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Konjugierte Durchmesser und extremale

Vierecke konvexer Bereiche

§ 1. Definitionen und Einführung

Ein konvexer Bereich B sei eine beschränkte, abgeschlossene und konvexe Menge
in der Ebene. Eine Sehne von B, d.h. ein Schnitt einer Geraden mit B, heisst
Durchmesser, wenn es keine parallele Sehne von B grösserer Länge gibt. Eine Gerade g
heisst Stützgerade von B, wenn sie B trifft und wenn B in einer der beiden durch g
bestimmten abgeschlossenen Halbebenen liegt. Zwei nicht parallele Durchmesser
heissen konjugiert, wenn es in den Endpunkten des einen Stützgeraden gibt, die
parallel zum anderen sind und umgekehrt. Hierbei handelt es sich offenbar um eine

Verallgemeinerung der konjugierten Durchmesser einer Ellipse. Doch gilt nun i. allg.
nicht, dass einem Durchmesser genau ein konjugierter Durchmesser zugeordnet ist.
Ein Viereck heisst dem Bereich B einbeschrieben oder Inviereck, wenn seine Ecken
auf dem Rande dB von B liegen, es heisst umbeschrieben oder Umviereck, wenn seine
Seiten Stützgeraden sind. Dabei verstehen wir unter einem Viereck stets ein konvexes
Viereck, lassen aber zu, dass es zu einem Dreieck entartet. Diese Begriffe und alle
folgenden Überlegungen gehören zur affinen Geometrie. Wir benutzen lediglich ein
Inhaltsmass als Hilfsmittel.

Die Existenz eines Paares konjugierter Durchmesser ist verschiedentlich als
Beweismittel benutzt worden. Laugwitz [5] zeigt, dass ein konvexer Bereich mit
Mittelpunkt mindestens zwei verschiedene Paare konjugierter Durchmesser besitzt.
Dieser Beweis benutzt die von Radon [9] angegebene Parameterdarstellung des

Randes. Nach Funk [3] findet man konjugierte Durchmesser, wenn man ein kleinstes
(d.h. flächenkleinstes) Umparallelogramm, nach Blaschke [1], wenn man ein

grösstes Inviereck aufsucht.
Wir zeigen, dass man so für jeden konvexen Bereich B zwei verschiedene Paare

konjugierter Durchmesser findet. Hieran schhessen sich einige weitere Überlegungen
an.

§ 2. Existenz zweier Paare konjugierter Durchmesser

1. Durch einige einfache Kompaktheitsschlüsse beweist man, dass es ein grösstes
Inviereck und ein kleinstes Umparallelogramm des konvexen Bereiches B gibt.
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Behauptung 1: Die Diagonalen eines grossten Invierecks sind konjugierte Durchmesser

P^PgPa sei em grösstes Inviereck Die Diagonalen PXP3 und P2_°4 smd Durchmesser

Denn wäre etwa PXP3 nicht Durchmesser, gäbe es also eme parallele Sehne

P/Pg' grosserer Lange, dann hatte das Inviereck PXP2P^P^ grosseren Inhalt Die
Durchmesser PXP3 und P2PA smd konjugiert Denn gäbe es etwa m Px keine
Stutzgerade parallel zu P2P^, dann gäbe es einen Randpunkt Px so dass PXP2P3P^

grosseren Inhalt hatte Damit ist Behauptung 1 bewiesen

Figur 1

Behauptung 2: Auf'jeder Seite pt(i=l, ,4) eines kleinsten Umparallelogramms
gibt es einen Punkt Pt von dB, so dass die Strecken PXPZ und P2P^ konjugierte Durchmesser

sind
Fur Pt e pt sind PXP3 und P2P^ stets Durchmesser Ist nun bei jeder Wahl der

Randpunkte Px auf px und P3 auf p9 der Durchmesser PXPS niemals parallel zu p2

(und pt), so gibt es Punkte Px und P3 auf px bzw p3, aber nicht auf dB derart, dass

die Strecke PXPZ parallel zu p2 ist und die Punkte Px und P3 trennt Dann kann man
px und p3 um Px und P3 drehen, so dass diese Seiten parallel bleiben, aber keinen
Punkt von B mehr enthalten Dabei bleibt der Flacheninhalt ungeandert, doch
berühren nun zwei Seiten des Parallelogramms B nicht mehr, so dass es also em
kleineres Umparallelogramm gibt Das ist ausgeschlossen, und Behauptung 2 ist
bewiesen.
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Figur 2
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Behauptung 3: Die beiden so erhaltenen Paare konjugierter Durchmesser sind
verschieden oder es gibt unendlich viele Paare.

Jedem Durchmesser d von B ordnen wir ein grösstes Inviereck V(d) zu, das d als

Diagonale hat. Dann gibt es Stützgeraden durch die 4 Ecken von V(d), die ein

Umparallelogramm W(d) bestimmen, welches dann notwendig den doppelten Inhalt
wie V(d) hat. Ist nun V(d0) ein absolut grösstes Inviereck, so gibt es entweder

a) Vierecke V(d) mit kleinerem Inhalt oder

b) alle Vierecke V(d) haben gleichen Inhalt.

Im Fall a) ist W(d0) kein kleinstes Umparallelogramm, so dass die in Behauptung 1

und 2 erhaltenen Paare konjugierter Durchmesser verschieden sind. Im Fall b) ist
W(d0) ein kleinstes Umparallelogramm, und es gibt unendlich viele Paare konjugierter
Durchmesser.

Im Fall a) gilt sogar, dass kein Durchmesser des einen Paares parallel zu einem
Durchmesser des anderen Paares ist. Denn sind zwei Durchmesser parallel, so sind sie

gleich lang und zugehörige Umparallelogramme haben gleichen Inhalt. Es gilt also:
Satz 1: feder konvexe Bereich B besitzt mindestens 2 Paare konjugierter

Durchmesser, die alle verschiedene Richtung haben.

2. Wir hätten auch die eben benutzte Schar V(d) von Invierecken benutzen können,
um 2 Paare konjugierter Durchmesser zu erhalten. Ein grösstes und ein kleinstes
Viereck dieser Schar liefert jeweils ein Paar konjugierter Durchmesser.

Dies lässt sich besonders einfach zeigen, wenn man voraussetzt, dass dB überall
eine Tangente besitzt und keine Strecken enthält. Die 4 Ecken von V(d) sind dann

eindeutig bestimmt und lassen sich als differenzierbare Funktionen x{(t),i 1, 4,

darstellen, wobei d die Verbindung der Ecken xx und #3 sei. Der Inhalt F(t) lässt sich
durch die Determinante

2F= [xx-xz,x2-x^
berechnen. Für die Extremwerte von F(t) gilt

2F=[xx- x3, x2 - ij + [xx - xs, x2 - *4] 0

Nach Konstruktion von V(d) verschwindet die erste Determinante. Da die

Parameterdarstellung so gewählt werden kann, dass xx * 0 ist, und da xx und xz entgegengesetzt

gerichtet sind, ist xx - x3 =N 0, und folglich sind xx und x3 parallel zu x2 — #4.

D.h.: die Diagonalen sind konjugierte Durchmesser. Da eine stetige auf einer

kompakten Menge definierte Funktion Maximum und Minimum annimmt, erhält man so

2 Paare konjugierter Durchmesser.

Die oben unterschiedenen Fälle a) und b) sind hier durch F =f= 0 und F 0

gekennzeichnet.

§3. Beispiele

Die Bereiche, für die in § 2 der Fall b) eintritt, besitzen zu jedem Durchmesser
einen konjugierten. Sie sind auch dadurch gekennzeichnet, dass ein kleinstes

Umparallelogramm doppelt so grossen Inhalt hat wie ein grösstes Inviereck. Die
Randkurven solcher Bereiche nennen wir nach Blaschke [1] P-Kurven. Die P-Kurven
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mit Mittelpunkt (Symmetriezentrum) werden dort P-Kurven genannt. Sie sind als
Radonsche Kurven in der Literatur bekannt (nach Radon [9]).

Die einfachsten Beispiele für P- und P-Kurven liefern affin-reguläre m-Ecke,
und zwar sind die (2 n -f 1)-Ecke P-Kurven ohne Mittelpunkt und die (4 n -\- 2)-Ecke
R-Kurven (n 1, 2, Dies erkennt man leicht durch einige Winkelberechnungen
an den euklidisch-regulären w-Ecken.

Weitere Beispiele für P-Kurven sind die Gleichdicke (Orbiformen). Das folgt aus
der bekannten Tatsache, dass deren Normalen Doppelnormalen sind.

Betrachten wir die Bereiche, die in cartesischen Koordinaten durch

1*1*+ \y\p < 1
> P > 1, reell, (1)

gegeben sind. Für p 1 erhalten wir die Parallelogramme, die nur zwei wesentlich
verschiedene Paare konjugierter Durchmesser besitzen. Für p > 1,^4= 2 existieren

genau zwei Paare. Der Fall p 2, d. h. der Fall der Ellipsen, ist unter den folgenden
Bereichen enthalten:

Ix\p + |y\p ^ 1 fur # y > 0

| # | * + | y | * < 1 für # y < 0
(2)

Die Ränder dieser Bereiche sind P-Kurven, einschliesslich des Grenzfalles p 1,

q oo, der das affin-reguläre Sechseck angibt. Dass durch (2) P-Kurven gegeben
sind, folgt aus der von Radon [9] angegebenen Erzeugung der P-Kurven mittels einer
Polarität aus einem «Viertelbogen» (siehe auch Blaschke [1] und Lenz [7]) und aus
der Polarität der in (2) angegebenen Viertelbögen (siehe Salmon [11], Artikel 91).
Dann sieht man auch leicht, dass die Bereiche (1) nur zwei Paare konjugierter Durchmesser

besitzen.

X* + y* 1 fur x y > 0

\xf*+ |y|4/3 lfur^y < 0

Figur 3
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§ 4. Ergänzungen und Anwendungen

1 Stutzparallelogramme Ist P em innerer Punkt des konvexen Bereiches B, so
können wir die folgende Schar cp von Dreiecken betrachten Zu allen Randpunkten Px
werden die Dreiecke mit der Basis PPX gebildet, die in B und links von PPX liegen
und grosstmoghchen Inhalt haben Der Inhalt ol(Px) ist eme stetige Funktion von Px,
und es gibt daher Dreiecke m cp, fur die a maximal bzw minimal ist

Stein [12] und Laugwitz [6] haben «Stutzparallelogramme)) relativ zu P betrachtet
und gezeigt, dass es stets zwei verschiedene gibt Em Parallelogramm PPXP*P2 heisst
Stutzparallelogramm zu P, wenn Px, P2e dB und die Seiten PXP*, P*P2 auf
Stutzgeraden liegen

Tigur 4

Behauptung 4: Es gibt ein kleinstes und ein grösstes Dreieck in cp, die sich zu
Stutzparallelogrammen erganzen lassen

Hieraus folgt dann der Satz von Stein und Laugwitz Wir skizzieren den Beweis
Zunächst ist klar, dass es fur jedes Dreieck aus cp eme Stutzgerade m P2 gibt, die
parallel zu PPX ist Zu zeigen bleibt also, dass es em kleinstes und em grösstes Dreieck
m cp gibt, so dass m Px jeweils eme zu PP2 parallele Stutzgerade existiert Die absolut
grossten Dreiecke mit der Ecke P, die in B liegen, gehören zu cp Da fur sie die
gewünschte Eigenschaft vorhanden ist, brauchen nur noch die kleinsten Dreiecke aus cp

betrachtet zu werden Sei PPXP2 em kleinstes Dreieck aus cp und nehmen wir an, dass

es m Px keine zu PP2 parallele Stutzgerade gibt und dass das fur alle anderen
(möglicherweise vorhandenen) Dreiecke aus cp mit der Basis PPX gilt Bewegt man nun den
Punkt Px auf dB nicht zu weit in Richtung des Schnittpunktes der Geraden PP2 mit
den Stutzgeraden m Px, so verkleinert sich der Dreiecksmhalt a echt, wie man nach

einigen einfachen Schlüssen erkennt Damit ist dann Behauptung 4 bewiesen
Der Kreis, m dem P nicht Mittelpunkt ist, zeigt, dass es genau 2 Stutzparallelogramme

geben kann Ist P Schnittpunkt konjugierter Durchmesser, so gibt es offenbar

4 Stutzparallelogramme
Stutzparallelogramme und allgemeiner Stutzparallelepipede wurden von Taylor

[13] in der Mmkowski-Geometne betrachtet Sie liefern orthogonale Basen Auch die
Funktion a spielt in der Mmkowski-Geometne eme gewisse Rolle, vgl Petty [8]

2 Eine Kennzeichnung der Radonschen Kurven Sei Vx em grösstes Inviereck,
Wx em kleinstes Umparallelogramm und W2 em kleinstes Umviereck, die Inhalte seien
mit | Vx | usw bezeichnet Die Kennzeichnung der P-Kurven, die sich oben ergeben
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hat, kann man nach Lenz [7] auch in der folgenden Form angeben:

2 | Fi | > | Wx \; Gleichheit genau für P-Kurven.

Für P-Kurven gilt, wie Lenz vermutet hat, eine entsprechende Kennzeichnung:

2 | Vx | > | W21; Gleichheit genau für P-Kurven. (3)

Lenz hat gezeigt, dass Gleichheit höchstens für Mittelpunkts-P-Kurven, also für
P-Kurven eintreten kann, wobei er allerdings Eckenfreiheit voraussetzt. Gleichheit
tritt für alle P-Linien ein, wenn die kleinsten Umparallelogramme zugleich kleinste
Umvierecke sind. Dies ist in der Tat der Fall. Denn Dowker [2] hat gezeigt, dass

unter den kleinsten umschriebenen 2 n-Ecken eines konvexen Mittelpunktsbereiches
stets eins mit demselben Mittelpunkt ist. (Hierzu auch Petty [8], S. 276, und Nr. 3

dieses Paragraphen.) Weitere Ungleichungen zwischen \VX\, \WX\, \W2\ und \B\
findet man bei Lenz [7].

3. Dualität. In den Überlegungen der §§ 2, 3 zeigt sich eine gewisse Dualität
zwischen grossten InVierecken und kleinsten Umparallelogrammen. Nun lässt sich
zwar der Inhaltsbegriff i. allg. keinem Dualitätsprinzip einordnen. Wir werden jedoch
zeigen, dass für konvexe Bereiche mit Mittelpunkt M eine vollkommene Dualität
zwischen grossten In- und kleinsten Umparallelogrammen besteht. Die Einschränkung
auf Parallelogramme ist hier unwesentlich, weil es nach der schon genannten Arbeit
von Dowker [2] unter den kleinsten Umvierecken ein Parallelogramm mit dem Mittelpunkt

M gibt und unter den grossten Invierecken ebenfalls. Das erste folgt auch
mittels Behauptung 5 aus dem zweiten, das zweite ist direkt einfach einzusehen. Denn
von einem grossten Inviereck ausgehend, dessen Diagonalen nach § 2 konjugierte
Durchmesser sind, findet man ein gleichgrosses Inviereck, dessen Diagonalen durch M
gehen und das daher selbst den Mittelpunkt M hat.

Die Dualität wird durch Polarität an einer Ellipse mit Mittelpunkt M vermittelt,
die wie üblich Punkte in Geraden und Geraden in Punkte überführt. Der Rand dB als

Punkt- bzw. Stützgeradenmenge wird dann in eine Stützgeraden- bzw. Punktmenge
übergeführt, die wieder einen konvexen Bereich P* begrenzt. Parallele Geraden
werden in Punkte einer Geraden durch M abgebildet und umgekehrt. Daraus folgt:
Ein Umparallelogramm von B mit zugehörigen konjugierten Durchmessern durch M
wird in ein Inparallelelogramm von P* mit konjugierten Durchmessern durch M
abgebildet und umgekehrt.

Behauptung 5: Ein kleinstes Umparallelogramm eines konvexen Bereiches B mit
Mittelpunkt M wird durch eine Polarität bezüglich M in ein grösstes Inparallelogramm
von B* abgebildet und umgekehrt.

Zum Beweise bemerken wir zunächst, dass für ein Parallelogramm V mit Mittelpunkt

M und sein polares Parallelogramm V* stets | V \ | F* | 8 gilt, wenn die
Ellipse, die die Polarität bestimmt, den Inhalt n hat. Denn man überlegt sich leicht,
dass dann \V\ \V*\ stets denselben Wert hat. Die Zahl 8 ergibt sich etwa als Produkt
der Inhalte von In- und Umquadrat des Einheitskreises. Ist nun Vx ein grösstes
Inparallelogramm von B und V£ ein kleinstes Umparallelogramm von P*, so gilt für

vr vt

l*-KI*_|. |i?|<1*7|
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und

also

was zu zeigen war.

I 17* I <r" I T7 I I F"* I <r" I T7 i I T7*
I VZ I ^ | Vl\ |>2 I ^ I Vl\ I Vl

I Va I
__=

I TT, I I T7* I I V*

4. Anwendungen. Die in der Einleitung erwähnten Arbeiten von Funk [3] und
Laugwitz [5] benutzen konjugierte Durchmesser, um Aufgaben der Finsler- bzw.
Minkowski-Geometrie zu lösen. Oben haben wir schon das Auftreten der Funktion a
in der Minkowski-Geometrie erwähnt. Radon [10] benutzt konjugierte Durchmesser,
um eine gegebene konvexe Kurve in einem Koordinatensystem einfach darzustellen.
Damit wird eine Aufgabe aus der zentralaffmen Differentialgeometrie gelöst (hierzu
auch Heil [4]).

5. Weiterfuhrungen. Unsere Untersuchungen lassen sich in verschiedenen
Richtungen weiterführen. So legt das grosste einbeschriebene Viereck auch bei beliebigen
Jordankurven konjugierte Durchmesser fest. Im Raum kann man an Stelle der Vierecke

Oktaeder und Paralieiepipede betrachten. Das folgende Ergebnis, auf das wir
später zurückzukommen hoffen, steht in engem Zusammenhang mit den bekannten
Sätzen von Blaschke über Flächen mit ebenen Selbstschattengrenzen und Variationsprobleme

mit symmetrischer Transversahtät (siehe z.B. Blaschke [1]):
Sei B eine beschränkte, abgeschlossene konvexe Menge mit Mittelpunkt. Liegen

die Ecken eines grossten B einbeschriebenen Oktaeders auf den Seitenflachen eines
kleinsten B umschriebenen Parallelepipeds, dann ist B em Elhpsoid.

E. Heil und W. Krautwald, TH Darmstadt
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