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Diagonalen im regulären n-Eck

Zeichnet man in einem konvexen n-Eck alle möglichen Diagonalen, so kann man
nach den Anzahlen der entstehenden Teilflächen F(n), der Seitenlinien K(n) und der
Eckpunkte E(n) fragen (vgl. [1, 2]). Es soll dabei berücksichtigt werden, dass sich
mehr als zwei Diagonalen in nur einem Punkt schneiden können.

Bedeutet Ev(n) die Anzahl der Punkte, in denen sich genau v Diagonalen schneiden,
so folgt

[n/2]

E{n) n+£Ev(n). W
v 2

Mit Fv{n) als der Anzahl von i>-Ecken ergibt sich auf zwei Arten die Summe aller
Ecken der Teilvielecke

n [n/2]

JTv F„(n) n(n-2)+£2v _?„(») (2)
v=3 f=2

Die Winkelsumme aller Teile berechnet sich ebenfalls auf zwei Arten zu

« [n/2]

n£(v - 2) Fv(n) (n-2)7i + 2n^Ev(n) (3)

Mit (2) und (3) folgt"
n _ 1x [n/2]

F(n) £Fv(n) f 2 + j>> - 1) Ey{n) (4)
v 3

X ' v-2,
Für K(n) gilt

2K(n) n+2JvFv(n), (5)
v 3

mit (2) also

K(n)=(n2)+£vEv(n). (6)

Im weiteren sollen nur reguläre n-Ecke betrachtet werden. Ist n eine Primzahl
bzw. eine ungerade Zahl, so wird in [3] bzw. [4] gezeigt, dass ausser den Eckpunkten
keine Schnittpunkte von drei oder mehr Diagonalen auftreten. Da zu je vier der

n Eckpunkte genau ein Diagonalschnittpunkt gehört und umgekehrt, und da man

aus n Ecken auf 4 J verschiedene Arten vier auswählen kann, folgt für reguläre n-Ecke

mit n 1 (mod 2)

EW-.+ C); *M«("_ VC): *M (_) + 20- <7>

Ist n 0 (mod 2), so werden die Anzahlen für n ^ 6 kleiner; dann gilt nämlich

wegen des Mittelpunktes

£„,_(«) i. (8)
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(n/2\(n 2\' I Punkten schneiden könnten, folgt

Un) < (J) - n (n — 2)

105

(9)

Für gerades n mit (n, 3) 1 soll nun die Anzahl von Diagonalschnittpunkten exakt
bestimmt werden.

Die Lösungen von wn — 1 0 in der komplexen Zahlenebene seien die Eckpunkte
des regulären w-Ecks. Jede primitive n-te Einheitswurzel erzeugt alle übrigen durch
Potenzieren. Seien a, b, c, d, g, h ganze Zahlen modulo n und z — exp(2n i/n), so
sind drei beliebige Diagonalen durch

(a, b): w uJriv za + tx (zb — za)

(c, d): w u + iv zCJrt2 (zd — zc)

(g, h): w u-\-iv zzjrtz (zh — z8)

(10)

dargestellt. Durch Addition und Subtraktion des konjugiert Komplexen lassen sich
die reellen Parameter tx,t2, ts eliminieren. Als notwendige und hinreichende Bedingung
für einen gemeinsamen Schnittpunkt der drei Diagonalen ergibt sich dann

2 (zb - za) (zd - zc) (zh-zs)
za + b zc+d zS + h

1 Za + b Za + Zb

yC + d

1 Z8 + h Z8 + Zh

(11)

Wegen a^ b, c +^ d, g =¥ h muss die Determinante D(z) verschwinden. Wird o.E.d. A.

g 0 gesetzt, so muss mit D(z) zh A(z) gelten

A(z) (1~ zc) (1 - zd) (1 - za+b~h) - (1 - za) (1 - zb) (1 - zc+d~h) 0 (12)

Da (n, 3) 1, ist zz primitive n-te Einheitswurzel und daher muss auch A(zz) 0

erfüllt sein. Aus

folgt

A(z*) - (1 + zc + z2c) (1 + zd + z2d) (1 + za+b~h + z2(a+b~») A(z)

(1 - za) (1 - zb) (1 - zc+d~h) B(z) 0

B(z) (1 + zc + z2c) (1 + zd + z2d) (1 + za+b~h + 2f2<a+»-*>)

- (1 + Za + 22a) (1 + 2& + 22&) (1 4" Zc + d~h + ^(c + rf-Ä)) ¦o,

(13)

(14)

weil für a 0 oder 6 0 der Schnittpunkt Eckpunkt ist, und für c -j- d /* die
Diagonalen (c, d) und (0, Ä) parallel sind, sich also nicht schneiden. Es folgt

mit

2 B(z) + ;42(z) -f 2 (1 - za) (1 - 2*) (1 - zc+d~h) A(z)

+ 3 (za + ** + ^+rf-Ä + ^ + zrf + *«+*-*) _4(*) - 3 Cx(z) C2(z) 0

Ci(*) *c+rf + (*c + zd) za+b~h - za+b - (za 4- zb) zc+d-h,

C2(z) zc + zd + za+b~h (14-** + zd) + za + zb 4- zc+d-h (l + za + zb)

+ zc ~a + b
_

(15)

(16)

(17)
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Wenn Cx(z) 0, dann muss auch

Cx(z) (1 4- zh) -zhA(z) ~ z~h Mx(z) 0 (18)

Mx(z) (za 4- zb) (z2h + zc+d) - (zc + zd) (z2h 4- za+b)

(zb - zc) (z2h - za+d) - (zd - za) (z2h - zb+c) 0 (19)
und wegen (n, 3) 1

Mx(z*) - (z2a 4- z2b - za+b) (z*h 4- *2(c+rf) - zc+d+2h) Mx(z)

(*c 4- *rf) (z2Ä 4- *a+&) iVx(2) 0 (20)

mit
Nx(z) (22a 4- 22* - 2a+&) (z*h 4- 22<c+d> - zc+rf+2A)

- (z2c 4- *2rf - zc+d) (z*h 4- 22<a+&> - 2a+*+2Ä) (21)

erfüllt sein 2C 4- zd 0 und M^s) 0 haben c d 4- (n/2) und a b -{- (n/2), also
den Mittelpunkt des n-Ecks, oder c d -f (n/2) und 2 h + (n/2) c + ^, also h d
bzw Ä c und damit einen Eckpunkt, als Schnittpunkt zur Folge Entsprechend
folgt aus z2h 4- za+b 0 und Mx(z) 0 em Eckpunkt (h b bzw h a) oder zwei
parallele Diagonalen (a + 6 c 4- d) Der dritte Faktor m (20) Nx(z) 0 ergibt nun
auch

2 iV^) 4- M2(z) + 2(zc + zd) (z2h 4- za + b) Mx(z) - 3 (zb + zc) (z2h 4- za+d) Mx(z)

3(zd-~ za) (z2h - zb+c) Px(z) 0 (22)

mit
Px(z) (zb 4- *0 (*2Ä + za+d) - (*d 4- *fl) (z2h 4- 2&+c) (23)

In (22) bedeutet zd — za 0 wiederum einen Eckpunkt (a =- d) Aus 22Ä — zb+c 0

und Mx(^) 0 folgt entweder b c (Eckpunkt) oder 2h a + d b + c Die letzten
beiden Beziehungen m A(z) 0 eingesetzt ergibt (vgl (12))

A(z) 2-<*+<+<« (*Ä - zc) (zh - zd) (zc+d - z2h) (1 4- zh) 0 (24)

Die ersten drei Differenzen bedingen Eckpunkte (h c, h d, b d) und aus
1 -\- zh 0 folgt Ä n/2, so dass in diesem Fall Schnittpunkte von drei Diagonalen
vorliegen

g ___ 0, h n/2, a - rf, b= -c (25)

Mit P^) 0 aus (22) wird schliesslich noch

Px(z) 4- Mx(z) ^-2(zd- zb) (z2h - za+c) 0 (26)

Diese Differenzen entsprechen denjenigen in (22), wenn man bedenkt, dass A(z) m a
und b symmetrisch ist

Aus C2(z) 0 wird nun m analoger Weise gefolgert

(za+b __ zc+d) C%(Z) + (Za+b + zc+d) A{z)^2 z~h M2(z) 0 (27)
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M2(z) (za 4- zb) (za+b+h - z2ie+d>) - (zc 4- zd) (zc+d+h - z2<a+»)

(zh 4- zb+c) (z2a + b - zc+2d) - (zh 4- za+d) (z2c+d - za+2b) 0, (28)

M2(zz) — (z2a 4- z2b - za+b) (z2(a+b+h) + z*(c+d) 4- za+b+2(c+d)+hj M2(z)

(zc 4- zd) (zc+d+h - z2(a+») N2(z) 0 (29)

N (Z) (z2a + Z2b — Za + b) Mfa + ft + A) -f ^4(c + rf) _|_ za + b + 2(c + d) + h\

— (z2c -\- Z2d — Zc + d) (^2(.+d + A) _|_ z4(a + b) _j_ ^(a+ &) + .+_' +A\
^

ßQN

In (29) ergibt £c 4- zd 0 mit M2(^) 0 entweder den Mittelpunkt (c d 4- (n/2),
a b + (n/2)) oder c d + (n/2) und a + & + ä 2 (c 4 i), woraus durch Einsetzen
in (12)

A(z) (22d"Ä - 2«) (z2d~a - 1) (22rf"Ä 4- 1) 0 (31)

folgt. In (31) ergeben sich aus den ersten beiden Faktoren mit a — d d — h,
d — b — d, c d 4- (n/2) bzw. d — a — d, b — d d — h, c d 4- (w/2) zwei
Fälle von Schnittpunkten, die sich durch Umbenennung der Diagonalen (a, b), (b, c),

(0, h) in (cf — a', d' — a'), (hf — a', — a'), (0, 2/ — a') bzw. in (rf' — a', c' — #'),
(/&' — a', — a'), (0, b' — a') als in (25) enthalten erweisen. Ist der dritte Faktor in (31)

Null, so sind wegen a-\-b 2{c-\-d) — h 4 d — h h die Diagonalen (a, b) und
(0, h) parallel.

Aus dem zweiten Faktor von (29) zc+d+h — z2 {a+b) 0 und M2(z) 0 wird durch
Vertauschen von (a, b) mit (c, rf) der mit (31) diskutierte Fall, oder es folgt h
2 (a 4- b) — (c 4- rf) 2 (c 4- rf) — (# 4- &), so dass sich wegen (n, 3) 1 a + b c -\- d

ergibt (parallele Diagonalen).
Es muss nun nach (29) N2(z) 0 gelten und damit auch

2 _V2(z) 4- M22(*) 4- 2 (2' 4- **) (zc+d+h - 22<*+*>) M2(s)

_ 3 (ZA _ 2* + c) (z2a + & + zc + 2d) M^ ___ 3 (zh + ^a + rf) (^c + d _ ^a + 2*) p^) (32)

mit
P2(s) (zh - **+c) (z2a + & 4- zc+2d) - (*A - za+d) (z2c+d 4- *fl+2&) (33)

Aus zh 4- 2a+rf 0 und M2(z) 0 ergibt sich entweder A a 4- rf 4- (n/2), A 6 4- c +
(n/2) oder Ä a 4- rf 4- (^/2), 2a + ö=c4-2rf. In (12) jeweils eingesetzt ergeben sich
die Bedingungen

A(z) *-<«+*+« (1 4- zh) (zh - za+b) 0 (34)

_4(*) (za - zrf) (1 - zc~2a) (1 + 2c+d-a) 0 (35)

Gleichung (34) bedingt einmal h n/2, also mit den anderen Beziehungen Schnittpunkte

vom Typ (25), und zum anderen a 4- b h, d.h. parallele Diagonalen. In (35)
bedeutet die erste Differenz einen Eckpunkt (a rf), während 1 — zc~2a 0 Schnittpunkte

von drei Diagonalen zur Folge hat:

g 0; h a + d+ (n/2); c 2«; b 2d. (36)
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Der dritte Faktor von (35) 1 4- zc+d~a 0 ergibt c a — rf 4- (n/2). Ersetzt man
hierin und in h a 4- rf 4- (n/2) und b rf — a + (n/2) die Diagonalen (a, b), (c, rf)
und (0, h) durch (W — df, — d'), (bf — rf', a' — rf') und (0, c' — rf'), so erkennt man
durch Auflösen nach h', c' und b', dass Schnittpunkte vom Typ (36) vorliegen.

Aus (32) folgt weiter z2c+d - za+2b 0 und mit M2(z) 0 ist entweder 2 c 4- rf

a 4- 2 ö, Ä &4-c4- (n/2), was sich durch Vertauschen von (a, b) und (c, rf) gleich
dem durch (35) betrachteten Fall erweist, oder 2c + d a + 2b, 2a + b c + 2d.
Durch Addition folgt 3 (a + b) 3 (c 4- rf) und wegen (n, 3) 1 a 4- b c 4- rf, d.h.
(a, b) ist parallel (c, rf).

Zuletzt wird in (32) noch P2W 0 und daher

P2(z) 4- Ma(*) -2(zh + zb+d) (z2c+d - zb+2a) 0 (37)

Durch Vertauschen von a und & ergeben sich die gleichen zu diskutierenden Ausdrücke
wie in (32).

Setzt man in (36) h n/2, so zeigt sich, dass (25) in (36) enthalten ist. Es gilt
somit der

Satz: Ist n ±2 (mod 6), so schneiden sich im regulären n-Eck ausser in
Eckpunkten und Mittelpunkt höchstens drei Diagonalen in einem Punkt.

Es werden nun zunächst die Dreifachschnittpunkte gezählt, die (25) erfüllen

[n/4]-l (n/2)-a-l _ A_ ._ x

£.mM=.2; E i"»^ t-Pt^ • (38)
« 1 b =a + 1

Dabei bedeute [r] die grosste ganze Zahl kleiner oder gleich r. Die übrigbleibenden
Punkte von (36) liegen auf Kreisbögen um za mit dem Radius | za — 11. Damit kein
Punkt doppelt gezählt wird, muss h (n/2) 4- # 4- d < n/2 und rf — c rf — 2a > n/2,
also 2 a + (n/2) 4-lfgrffgn — a — 1 und 1 ?g a <g [(n — 4)/6] gelten; ausserdem
müssen noch [1/2 (1 4- [(n — 4)/6])] Punkte abgezogen werden, die für b — a
2 rf — a n/2 in (38) schon enthalten sind. Es ergibt sich

[(n - 4)/6] » - • - * [(„ _ 4)/6] + 1 1

Ef(n) =n 2j 2j 1~n \ —2
a l d^l+2a+(n/2) L J

[¦-±](.-2-3[i±A])-.[ü!^affl-] (39)n_ \n - 4"| (m n Q f n + 2"|\ ^ f [(n + 2)/6]J

und zusammen

£8(n) j_#>(n) 4- 42,(*) • (40)

Da drei Geraden sich in drei Punkten schneiden könnten, folgt unter Berücksichtigung
von (8) und (9)

n (n - 2)*>-o 3 Ein). (41)

Aus (1), (4), (6) und (40) erhält man nun für n ± 2 (mod 6)

(n 4- 2) (n - 4)2?w«»+(;)- (n+T~} -2*¦«¦ <42>
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m (" - X) + C) - (W-2)^-4) - E3(n) (43)

K(n) (l) + 2(*) - ^^-3E3(n) (44)

— n (n - 2) (5 n - 38) wenn n ± 2 (mod 12)
Es(n) 4X8 (45)

"48" n (n — 4) (5 n — 28) wenn n ± 4 (mod 12)

Ist n ee 0 (mod 6), so sind alle Punkte aus (25) und (36) Schnittpunkte von
mindestens drei Diagonalen. Für n > 6 treten Schnittpunkte von mehr als drei Diagonalen
auf, wie sich zum Beispiel durch Einsetzen von a 1, b (2 n/3) — 1, c 3, rf

(5 n/6) - 1 und h n/2 in (12) und Beachten von (25) zeigt. (42), (43) und (44) mit
E3(n) aus (40) stellen also fur diese regulären n-Ecke echte obere Schranken dar.

Heiko Harborth, Braunschweig
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Bei der Korrektur Herr Dr. H Heineken teilte mir inzwischen mit, daß eine Arbeit
von ihm zum gleichen Thema m den Rendiconti Sem U Padova erscheinen wird.

Kleine Mitteilungen
Ein einfacher Beweis der Stirlingschen Formel

Die bekannte Stirlmgsche Formel, welche n' durch eme geeignete einfache Funktion
von n abschätzt, soll hier aus zwei sehr elementaren Hilfssatzen (vgl. [1]) hergeleitet
werden.

/ l\* + 0,5
Hilfssatz 1. Fur x > 0 gilt e < 11 H 1

Beweis. Es ist

,i/(*+o,5) x __J^ + i +ri i < + 2(*+o,5) + i^ #+0,5 ^ 2(#+0,5)2 fa^ v! (#4-0,5)» 2 (x + 0,5)2

^6(x+0,5)*fa 41 (x+ 0,5)1 ^ x 6#2+ 7,5 # + 3+ (3/8 #) ^ ^ x' K)

Nun setzen wir zur Abkürzung

nUnn~n-°'5 yn (n 1,2, 3,...). (2)
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