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126 Ungelöste Probleme

Ungelöste Probleme

Nr. 51. Es bezeichne A cz R einen eigentlichen konvexen Körper des
dreidimensionalen euklidischen Raumes R und A' den Normalriss von A in eine hier
fest gewählte, und auch nachfolgend stets gleichbleibende Ebene E cz R. Da A innere
Punkte aufweist, trifft dies auch für den Eibereich A' bezüglich seiner Trägerebene E
zu. Bedeuten V und F bzw. / und / das Volumen und die Oberfläche von A bzw. den
Flächeninhalt und den Umfang von A', so ist offenbar V, F,f,l> 0.

Es liegt auf der Hand, die Quotienten q — FfV und q' ///, also die Verhältnisse
von Mass und Randmass des Körpers A und seiner Projektion A', miteinander zu
vergleichen. Für einige einfache Testfälle sollen die Befunde festgestellt und in der
nachfolgenden Tafel eingetragen werden.
I. A Kugel vom Radius 1; II. A Würfel der Kantenlänge 1, E parallel zu einer
Seitenfläche; III. A reguläres Tetraeder der Kantenlänge 1, E parallel zu einer
Seitenfläche; IV. _4 Kegel vom Radius 1 und der Höhe 1, E parallel zur Grundfläche;

V. A Kegel vom Radius 1 und der Höhe 1, E orthogonal zur Grundfläche.

A q <?'

I 3 2
II 6 4

III 6/~6 4/3"
IV 3 4-3/2 2

V 3 4-3/2 2 4- 2J/2

Wie unmittelbar ablesbar, gilt in diesen Fällen stets # > q' und viele weitere Experimente

würden die Vermutung bekräftigen, dass hinter diesem Erfahrungsresultat ein
allgemein gültiger Satz stehen könnte, wonach für den ähnlichkeitsinvariant
angesetzten Quotienten

p q/q' Ff/Vl (1)

stets p > 1 gelten dürfte. Ein Indiz liefert auch die Feststellung, dass dies für
rotationssymmetrische Eikörper jedenfalls dann zutrifft, wenn E orthogonal zur
Rotationsachse gewählt wird. In der Tat gilt nach einer bekannten Ungleichung1)
6 V ^ a (3 F — 4 tz a2), wobei a den Äquatorradius von A anzeigt. Der Normalriss
A' ist dann kongruent mit einem Äquatorkreis von _4, sodass also f=Tta2 und
l 2Tta gilt. Mit einfacher Umrechnung resultiert jetzt p > 1 + (2nazj3 V),
wobei Gleichheit für ein Zylotop, d.h. für einen Zylinder mit zwei aufgesetzten
Halbkugeln besteht.

*) Math. Ann. 122 (1950); Seite 175 (Ib).
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Wir präzisieren nun die aufgeworfene Frage, indem wir mit dem Ansatz

p0=mip mi(FflVl) (2)

das Problem aufzeigen, das auf alle eigentlichen Eikörper A des gewöhnlichen
Raumes R bezogene Infimum p0 des Quotientenverhältnisses

p p(A) [F(A)IV(A)]j[l(A')lf(A')]

zu ermitteln.
Zunächst kann man leicht erkennen, dass

A,<1

(3)

(4)

ausfallen muss. Ist nämlich A ein gerader Kreiszylinder vom Radius 1 und der Höhe h
und wählt man E orthogonal zur Rotationsachse, so ergibt sich p (1 + h)\h, sodass

mit h -> oo auf (4) geschlossen werden kann.
Nach der eingangs erörterten Hypothese, wonach stets p > 1 gelten musste,

würde andererseits p0 > 1 sein, sodass sich mit p0 1 die vollständige Lösung des

aufgeworfenen Problems kennzeichnen liesse.

Leider ist aber die Vermutung, die sich mit der Musterung vieler Beispiele
aufdrängt, falsch!

Dies wollen wir nachfolgend zeigen: Es sei K ein Kreisbereich vom Radius 1,

D ein in der parallelen Ebene E im Abstand h liegendes reguläres Dreieck der Seitenlänge

2 j/3, derart, dass die Verbindungsgerade des Zentrums von K mit dem Schwerpunkt

von D auf E orthogonal steht. Der Normalriss von K in die Ebene E fällt dann
mit dem Inkreis von D zusammen. Die konvexe Hülle von K und D im Raum R ist
ein allgemeines Prismatoid P mit der Deckfläche K, der Grundfläche D und der Höhe h

(vgl. hierzu die Figur).

Für die erforderlichen Rechnungen ist es nützlich, das Prismatoid P durch die
Schnittbereiche S(t) zu kennzeichnen, die von den Ebenen parallel zu E im Abstand
th (0 < t < 1) von der Grundebene E aus P ausgeschnitten werden. Es ist nämlich
S(t) (1 — t) D + t K, wobei die angeschriebene Verbindung die Minkowskische
Linearkombination bezeichnet. S(t) ist der äussere Parallelbereich eines regulären
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Dreiecks der Seitenlange 2/3(1 — t) der Spanne t Fur Flächeninhalt und Umfang
ergeben sich die Formeln

f(t) 3/3(l-*2) + nt2, l(t) 6/3(1-0 + 2nt.
Offensichtlich sind / /(0) 3/3 und l 1(0) 6/3 die Masszahlen des Normalnsses

P' von P Mit passender Integration gewinnt man

V=[(6p+Tz)l3]h,
n/Z

F 3/3 (1 + h) +ti + 3 f ]/l + h2 - 4 cosie; (1 - cosw) dw

o

Mit naheliegender einfacher Abschätzung resultiert

i^<(3/3 + 7r) (l + )/l + h2)

sodass sich gemäss (1)

9/T 4- 37. /1 4- ]/i~+~W
12 / 3" + 2tt \ h

ergibt Mit h -> oo schhesst man nach (2) auf

0O < (9/3 + 3 tz)I(12]/3 + 2tz) —0,924 (5)

sodass also jedenfalls pQ < 1 ausfallt
Schliesslich wollen wir noch darauf hinweisen, dass sich die Frage nach dem Wert

von p0 nicht etwa dadurch tnviahsiert, dass p beliebig kleine Werte annehmen kann,
sodass p0 0 wäre, sondern dass gezeigt werden kann, dass stets p > 1/2 gilt Der
Nachweis kann an dieser Stelle nicht gefuhrt werden Im Hinblick hierauf wird mit
Sicherheit

Po > 1/2 (6)

gelten Das hier vorgelegte ungelöste Problem lautet also Welches ist der Wert des

mit (2) angesetzten Infimums p0 (0,500 < p0 < 0,924) H Hadwiger

Kleine Mitteilungen

An Elementary Set Partition Problem

In an earher note R Schneiderreit [2] considers the problem of distnbutmg the
numbers 1, 2, n mto two boxes so that not more than m consecutive numbers are m
the same box, permutmg the numbers in a box or mterchangmg the boxes does not give
a new distnbution If Fm(n) denotes the number of such distributions it is shown that

Fm(n)-Fm(n~l)+^ +Fm(n~m), n>m (1)
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