Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 24 (1969)

Heft: 5

Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$F(n) = {\binom{n-1}{2}} + {\binom{n}{4}} - \frac{(n-2)(n-4)}{8} - E_3(n), \qquad (43)$$

$$K(n) = \binom{n}{2} + 2\binom{n}{4} - \frac{n(n-4)}{4} - 3E_3(n)$$
 (44)

mit

$$E_3(n) = \begin{cases} \frac{1}{48} n (n-2) (5 n - 38), & \text{wenn} \quad n \equiv \pm 2 \pmod{12}, \\ \frac{1}{48} n (n-4) (5 n - 28), & \text{wenn} \quad n \equiv \pm 4 \pmod{12}. \end{cases}$$
 (45)

Ist $n \equiv 0 \pmod{6}$, so sind alle Punkte aus (25) und (36) Schnittpunkte von mindestens drei Diagonalen. Für n > 6 treten Schnittpunkte von mehr als drei Diagonalen auf, wie sich zum Beispiel durch Einsetzen von a = 1, b = (2 n/3) - 1, c = 3, d = (5 n/6) - 1 und h = n/2 in (12) und Beachten von (25) zeigt. (42), (43) und (44) mit $E_3(n)$ aus (40) stellen also für diese regulären n-Ecke echte obere Schranken dar.

HEIKO HARBORTH, Braunschweig

LITERATURVERZEICHNIS

- [1] G. Gentile, Punti diagonali e poligoni di divisione di un n-gono piano convesso, Boll. Mat. (4) 1, 71-74 (1940).
- [2] Z. Schneider und B. Stankovitsch, Über die Anzahl und Anordnung der Diagonalschnitte in einem regelmässigen n-Eck, El. Math. 14, 6-11 (1959).
- [3] H. T. CROFT and M. FOWLER, On a Problem of Steinhaus About Polygons, Proc. Cambridge philos. Soc. 57, 686–688 (1961).
- [4] H. Heineken, Regelmässige Vielecke und ihre Diagonalen, L'Enseignement math., II. sér. 8, 275–278 (1962).

Bei der Korrektur: Herr Dr. H. Heineken teilte mir inzwischen mit, daß eine Arbeit von ihm zum gleichen Thema in den Rendiconti Sem. U. Padova erscheinen wird.

Kleine Mitteilungen

Ein einfacher Beweis der Stirlingschen Formel

Die bekannte Stirlingsche Formel, welche n! durch eine geeignete einfache Funktion von n abschätzt, soll hier aus zwei sehr elementaren Hilfssätzen (vgl. [1]) hergeleitet werden.

Hilfssatz 1. Für
$$x > 0$$
 gilt $e < \left(1 + \frac{1}{x}\right)^{x+0.5}$.

Reweis. Es ist

$$e^{1/(x+0.5)} = 1 + \frac{1}{x+0.5} + \frac{1}{2(x+0.5)^2} + \sum_{\nu=3}^{\infty} \frac{1}{\nu!} \frac{1}{(x+0.5)^{\nu}} < 1 + \frac{2(x+0.5)+1}{2(x+0.5)^2}$$

$$+\frac{1}{6(x+0.5)^3}\sum_{j=0}^{\infty}\frac{1}{4^j(x+0.5)^j}=1+\frac{1}{x}\cdot\frac{6x^2+7.5x+2.5}{6x^2+7.5x+3+(3/8x)}<1+\frac{1}{x}.$$
 (1)

Nun setzen wir zur Abkürzung

$$n! e^n n^{-n-0.5} = \gamma_n \ (n = 1, 2, 3, ...)$$
 (2)

Es folgt

$$\frac{\gamma_{n+1}}{\gamma_n} = \frac{(n+1) e n^{n+0.5}}{(n+1)^{n+1.5}} = \frac{e}{(1+1/n)^{n+0.5}} < 1.$$
 (3)

Die γ_n bilden eine streng monoton abnehmende Folge. Daraus ergibt sich

$$\gamma_1 = e > \gamma_2 > \gamma_3 \dots$$
; $n! < (n/e)^n \sqrt{n} e$ für $n = 2, 3, \dots$ (4)

Weil die γ_n alle positiv sind, existiert

$$\lim_{n\to\infty} n! \ e^n \ n^{-n-0.5} = \lim_{n\to\infty} \gamma_n = \gamma. \tag{5}$$

Jetzt soll γ auch nach unten abgeschätzt werden.

Hilfssatz 2. Für
$$x > 0$$
 gilt $\left(1 + \frac{1}{x}\right)^{x+0.5-(1/4x)} < e$.

Beweis. Wir haben für $x \ge 0.5$ stets x + 0.5 - (1/4 x) > 0 und

$$1 + \frac{1}{x} < 1 + \frac{1}{x + 0.5 - (1/4 x)} + \frac{1}{2(x + 0.5 - (1/4 x))^2} < e^{1/(x + 0.5 - (1/4 x))}, \quad (6)$$

weil

$$2\left(x+0.5-\frac{1}{4x}\right)^{2}<2x\left(x+0.5-\frac{1}{4x}\right)+x; \quad 1<4x. \tag{7}$$

Für 0 < x < 0.5 ist

$$\left(1+\frac{1}{x}\right)^{x+0.5-(1/4x)} < \left(1+\frac{1}{x}\right)^x < e$$
.

Hiernach ergibt sich aus (3)

$$\frac{\gamma_{n+1}}{\gamma_n} > \left(1 + \frac{1}{n}\right)^{-1/4 n}; \quad \gamma_2 = \frac{e^2}{2\sqrt{2}}; \quad \gamma_{n+1} > \frac{e^2}{2\sqrt{2}} \prod_{\nu=2}^n \left(1 + \frac{1}{\nu}\right)^{-1/4 \nu}. \tag{8}$$

Führen wir die Bezeichnung

$$\prod_{n=0}^{n} = \left(1 + \frac{1}{\nu}\right)^{1/\nu} = P_n \tag{9}$$

ein, dann wird

$$\log P_n = \sum_{\nu=2}^n \frac{1}{\nu} \log \left(1 + \frac{1}{\nu} \right) < \sum_{\nu=2}^n \frac{1}{\nu^2} < \frac{1}{4} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = \frac{3}{4}. \tag{10}$$

Nach (8), (9) und (10) ist

$$\gamma_{n+1} > \frac{e^2}{2\sqrt{2}} e^{-3/16} = \frac{e^{29/16}}{2\sqrt{2}} > 2,12.$$
(11)

Damit ist die in (5) definierte Konstante γ abgeschätzt:

$$2,12 < \frac{e^{29/16}}{2\sqrt{2}} \le \gamma < e < 2,72. \tag{12}$$

n! besitzt die Grössenordnung $e^{-n} n^{n+0.5}$

Der wahre Wert von γ beträgt bekanntlich $\sqrt{2\pi} \approx 2,5066$. Durch etwas grösseren Rechenaufwand lässt sich γ elementar genauer als in (12) bestimmen.

H.-J. KANOLD, TU Braunschweig

LITERATURVERZEICHNIS

[1] H.-J. KANOLD, Einige neuere Abschätzungen bei Stirlingschen Zahlen, 2. Art., Erscheint in J. reine u. angew. Math.

Die Wallaceschen Geraden und die Feuerbachschen Kreise in einem Sehnenviereck

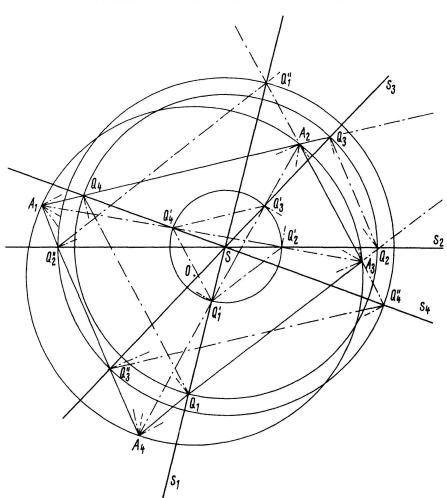
Die Punkte $A_i (i=1,\,2,\,3,\,4)$ in der natürlichen Anordnung seien die Eckpunkte, α_i die Innenwinkel eines Sehnenvierecks. Es seien weiter $Q_i,\,Q_i''$ die Fusspunkte der Senkrechten, die vom Eckpunkt A_i auf die Seiten gefällt sind, die nicht durch den Eckpunkt A_i gehen. Q_i' seien die Fusspunkte der Senkrechten, die aus dem Eckpunkt A_i auf die Diagonale gefällt sind, die nicht durch diesen Eckpunkt geht. Die Punkte $Q_i,\,Q_i',\,Q_i''$ liegen, wie bekannt ist, auf der Wallaceschen Geraden s_i , die dem Eckpunkt A_i in bezug auf das Dreieck, das durch die drei übrigen Eckpunkte gebildet ist, zugehört. Dann gilt:

Satz 1. Die Wallaceschen Geraden s_i (i = 1, 2, 3, 4) schneiden einander in einem Punkte S.

Satz 2. Die drei Punktequadrupel $\{Q_i\}$, $\{Q_i'\}$, $\{Q_i''\}$ liegen auf drei konzentrischen Kreisen mit S als Mittelpunkt, sie bilden die Ecken dreier Sehnenvierecke, die dem gegebenen Viereck $\{A_i\}$ gegensinnig ähnlich sind. Die vier Strecken $\overline{Q_i}$ $\overline{Q_i''}$ sind einander gleich.

Beweis: Da Q_1' und Q_2' auf dem Kreis über dem Durchmesser $\overline{A_1\,A_2}$ liegen, gilt

$$\not \subset A_2 Q_1' Q_2' = \not \subset A_2 A_1 A_3 = \not \subset A_2 A_4 A_3 \dots,$$
 (1)



Figur 1

also $Q_1' Q_2' \parallel A_3 A_4$ und ebenso

$$Q_2' Q_3' \parallel A_4 A_1, \quad Q_3' Q_4' \parallel A_1 A_2, \quad Q_4' Q_1' \parallel A_2 A_3 \dots;$$
 (2)

das Viereck $\{Q_1'\ Q_2'\ Q_3'\ Q_4'\}$ ist also gleichwinklig mit dem Viereck $\{A_1\ A_2\ A_3\ A_4\}$, und da die Diagonale $Q_1'\ Q_3'$ mit $Q_1'\ Q_2'$ nach (1) den gleichen Winkel bildet wie die homologen Stücke $A_1\ A_3$ und $A_1\ A_2$, so folgt der Hilfssatz: Durch die Zuordnung $A_i \to Q_i'$ ist eine gegensinnige Ähnlichkeitsabbildung der Ebene auf sich bestimmt.

Es sei jetzt O der Mittelpunkt, r der Halbmesser des Umkreises des gegebenen Sehnenvierecks $\{A_1 \ A_2 \ A_3 \ A_4\}$.

Wir zeigen, dass den vier Geraden O A_i bei dieser Abbildung die vier Geraden s_i entsprechen. Nun ist der Winkel zwischen s_1 und Q_1' Q_2' nach (2) gleich dem Winkel zwischen s_1 und A_4 A_3 und damit (Sehnenviereck A_1 A_4 Q_1 Q_1') gleich dem Winkel A_4 A_1 Q_1' , der das Komplement von $\not \subset A_1$ A_4 A_2 darstellt (der Hälfte des Zentriwinkels A_1 O A_2). Die Gerade s_1 bildet also mit der Seite Q_1' Q_2' denselben Winkel, wie die Gerade A_1 O mit der Seite A_1 A_2 .

Die Geraden s_i gehen also alle durch einen Punkt S, der in jener Abbildung dem Punkt O entspricht, womit Satz 1 bewiesen ist. Indirekt kann man auch die Umkehrung dieses Satzes beweisen.

Entsprechend (2) gelten

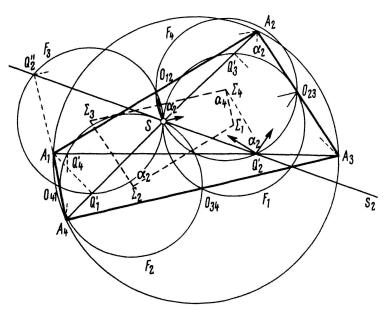
$$Q_1\,Q_2\parallel A_3\,A_4$$
 , $\qquad Q_2\,Q_3\parallel A_4\,A_1$, $\qquad Q_3\,Q_4\parallel A_1\,A_2$, $\qquad Q_4\,Q_1\parallel A_2\,A_3$

und die analogen Relationen

$$Q_1'' Q_2'' \parallel A_3 A_4$$
, $Q_2'' Q_3'' \parallel A_4 A_1$, $Q_3'' Q_4'' \parallel A_1 A_2$, $Q_4'' Q_1'' \parallel A_2 A_3$.

Soweit es sich hier nicht um Identitäten handelt, sind sie wie (2) zu beweisen. Es gilt also der Satz 2.

Satz 3. Der Schnittpunkt S der Wallaceschen Geraden s_i des Satzes 1 ist der gemeinsame Punkt der vier Feuerbachschen Kreise F_i , die durch die Dreiecke $\{A_j, A_k, A_m\}$ bestimmt sind (i, j, k, m) eine beliebige zyklische Permutation der Zahlen 1, 2, 3, 4).



Figur 2

Beweis: Bezeichnen wir mit O_{ij} den Mittelpunkt der Seite $\overline{A_i A_j}$, mit F_i den Feuerbachschen Kreis des Dreiecks $\{A_j A_k A_m\}$, mit Σ_i seinen Mittelpunkt (i, j, k, m) eine beliebige zyklische Permutation der Zahlen 1, 2, 3, 4).

Da z.B. Q_2' Höhenfusspunkt im Dreieck $\{A_1 A_2 A_3\}$ ist, so ist der Kreis durch O_{12} , O_{23} , Q_2' der Feuerbachsche Kreis F_4 dieses Dreiecks, sein Radius also gleich r/2. Um zu zeigen, dass S auf diesem Kreise liegt, dass also $\not\subset Q_2'$ S $O_{23} = \not\subset Q_2'$ O_{12} O_{23} , beachte man, dass der erstere als Hälfte des Zentriwinkels Q_2' S Q_3' wegen der Ähnlichkeit der Vierecke $\{A_i\}$ und $\{Q_i'\}$ auch die Hälfte des homologen Zentriwinkels A_2 O A_3 , also gleich dem Peripheriewinkel A_2 A_1 $A_3 = \not\subset A_2$ O_{12} $O_{23} = \not\subset Q_2'$ O_{12} O_{23} ist.

Peripheriewinkel $A_2 A_1 A_3 = \langle A_2 O_{12} O_{23} = \langle Q_2' O_{12} O_{23} \text{ ist.}$ Bemerkung: Betrachten wir noch ein gegebenes Sehnenviereck $\{A_i\}$, i=1,2,3,4. Lassen wir z. B. die Eckpunkte A_1 , A_2 , A_3 fest und auf dem Umkreise wählen wir statt des Eckpunktes A_4 einen anderen Eckpunkt A_4' . Es sei S' der Schnittpunkt der Wallaceschen Geraden s_i' des Vierecks $\{A_1 A_2 A_3 A_4'\}$. Nach Satz 3 liegt dieser Schnittpunkt auf dem Kreise F_4' , der, weil die Punkte A_1 , A_2 , A_3 fest sind, mit dem Feuerbachschen Kreis F_4 identisch sein muss. Es gilt also

Satz 4. Wenn der Punkt A_4 bei fest gegebenen Eckpunkten A_1 , A_2 , A_3 den Umkreis dieses Dreiecks durchläuft, so beschreibt der Schnittpunkt S der Wallaceschen Geraden s_i des Vierecks $\{A_i\}$, i=1,2,3,4, den Feuerbachschen Kreis des gegebenen festen Dreiecks $\{A_i\}$, i=1,2,3.

Die Mittelpunkte Σ_i (i=1,2,3,4) der Feuerbachschen Kreise F_i liegen offensichtlich auf dem Kreise um S, mit dem Halbmesser $\nu/2$.

Nach der Konstruktion ist

$$SO_{12} \perp \Sigma_3 \Sigma_4$$
, $SO_{23} \perp \Sigma_4 \Sigma_1$;

für die Grösse des Innenwinkels $\not \subset \Sigma_4$ des Sehnenvierecks $\{\Sigma_i\}$ erhalten wir

$$\not \propto \Sigma_4 = 2 R - \not \propto O_{23} S O_{12}.$$

Weiter gilt wieder nach der Konstruktion

$$\overline{O_{12}\,A_2}=\overline{O_{12}\,Q_2'}$$
 , $\overline{O_{23}\,A_2}=\overline{O_{23}\,Q_2'}$

daraus folgt

$$\triangle O_{23} Q_2' O_{12} \cong \triangle O_{23} A_2 O_{12}$$
 (3. Kongruenzsatz)

und daher

$$\not\subset O_{23} O_2' O_{12} = \not\subset O_{23} A_2 O_{12} = \alpha_2$$
.

Da die Punkte O_{23} , Q_2 ', S, O_{12} auf dem Feuerbachschen Kreise F_4 liegen, folgt augenblicklich

$$\not \subset O_{23} Q_2' O_{12} = \not \subset O_{23} S O_{12} = \alpha_2$$
.

Dann ist

$$\not \preceq \Sigma_4 = 2 R - \not \preceq O_{23} S O_{12} = 2 R - \alpha_2 = \alpha_4.$$

Ähnlich erhalten wir

$$otin \Sigma_1 = lpha_1$$
 , $otin \Sigma_2 = lpha_2$, $otin \Sigma_3 = lpha_3$.

Das Viereck $\{\Sigma_i\}$ ist also dem Viereck $\{A_i\}$ winkelgleich; dass dieses Viereck dem Vierecke $\{A_i\}$ ähnlich ist, ergibt sich aber leicht, wenn man beachtet, dass nicht nur die homologen Seiten, sondern auch die homologen Diagonalen parallel sind (Ähnlichkeitsverhältnis = 1/2).

Es sei noch K der Kreis um S, der alle vier Feuerbachschen Kreise F_i in den Punkten T_i berührt. Man kann leicht zeigen, dass das Viereck $\{A_i\}$ mit dem Viereck $\{T_i\}$ kongruent ist:

$$\overline{S \Sigma_i} : \overline{S T_i} = 1 : 2 ; \quad \overline{\Sigma_i \Sigma_i} \parallel \overline{T_i T_i} , \quad \overline{T_i T_i} = 2 \overline{\Sigma_i \Sigma_i} = \overline{A_j A_i} .$$

Der Satz 2 kann also so erweitert werden:

Die Punktequadrupel $\{Q_i\}$, $\{Q_i'\}$, $\{Q_i'\}$, $\{\Sigma_i\}$, $\{T_i\}$ liegen auf fünf konzentrischen Kreisen um S; sie bilden die Ecken von fünf Sehnenvierecken, die dem gegebenen Viereck $\{A_i\}$ ähnlich sind. Die vier Strecken $\overline{Q_i}$, $\overline{Q_i''}$ sind einander gleich, die Vierecke $\{A_i\}$, $\{T_i\}$ kongruent.

JOSEF BREJCHA, Brno

Angles of a Parallelogram with Vertices in Lattice Points

In the book [1] the following theorem is proved (p. 9).

Let four lattice points be the vertices of a rhombus (being not a square) and α – its angle. Then α/π is an irrational number.

Here we prove the following generalization of this theorem:

Let four lattice points be the vertices of a parallelogram and α – its angle $\leq \pi/2$. Then α/π is an irrational number or $\alpha = 2 \pi/n$, where n = 4 or 8.

Proof. The area S of such a parallelogram is given by the formula $S = x y \sin \alpha$, where x and y are the lengths of non-parallel sides of a parallelogram. It is known that the area of any polygon with vertices in lattice points is a rational number q (with denominator 1 or 2). Hence

$$q = x y \sin \alpha . (1)$$

x and y as the distances between lattice points are square roots of integers: $x = \sqrt{r}$, $y = \sqrt{s}$. Substituting these values into (1) we get $\sin \alpha = \sqrt{q^2/r} s = \sqrt{t}$, where t is the rational number q^2/r s and we see that $\sin \alpha$ is an algebraic number at most of the second degree.

Let α be a rational multiplicity of π : $\alpha = 2 \pi k/n$, k, n – positive integers, (k, n) = 1, $1 \le k \le n/4$. As follows from the theorem of Lehmer ([2], p. 37-38), for $n \ne 4$ the number $2 \sin 2 \pi k/n$ is an algebraic integer of degree $\varphi(n)$, $\varphi(n)/4$ or $\varphi(n)/2$ according as (n, 8) < 4, (n, 8) = 4 or (n, 8) > 4. We must find all values of n such that $\sin 2 \pi k/n$ is an algebraic number of degree 1 or 2, i.e. $\xi = 2 \sin 2 \pi k/n$ is an algebraic integer of degree 1 or 2.

- 1. Suppose $2 \nmid n$. Then (n, 8) = 1 < 4 and ξ is an algebraic integer of degree $\varphi(n)$. The only odd integers n such that $\varphi(n) = 1$ or 2 are 1 and 3.
- 2. Suppose $2 \mid n$ and $4 \nmid n$. Then (n, 8) = 2 < 4 and ξ is an algebraic integer of degree $\varphi(n)$. The only integers n such that $2 \mid n$, $4 \nmid n$ and $\varphi(n) = 1$ or 2 are 2 and 6.
- 3. Suppose $4 \mid n$ and $8 \nmid n$. Then (n, 8) = 4 and ξ is an algebraic integer of degree $\varphi(n)/4$. The only integers n such that $4 \mid n$, $8 \nmid n$ and $\varphi(n) = 4$ or 8 are 12 and 20.
- 4. Suppose $8 \mid n$. Then (n, 8) = 8 > 4 and ξ is an algebraic integer of degree $\varphi(n)/2$. The only integer n divisible by 8 and satisfying $\varphi(n) = 2$ or 4 is 8.

Because it must be $n \ge 4$, it remains to consider only the cases n = 4, 6, 8, 12, 20. Evidently n = 4 is possible, because $\alpha = 2 \pi/4$ is an angle of the unit square. Similarly, n = 8 is possible as the acute angle of the parallelogram with vertices (0, 0), (0, 1), (1, 1), (1, 2) is equal to $2\pi/8$.

Now we exclude the values n = 6, 12 and 20. Suppose that (0, 0), (x, z), (y, t) and (x + y, z + t) are the vertices of a parallelogram with the angle $2\pi/6$ at the vertex (0, 0); x, y, z, t are integers (evidently $x^2 + z^2 > 0$, $y^2 + t^2 > 0$). Then

$$\frac{1}{2} = \cos \frac{2 \pi}{6} = \frac{x y + z t}{\sqrt{x^2 + z^2} \sqrt{y^2 + t^2}}.$$

Hence

$$x^2 y^2 + x^2 t^2 + y^2 z^2 + t^2 z^2 = 4 x^2 y^2 + 8 x y z t + 4 z^2 t^2$$

or

$$x^2 t^2 - 2 x y z t + y^2 z^2 = 3 (x^2 y^2 + 2 x y z t + z^2 t^2)$$

and $(x t - y z)^2 = 3 (x y + z t)^2$. This implies

$$xt-yz=0, \qquad xy+zt=0.$$

We multiply both sides of the first equation by x, both sides of the second by z and add; we obtain $(x^2 + z^2) t = 0$. Similarly, multiplying by -z and x, we get $(x^2 + z^2) y = 0$.

Because $x^2 + z^2 > 0$, we get t = y = 0, which is impossible. The angle $2\pi/12$ is also impossible, because if (0, 0), (a, c), (b, d), (a + b, c + d) are vertices of a parallelogram with the angle $2\pi/12$ at the vertex (0, 0), then the parallelogram with vertices (0, 0), (c, -a), (b, d), (b + c, d - a) has an angle $2\pi/6$, which has been shown to be impossible. n = 20 is impossible, because $\sin 2\pi/20 = (\sqrt{5} - 1)/4$, which is not of the form \sqrt{t} for rational t.

We observe that the theorem may be stated in the following equivalent form:

If $\alpha = 2 \pi k/n$ (k, n - positive integers, n > 4, k < n/4, (k, n) = 1) is an angle between two straight lines passing through a lattice point and on each of them there are other lattice points (evidently, infinitely many), then <math>n = 4 or 8, k = 1, i.e. $\alpha = 90^{\circ}$ or 45° .

It is evident that the hypothesis, that the straight lines have one lattice point in common, is not essential (we may translate one line).

Andrzej Makowski, Warsaw, Poland

REFERENCES

- [1] H. Hadwiger und H. Debrunner, Kombinatorische Geometrie in der Ebene, Monographies de «l'Enseignement Mathématique» No. 2 (1960).
- [2] I. NIVEN, Irrational Numbers, The Carus Mathematical Monographs No. 11 (1956).

On Hall's Third Definition of Group

Marshall Hall, Jr. in [1], p. 6, gave a definition of group in the terms of operation / defined on the pairs of elements of the set S. This operation satisfies the axioms

L 1.
$$a/a = b/b$$
 L 2. $a/(b/b) = a$
L 3. $(a/a)/(b/c) = c/b$ L 4. $(a/c)/(b/c) = a/b$.

It may be observed that L 3 is superfluous: L 4 and L 1 imply L 3. We put in L 4 c = a:

$$(a/a)/(b/a) = a/b;$$

in virtue of L 1 a/a = d/d, therefore

$$(d/d)/(b/a) = a/b ,$$

which is L 3.

Now we prove that any of L 1, L 2, L 4 is independent of the others. Let S = [0, 1] and we define operation / by the following tables:

1.

$$\begin{vmatrix} 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix}$$
 2.
 $\begin{vmatrix} 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{vmatrix}$
 4.
 $\begin{vmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{vmatrix}$

 4.
 $\begin{vmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{vmatrix}$
 0.
 0.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.
 1.

The operation defined by the table n (n = 1, 2, 4) does not satisfy L n and satisfies the remaining two axioms. For n = 1 and 2 it is evident. In the case n = 4 it is also evident that L 1 and L 2 are satisfied; if we put in L 4 a = c = 0, b = 1 the left-hand side is equal to (0/0)/(1/0) = 1/1 = 1 and the right-hand side is equal to 0/1 = 0.

A. Makowski, Warsaw

REFERENCE

[1] MARSHALL HALL, JR., The Theory of Groups (Macmillan, New York 1959).