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126 Ungeloste Probleme

UngelGste Probleme

Nr. 51. Es bezeichne 4 < R einen eigentlichen konvexen Korper des drei-
dimensionalen euklidischen Raumes R und A’ den Normalriss von A in eine hier
fest gewdhlte, und auch nachfolgend stets gleichbleibende Ebene E < R. Da A innere
Punkte aufweist, trifft dies auch fiir den Eibereich 4’ beziiglich seiner Trigerebene E
zu. Bedeuten ¥V und F bzw. f und / das Volumen und die Oberfliche von 4 bzw. den
Fldcheninhalt und den Umfang von 4’, so ist offenbar V, F, f,1 > 0.

Es liegt auf der Hand, die Quotienten ¢ = F/V und ¢’ = [[f, also die Verhéltnisse
von Mass und Randmass des Korpers 4 und seiner Projektion A’, miteinander zu ver-
gleichen. Fiir einige einfache Testfille sollen die Befunde festgestellt und in der nach-
folgenden Tafel eingetragen werden.

I. A = Kugel vom Radius 1; II. 4 = Wiirfel der Kantenlinge 1, E parallel zu einer
Seitenflache; III. A = reguldres Tetraeder der Kantenlinge 1, E parallel zu einer
Seitenflache; IV. A = Kegel vom Radius 1 und der Héhe 1, E parallel zur Grund-
fliche; V. A = Kegel vom Radius 1 und der Hohe 1, E orthogonal zur Grundflache.

A q q

I 3 2

I1 6 4

I11 6/ 6 4Y3

v 343)2 2

A 34 3)2 24 2)2

Wie unmittelbar ablesbar, gilt in diesen Fallen stets ¢ > ¢’ und viele weitere Experi-
mente wiirden die Vermutung bekriftigen, dass hinter diesem Erfahrungsresultat ein
allgemein giiltiger Satz stehen konnte, wonach fiir den dhnlichkeitsinvariant ange-
setzten Quotienten

p=4qlg' = Ff|Vi (1)

stets p > 1 gelten diirfte. Ein Indiz liefert auch die Feststellung, dass dies fiir
rotationssymmetrische Eikorper jedenfalls dann zutrifft, wenn E orthogonal zur
Rotationsachse gewdhlt wird. In der Tat gilt nach einer bekannten Ungleichung?)
6V <a(3F —4na?, wobei a den Aquatorradius von 4 anzeigt. Der Normalriss
A’ ist dann kongruent mit einem Aquatorkreis von 4, sodass also f= & a* und
l=2mna gilt. Mit einfacher Umrechnung resultiert jetzt p > 1+ (2w a3/3 V),
wobei Gleichheit fiir ein Zylotop, d.h. fiir einen Zylinder mit zwei aufgesetzten Halb-
kugeln besteht.

1) Math. Ann, 722 (1950); Seite 175 (Ib).
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Wir prizisieren nun die aufgeworfene Frage, indem wir mit dem Ansatz
po = inf p = inf (Ff[VI) (2)

das Problem aufzeigen, das auf alle eigentlichen Eikérper A des gewdhnlichen
Raumes R bezogene Infimum p, des Quotientenverhiltnisses

p = p(4) = [F(A)[V(A)][HA")]f(4")] (3)

zu ermitteln.
Zunichst kann man leicht erkennen, dass

po <1 (4)

ausfallen muss. Ist ndmlich 4 ein gerader Kreiszylinder vom Radius 1 und der Hohe 4
und wihlt man E orthogonal zur Rotationsachse, so ergibt sich p = (1 + A)/A, sodass
mit 42 - oo auf (4) geschlossen werden kann.

Nach der eingangs erdrterten Hypothese, wonach stets p > 1 gelten miisste,
wiirde andererseits p, > 1 sein, sodass sich mit p, = 1 die vollstindige Losung des
aufgeworfenen Problems kennzeichnen liesse.

Leider ist aber die Vermutung, die sich mit der Musterung vieler Beispiele auf-
drédngt, falsch!

Dies wollen wir nachfolgend zeigen: Es sei K ein Kreisbereich vom Radius 1,
D ein in der parallelen Ebene E im Abstand % liegendes regulidres Dreieck der Seiten-
linge 2)/3, derart, dass die Verbindungsgerade des Zentrums von K mit dem Schwer-
punkt von D auf E orthogonal steht. Der Normalriss von K in die Ebene E fillt dann
mit dem Inkreis von D zusammen. Die konvexe Hiille von K und D im Raum R ist
ein allgemeines Prismatoid P mit der Deckfldche K, der Grundflache D und der Héhe 4

(vgl. hierzu die Figur).

Fiir die erforderlichen Rechnungen ist es niitzlich, das Prismatoid P durch die
Schnittbereiche S(f) zu kennzeichnen, die von den Ebenen parallel zu £ im Abstand
th (0 <t < 1) von der Grundebene E aus P ausgeschnitten werden. Es ist nimlich
S(t) = (1 —# D + t K, wobei die angeschriebene Verbindung die Minkowskische
Linearkombination bezeichnet. S(f) ist der dussere Parallelbereich eines reguldren
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Dreiecks der Seitenlinge 2})/3 (1 — ¢) der Spanne ¢. Fiir Flicheninhalt und Umfang
ergeben sich die Formeln

f&) =331 —8) +a2 )=6y3(1—1t)+2nt.

Offensichtlich sind f = f(0) = 3)/3 und / = /(0) = 6}/3 die Masszahlen des Normal-
risses P’ von P. Mit passender Integration gewinnt man
V =1[(6y3+m)/3]h,

73

F=3V§(1+h)+n+3/1/1+h2—4cosw (1 — cosw) dw .
0

Mit naheliegender einfacher Abschidtzung resultiert
F<@Y3+a) 1+y1+hr),

sodass sich gemiss (1)

p <

9Y3 + 3a (1 +VfT7zz>

12)/3 + 2n h

ergibt. Mit 4 - oo schliesst man nach (2) auf
po < (9Y3 + 37)/(12)/3 + 27) ~0,924..., (5)

sodass also jedenfalls p, < 1 ausfillt. |

Schliesslich wollen wir noch darauf hinweisen, dass sich die Frage nach dem Wert
von p, nicht etwa dadurch trivialisiert, dass p beliebig kleine Werte annehmen kann,
sodass p, = 0 wire, sondern dass gezeigt werden kann, dass stets p > 1/2 gilt. Der
Nachweis kann an dieser Stelle nicht gefithrt werden. Im Hinblick hierauf wird mit
Sicherheit

po = 1/2 (6)
gelten. Das hier vorgelegte ungeldste Problem lautet also: Welches ist der Wert des
mit (2) angesetzten Infimums p, (0,500 < py < 0,924)? H. HADWIGER

Kleine Mitteilungen

An Elementary Set Partition Problem

In an earlier note R. SCHNEIDERREIT [2] considers the problem of distributing the
numbers 1, 2, ..., # into two boxes so that not more than m consecutive numbers are in
the same box; permuting the numbers in a box or interchanging the boxes does not give
a new distribution. If F (n) denotes the number of such distributions it is shown that

F,mn=F,m—-1)+ ...+ F, (n—m), n>m (1)
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