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104 H. HarBorTH: Diagonalen im regulidren n-Eck

Diagonalen im reguliren #-Eck

Zeichnet man in einem konvexen #-Eck alle moglichen Diagonalen, so kann man
nach den Anzahlen der entstehenden Teilflichen F(n), der Seitenlinien K(») und der
Eckpunkte E(n) fragen (vgl. [1, 2]). Es soll dabei beriicksichtigt werden, dass sich
mehr als zwei Diagonalen in nur einem Punkt schneiden kénnen.

Bedeutet E,(n) die Anzahl der Punkte, in denen sich genau » Diagonalen schneiden,
so folgt

En)=mn +2Ev(n) . (1)

Mit F,(n) als der Anzahl von y-Ecken ergibt sich auf zwei Arten die Summe aller

Ecken der Teilvielecke
[n/2]

ZvF =n(n— 2) +22vE (2)
Die Winkelsumme aller Teile berechnet sich ebenfalls auf zwei Arten zu
" [n/2]
nZ(v——Z)E,(n)z(n—2)7t+2n2E,,(n). (3)
v=38 y=2
Mit (2) und (3) folgt
” w — 1 [n/2]
Fi) =3 Em = (", ) + Y0 — 1 Em). )
=3 =2
Fiir K(n) gilt
2K(m)=n+ v En), (5)
=3
mit (2) also
. [n/2]
K@) = (5) + 2 vEm). (6)
v=2

Im weiteren sollen nur regulire n-Ecke betrachtet werden. Ist # eine Primzahl
bzw. eine ungerade Zahl, so wird in [3] bzw. [4] gezeigt, dass ausser den Eckpunkten
keine Schnittpunkte von drei oder mehr Diagonalen auftreten. Da zu je vier der
n Eckpunkte genau ein Diagonalschnittpunkt gehért und umgekehrt, und da man
aus # Ecken auf ( Z) verschiedene Arten vierauswéahlen kann, folgt fiir reguldren-Ecke

mit # = 1 (mod 2)
Em=n+(3); Fo=("; )+ (Z) K = (5)+2(}). (7)

Ist n = 0 (mod 2), so werden die Anzahlen fiir » = 6 kleiner; dann gilt ndmlich
wegen des Mittelpunktes

En/z(”) =1 ’ (8)
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und, da sich die #/2 Diagonalen in (néZ) Punkten schneiden koénnten, folgt
n n(n— 2
Eym) < () - 222 )

Fiir gerades # mit (#, 3) = 1 soll nun die Anzahl von Diagonalschnittpunkten exakt
bestimmt werden.

Die Lésungen von w" — 1 = 0 in der komplexen Zahlenebene seien die Eckpunkte
des reguldren n-Ecks. Jede primitive n-te Einheitswurzel erzeugt alle iibrigen durch
Potenzieren. Seien a, b, ¢, d, g, h ganze Zahlen modulo » und z = exp (2 a ¢/n), so
sind drei beliebige Diagonalen durch

(a,b): w=u+1v=2+1 (2 — 29,
(c,d): w=u+1v=2 +1t, (2¢— 2, (10)
(g, h): w=u-+1iv=28+1; (2" — 28

dargestellt. Durch Addition und Subtraktion des konjugiert Komplexen lassen sich

die reellen Parameter ¢,, ,, {5 eliminieren. Als notwendige und hinreichende Bedingung
fiir einen gemeinsamen Schnittpunkt der drei Diagonalen ergibt sich dann

|
1 z¢td 224 24| =0. (11)

1 z&+h &8 4 2t

2 (20 — 29) (2% — 2¢) (2% — 28)
20+b zc+d zg+h

Wegen a + b, ¢ + d, g + h muss die Determinante D(z) verschwinden. Wird 0. E.d. A.
g = 0 gesetzt, so muss mit D(z) = z* A(z) gelten

AR)=(1—-2)(1 —2¢) (1 =z %) — (1 —29) (1 — 2%) (1 — zetd-B) = 0. (12)

Da (n, 3) = 1, ist 2® primitive n-te Einheitswurzel und daher muss auch A(z?) =0
erfiillt sein. Aus

A(z:}) . (1 + 26 + z2c) (1 afe Zd—l— de) (1 A zat+b—h L z2(a—+—b—h)) A(Z)
(1 — 29) (1 — 2%) (1 — ze+d=H) B(z) = 0 (13)

Il

folgt
B(Z) — (1 + 2 + z2c) (1 + Zd o} Z2d) (1 _+_ za+b——h + z2(a+b—h))

— (14 22+ 229) (1 4 22 + 22%) (1 4 zeH+d—h 4 g2+d=h) — 0, (14)

weil fiir a = 0 oder b = 0 der Schnittpunkt Eckpunkt ist, und fiir ¢ 4+ d = & die
Diagonalen (c, d) und (0, &) parallel sind, sich also nicht schneiden. Es folgt

2B(z) + A%(2) + 2 (1 — 29 (1 — 2%) (1 — z¢+4=%) A(2)
43R et b ) A =3C,() G =0 (15)
mit Ci(2) = 2619 + (2¢ + 29) z0+b—h — ga+b _ (30 | 2b) zo+d—h (16)
Colz) =20+ 20+ 200 h (1 420+ 29) 4 29+ 20 + 2 +9=2 (1 + 224 2)
+ ze+d 4 zotb, (17)
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Wenn C,(z) = 0, dann muss auch
Ci2) 142" — 22 A(z) = — 27" M,(2) = 0, (18)
Ml(z) — (2’“ + zb) (z2h e zc+d) _ (ZC 4 zd) <z2h + za+b)

= (2b — 2°) (28" — z9+9) — (39 — 29) (22h — 26+¢) =0 (19)
und wegen (n, 3) = 1

Ml(z3) . (Z2a + Z2b — za+b) (24h e 22(c+d)y _ zc+d+2h) Ml(Z)
= (2¢ + 29) (22 + z¢+%) N,(2) =0 (20)
mit
N,(z) = (229 4 226 — za+b) (780 4 g2 +d _ gotd+2h)

- (22" + z2d _ Zc+d) (24" + z2(a+b) _ za+b+2h) (21)

erfiillt sein. 2 + 2 = 0 und M,(2) = 0 haben ¢ =d + (#/2) und a = b + (n/2), also
den Mittelpunkt des n-Ecks, oder ¢c =d + (#/2) und 24+ (#/2) = c + d, also h=d
bzw. A = ¢ und damit einen Eckpunkt, als Schnittpunkt zur Folge. Entsprechend
folgt aus 2%% + 22t = 0 und M,(z) = 0 ein Eckpunkt (A = b bzw. & = a) oder zwei
parallele Diagonalen (a + b = ¢ + d). Der dritte Faktor in (20) N,(z) = 0 ergibt nun
auch

2N,(a) + ME) + 2 (2 + 29 (24 + 2249 My(a) — 3 (2 + ) (24 + 22+ My(3)
= 3 (22 — 29) (z2% — zb+) Py(z) = O (22)
mit
P1(Z) — (Zb L3 ZC) (z2h e za+d) _— (Zd -+ za) (2'2" + zb+c) . (23)

In (22) bedeutet 2¢ — 22 = 0 wiederum einen Eckpunkt (a = d). Aus 22 — 2+ =0
und M, (z) = 0 folgt entweder b = ¢ (Eckpunkt) oder 2 4 = a + d = b + c. Die letzten
beiden Beziehungen in 4(z) = O eingesetzt ergibt (vgl. (12))

A(z) = z=ttctd) (zh — 5) (2h — 29) (2¢+9 — 228) (1 + 2) = 0. (24)

Die ersten drei Differenzen bedingen Eckpunkte (h=¢, A=d, b=d) und aus

1+ 2 = 0 folgt » = n/2, so dass in diesem Fall Schnittpunkte von drei Diagonalen
vorliegen:

g=0; h=nl2; a=—d;, b=—c. (25)
Mit P,(z) = 0 aus (22) wird schliesslich noch
Py(2) + My(a) = — 2 (¢ — 2) (2F — 29%) = 0. (26)

Diese Differenzen entsprechen denjenigen in (22), wenn man bedenkt, dass A(z) in a
und b symmetrisch ist.

Aus Cy(2) = 0 wird nun in analoger Weise gefolgert:

(2240 — z¢+d) Cyfz) + (29+ + 25+9) A(2) = 224 My(z) = 0, (27)
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My(2) = (28 + 20) (z0+b+h — g2e+d) _ (g0 4 zd) (ze+d+h _ 52(+D)
= (2h + gb+e) (s2a+b — go+2d) _ (zh | ga+d) (pc+d _ ga+20) — (), (28)
My(28) — (229 + 220 — za+b) (pRla+b+h) 4 p(c+d) | patb+2(c+d)+h) M, (2)
= (e 2 (T — 2E0) Nyf) =0, (29)
Ny(z) = (220 4 220 — z0+0) (2@ +b+h) 4 z4(c+d) 4 ga+b+2(c+d)+h)
— (22¢ 4 224 — zo+d) (2@ HATR) 4 @+ 4 gR@+b)totdh) (30)

In (29) ergibt z¢ 4 2¢ = 0 mit M,(z) = O entweder den Mittelpunkt (c =d + (n/2),
a=>b+ (nf2))oder c =d + (n/2)und a + b + h = 2 (¢ + d), woraus durch Einsetzen
in (12)

A(z) = (224-F — 29) (2242 — 1) (829-2 4+ 1) =0 (31)

folgt. In (31) ergeben sich aus den ersten beiden Faktoren mit a —d =d — &,
d—b=—d, c=d+ nf2) bzw. d —a=—d, b—d=d—h, c=d+ (n/2) zwei
Fille von Schnittpunkten, die sich durch Umbenennung der Diagonalen (a, b), (b, ¢),
0,4 in (¢ —a',d" —a'), (W —a',—a’), (0,0’ —a’) bzw. in (@' —a',c’ —a’),
(W —a', —a’), (0,b" — a’) als in (25) enthalten erweisen. Ist der dritte Faktor in (31)
Null, so sind wegen a + b= 2 (c+ d) — h=4d — h = h die Diagonalen (a, b) und
(0, k) parallel.

Aus dem zweiten Faktor von (29) z¢+d+h — 22(@+5) = O und M,(2) = 0 wird durch
Vertauschen von (a, b) mit (c, d) der mit (31) diskutierte Fall, oder es folgt % =
2(a+0b —(c+d)=2(c+d)— (a+b),sodasssichwegen (n,3)=1a+b=c+d
ergibt (parallele Diagonalen).

Es muss nun nach (29) N,(z) = 0 gelten und damit auch

2 Ny(s) + MR(2) + 2 (s + 2) (zo+e+h — 220+0) My(a)
— 3 (gh — 2bte) (2a+b 4 zo+2d) M(2) = 3 (2t + 29+9) (s2+d — z3+28) Py(z) (32)

mit
Pz(Z) — (zh . Zb+c) (z2a+b + zc+2d) _ (Zh . za+d) (z2c+d e za+2b) ) (33)

Aus z¢ 4 20t4 = 0 und M,(z) = O ergibt sich entwederh =a + d + (n/2), h=>b+ c+
(n/2) oder h=a+ d + (n/2), 2a + b = ¢ + 2 d. In (12) jeweils eingesetzt ergeben sich
die Bedingungen

A(z) = z=@+b+h (1  28) (2b — 2249) =0, (34)

A@) = (22 — 29) (1 — 229) (1 + z44-2) = 0, (35)

Gleichung (34) bedingt einmal # = #/2, also mit den anderen Beziehungen Schnitt-
punkte vom Typ (25), und zum anderen a + b = &, d.h. parallele Diagonalen. In (35)
bedeutet die erste Differenz einen Eckpunkt (a = d), wihrend 1 — z¢-2¢ = 0 Schnitt-
punkte von drei Diagonalen zur Folge hat:

¢=0; h=a+d+ (n2); c=2a b=2d. (36)
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Der dritte Faktor von (35) 1+ zt4-2= 0 ergibt ¢ = a — d + (n/2). Ersetzt man
hierin und in A =a +d + (#/2) und b =d — a + (n/2) die Diagonalen (a, b), (c, 4)
und (0, #) durch (' —d’', —d'), (b’ —d',a’ —d’) und (0, ¢’ — d’), so erkennt man
durch Auflésen nach 4, ¢’ und &', dass Schnittpunkte vom Typ (36) vorliegen.

Aus (32) folgt weiter 22¢+4 — 22420 — O und mit M,(z) = 0 ist entweder 2¢ + d =
a+2b, h=>b+4 ¢+ (n/2), was sich durch Vertauschen von (4, b) und (c, d) gleich
dem durch (35) betrachteten Fall erweist, oder 2c +d=a + 2b,2a+b=c+ 24d.
Durch Addition folgt 3 (@ + ) = 3 (¢ + d) und wegen (#n,3) =1a + b=c+ d, d.h.
(a, b) ist parallel (c, d).

Zuletzt wird in (32) noch P,(2) = 0 und daher

Py(z) + My(z) = — 2 (z# + zb+d) (z2e+d — pp+26) = 0 . (37)

Durch Vertauschen von a und b ergeben sich die gleichen zu diskutierenden Ausdriicke
wie in (32).

Setzt man in (36) & = n/2, so zeigt sich, dass (25) in (36) enthalten ist. Es gilt
somit der

Satz: Ist n = 4 2 (mod 6), so schneiden sich im reguliren n-Eck ausser in Eck-
punkten und Mattelpunkt hichstens drei Diagonalen in einem Punkt.

Es werden nun zunidchst die Dreifachschnittpunkte gezdhlt, die (25) erfiillen
[n/4]~1 (n/2)—a—1

SR R B L T L

Dabei bedeute [r] die grésste ganze Zahl kleiner oder gleich ». Die iibrigbleibenden
Punkte von (36) liegen auf Kreisbégen um 22 mit dem Radius |2* — 1|. Damit kein
Punkt doppelt gezihlt wird, muss 2= (#/2) + a+d <nf2undd—c=d—2a > n/2,
also 2a+ n/2) +1=d<n—a—1und 1 <a < [(n — 4)/6] gelten; ausserdem
miissen noch [1/2 (1 + [(» — 4)/6])] Punkte abgezogen werden, die fiir b —a =
2d — a = n/2 in (38) schon enthalten sind. Es ergibt sich

Eg2)(n) — n[('f)lﬁ] "Z:l 1—un [[(’n — 4)/6] + 1]

a=1 d=1+4+2a+ (n/2) 2

IR RICS R
und zusammen
Ey(n) = E{)(n) + E)(n) . (40)

Da drei Geraden sich in drei Punkten schneiden kénnten, folgt unter Beriicksichtigung
von (8) und (9)
—2
Eym) = (%) - 28 3 Em). (41)

Aus (1), (4), (6) und (40) erhdlt man nun fiir n = 4- 2 (mod 6)

Em=n+(}) -5 D=8 _ 2By, (42)
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Foy = ("5 )+ (5) - 22— g, (43)
K = (5) +2(%) - kb A § AT (44)

mit
]%Sn(n~2)(5n—38), wenn # = 4 2 (mod 12) ,

Eym) =1 tha}
‘74—~8—~n(n~4) (5n—28), wenn #»n = 4 4 (mod12).

Ist n = 0 (mod 6), so sind alle Punkte aus (25) und (36) Schnittpunkte von min-
destens drei Diagonalen. Fiir n > 6 treten Schnittpunkte von mehr als drei Diagonalen
auf, wie sich zum Beispiel durch Einsetzen von a =1, b= (2#/3) —1,c=3, d =
(5#/6) — 1 und & = /2 in (12) und Beachten von (25) zeigt. (42), (43) und (44) mit
Eg4(n) aus (40) stellen also fiir diese regulidren #-Ecke echte obere Schranken dar.

HEeiko HARBORTH, Braunschweig
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Ein einfacher Beweis der Stirlingschen Formel

Die bekannte Stirlingsche Formel, welche % ! durch eine geeignete einfache Funktion
von # abschitzt, soll hier aus zwei sehr elementaren Hilfssitzen (vgl. [1]) hergeleitet
werden.

. 1\x+05
Hilfssatz 1. Fiir x > 0 gilt e < (1 + 7)

Beweis. Es ist

1 1 o 1 1 2(x+ 0,5+ 1
1/(x +0,6) __ - ’
e =+ 2Fo5 T 2109 ‘*’é; yT w057 <t 21058
1 b 1 1 622+ 7,5%+ 2,5 1
=14 —- 14+ =,
G (* 4+ 0,5)3 7;}' 4i (¥ + 0,5)7 T 612+ 7,52+ 34 (3/8%) * x (1)
Nun setzen wir zur Abkiirzung
-n-0,5

nle®n =y, m=1,2,3,..). (2)
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