
ment puisque 22 — 1 % 17,

Avec y = x + 1 donc » impair, # = 2v + 1, (3) devient ¢, = t2. Or W. LJUNGGREN [3]
puis J. W. S. CasseLs [4] ont montré que ¢y, ¢,, ¢, (= #2) sont les seuls nombres triangulaires
qui sont les carrés de nombres triangulaires. Donc ¥ = 3, v = 8, u = 17.

(B) Siz=1y+ 1, I'’équation:
u? 4 (y2 — 1)2 = (22 — 1)2  u, y, z entiers > 1, (4)

peut s’écrire (2y + 1) (2924 2y —1)=u% Posons P=2y+ 1, Q=29+ 2y — 1.
Ona PQ = u?avec P, Q entiers > 0; d’ou P =dP?, Q =dQ% avecd = (P, Q) et P,, O,
entiers > 0. Comme P? — 2 Q = 3 on obtient finalement:

d?P} —2dQ3=3 avec d=1lou3.

Comme d, P;, J, sont impairsona 1l — 2d =3 (mod. 8) doncd = 3et 3 P} — 20} =1,
équation qui vient d’étre résolue par R. T. BumBY [5] et qui donne (P;, Q,) = (1, 1) ou
(3, 11). La premiere solution est a écarter car elle conduit a y = 1. La seconde fournit
(u, v, 2) = (99, 13, 14), seule solution de (4) avec z =y + 1. En revenant a (1), on a
x* — 1 = 99 soit ¥ = 10.

(C) 1°) Siz— x = 2, alors ¥y — ¥ = 1 et (1) est impossible d’aprés A.

2°) Siy — x = 2, ¥ et y ont méme parité et z est impair. x et y ne peuvent étre pairs car
(22 — 1)2 %= 2 (mod. 4). Ainsi (1) a lieu avec », ¥y = ¥ + 2, z impairs et implique (2) avec
b= a + 1, ce qui est impossible d’apres [2].

Remarquons qu’en revanche l’équation (3) posséde une infinité de solutions avec
y = x# + 2 car alors, ¥ étant impair pour la méme raison que ci-dessus, ¥ = 2p — 1,
p entier > 1, elle s’écrit 32 p2 (p% + 1) = u?, d’ol on tire successivement 2 (p% + 1) = v?,
v pair > 2, v = 2w, soit finalement 1'équation de PELL $? — 2 w? = — 1, de solution
fondamentale (p, w) = (1, 1).
3°) Siz — y = 2, les solutions de I’équation (4) sont (u, y, 2) = (8 v3, 292 — 1, 202 4 1),
v entier > 1, car cette équation devient 2 = [2 (y + 1)]3. Alors (1) a lieu avec », y, z =
y + 2 impairs et implique (2) avec ¢ = b + 1, ce qui est impossible d’apres [2].
M. E. BLanpraIn, Lille

REFERENCES

[1] W. SieRPIKSKI, Elementary Theory of Numbers, Monografie Matematyczne, Tome 42,
Warszawa (1964).

[2] M. E. BLANPAIN, Sur le probléeme de ZARANKIEWICZ, El. Math. 23, 135 (1968). Un
résultat important concernant ce probléme a été obtenu récemment par V. DiMIEV [6].

(3] W.LjUNGGREN, Solution compléte de quelques équations du sixiéme degvé a deux indéter-
mindes, Arch. Math. Naturv. 48, 177-211 (spécialement 202-205) (1946).

[4] J. W. S. CasskLs, Integral Points on Cevtain Elliptic Curves, Proc. London Math. Soc.
144, 55-57 (1965).

[5] R.T.BumBY, The Diophantine Equation 3 x* — 2y% = 1, Math. Scand. 27, 144 - 148 (1967).

[6] V. Dmiev, Right Triangles whose Sides ave Triangular Numbers (Bulgare. Résumés
russe et frangais), Godidnik. Vis§. Tehn. Ulebn. Zaved. Mat. 7 (1964), kn. 3, 9-14 (1965) ;
Math. Rev. 36 (aolQt 1968).



	Kleine Mitteilungen

