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9. Schlussbetrachtung

Ziel der Arbeit ist es, an Beispielen eine Methode vorzufiihren, die es gestattet, die
Inhaltsmasszahlen gewisser hyperbolischer Rotationskdrper zu ermitteln. Die Aus-
wahl der Beispiele erfolgte nach zwei Gesichtspunkten. Einmal sollten alle in Teil 3
ausgewerteten Integrale bei der Bestimmung von Masszahlen tatsdchlich vorkommen.
Zum andern aber wollten wir vor allem solche Drehkérper behandeln, die in der eukli-
dischen Geometrie ein Gegenstiick haben. Es ist besonders interessant, in diesen Fil-
len den Ubergang von der hyperbolischen zur euklidischen Formel durchzufiihren.
Wir zeigen das am Beispiel des Torus. In Formel (16) werden die vorkommenden
hyperbolischen Funktionen in Reihen entwickelt:

g (T L (AP, (2R
V=mt b (o gr () + ) (2 (5 )+ )
Wichst jetzt k2 unbegrenzt, so ergibt sich das Torusvolumen der euklidischen Geo-

metrie V =n%a -2 R2 H.ZEeI1TLER, Weiden

On S¢ Functions
Introduction

In this paper we prove that the Dirac Delta and all its derivatives can be repre-
sented by sequences of constructed discontinuous functions. Although this result is
stated in [1] it is not formally proved.

We then prove that by using this definition of the #z-th derivative of the Dirac
Delta its Laplace Transform is s*. This result again can be considered as “ classical ”’
(see for example [3]) but is not proved either.

We feel that although the results are known the approach is new and our proof is
rigorous which justifies the contents of this paper.

Definition of the n-th Derivative of a Function

Let V = [vy, v, ..., v,] be an n-dimensional vector. We say that the vector tends
basewrse to zero if the components v, tend to zero successively. We write symbolically

V—*>0. (1)

Geometrically speaking this mgans that the end point of V¥ describes a polygonal
line whose sides are parallel to the axes of the basis.

We shall use the notation I7 V = n v, for the product of the components of the
vector. m=1

Let f(t) € Cn[b, c] be the class of functions that are defined and continuous as well
as their derivatives up to and including theordern forb < ¢ <c.Leta,2=1,2, ..,
n, be such that (¢ + «, ,) € [b, c], where a, , represents the sum of any % of the »
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numbers a,, and b + ¢ < ¢ < ¢ — ¢, ¢ being a given positive number. Clearly
Df(t) = Jim, (1/a;) [f (¢ + &) — /()]

D2f(t) = lim, (1fay ag) [f (¢ + ay + @) — [ (¢ + @) — [ (¢ + ag) + 1(9)] ,

a, —> 0
.................................................. (2)
”
Drf(f) = lim (1/11 @) } (—1)"+* g,
B k=0
where,
k
a=[a, ay, ..., a,], ‘PkZZf(t+°‘k,m), “k,m:‘ls,+“s,‘*‘---+“sk’
m=1

spS;=L2,...,n, s;*s;, 1,7=12..,k.

Since g, is symmetric with respect to the a,’s, D*f(?) is independent of the order
in which the different a,’s tend to zero, this is why no specific order is necessary when
a vector tends basewise to zero.

Ifina - 0 we make a change of variables in the a,’s, change defined by

b=Ha, (3)

where H is a » X » matrix, this change of variables corresponds to a rotation of the
reference system. When a 2> 0, the last leg of the polygonal line described by the end-

point of a is a straight line. With respect to the new reference system, when a tends to
zero basewise then b tends to zero, although not basewise. Under these conditions,
considering (3) all the b,’s, components of b will tend to zero simultancously.

We may thus assume without loss of generality that in (2) all the a,’s tend to zero
simultaneously. In addition we may assume that all the a,’s are equal to a. This cor-
responds to a special choice of the matrix H in (3) that would make all the ,’s equal.

It follows that we can define the n-th derivative of the function f(f) by the ex-
pression

Drf(2) _I;na—”Z( Deen () F+ Ra). (4)

fo0<60<1 and 04, <1, k=1,2,...,n, we can write according to the
mean-value theorem

fli+(k+0)al=f(@+ka)+a0Df[t+ (k+ B 0)al

so that by substitution into (4) we obtain

n

Drj(t) = Jim a=n 37 (~1)»+*[f [t + 0) a] — a O Df [t+ (k + Bi6) all

k=0

where the second term in the sum tends to zero with a.
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We can thus write for the n-th derivative of f{(¢)

n

Drf(t) = lim (1) a=n 37 (= D¥(}) 1+ (k+0) al. (5)

0
a= fpari

This is the form we are going to use in the next section.
Remark. (5) can easily be checked by writing
-1
I+ (R +6)a] = f(t) + 2 (m!)~* am (k + 6)" Dmf(?)
+ (k4O a DYt + Bk +O)an!, 0SB =1,
thus substituting into (5)

D) = Jim, (— 1 0= 37 (<1 (%) 1) + 3 ()2 a= (& + 0 Do)
k=0 m=0
+ ()t @ (k + 0)" Df [t + By (k + 6) )]

D* () +2 tam Drf(t) ) (=) (i) (ke )7

n

@ DY (4 By e 0)@) 3 (1) (7) (e 6.

Since id n
— 1)k Ek Om: —1)» !am,
,é;(l)(k)(+) (—1)" n! &

where §” is the Kronecker Delta, it follows that all the terms on the right hand side,
except the last one, cancel out, so that

Drf(t) = lim (1) a=" (n})= @ Df [t + By (k + 6) a] m! (~ 1),

which clearly is an identity.

3. The accordeon function

We shall use the following notation for the Heaviside-step function:

{O for t<T,

ul(t—T) =
( ) 1 for ¢t>T,

(T7) =0, (T*)=1,

so that for T < 0, and f(¢) € C°[T, 0],

p(t) = 1(t) [u(t~T)—u(t—0)]=\f(t) for T <t<®,

(T) =0, @(TH=HT"), @B)=£0), @6)=0.
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Under these conditions, with a > 0, we define the following accordeon function:

Ac(t, n, a) = a—"“lf(—- 1)m (;) (@t —ma) —u(t— (m+41)a), ‘

n+1

— a1 Y (—)mu (t — ma) [(:;) + (m’_”_ 1)] (6)

m=0

= a——n——lz (—1)m (n+ 1) u(t—ma),

m=0 m

}

where use has been made of the classical properties of the binomial coefficients and

() =o.

If we let 2 > 0 in (6) we obtain a generalized function in the sense of MIKUSINSKI
(cf. [2] and [3]). It is easier in this case not to use the notion of distribution in the sense
of ScawARTz. We shall call this generalized function a squeezed accordeon and shall
write

lim Ac(t, n, a) = Sc(t, 7) . (7)

For any function f(f) defined and continuous over a sufficiently large neigh-
bourhood of ¢ = 0 we have, using the classical notation for the inner product

+ 00
Scit, n), f(t)> = / f(¢) Sc (¢, n) dt

+oo n4+1
= [10 e B o ma ("

Since the integration is independent of 2 and of » we can change the order of the
operations and write, using (6)

+ 0o

(Sc(t, n), f(2)> =ali_rr)n0a‘”—1 Zn'(—— 1)= (::) /f(t) (w(t—ma) —u(t— (m+1)a)]dt.
m=0 Yoo
The integral can be written
+00 m+1)a
Jlome—ma)—u@—m+ayat— [ fdt=afion+0,)a

=aflm+0+8,)a]l=alf((m+0)a]l+ap,Df((m+0+n,80,) al],
where 0 < 6, < 1, 6 is a fixed number such that

0=6 <min(0,, 0,...,0,), 0,=0+8,, thus0<g,<1, 0=9,=1.
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It follows that

n

<Sclt,n), 10> = Jim a= D=1 () {/ (0n + 0)al + @ B, Df [ + 0+ my B,) )}

where the second term in the sum tends to zero with a so that

n

Sc(t, n), {(t)> =lim a= 3 (= 1) (7) { [(m + 6) a],

m=0

which according to (5) gives
Sc(t, n), f(#)> = (=1) D"f(0) . 9)

(9) shows that Sc(¢, ») is identical to the #-th derivative of the Dirac Delta, i.e.
Sc (¢, m) = ™ (¢), as it is usually considered (cf. [4]). In particular for » = 0,

<Sc(t, 0), £()> = H(0) = <B(2), f(2)>, (10)
i.e. Sc(¢, 0) = d(¢), the Dirac Delta.

4. Laplace Transforms

We clearly have
+ 00

CSc(t, n)] = / e~ Sc(t, n) dt , (11)

where the integration starts on the positive side of zero. Thus

+ 00
n41 n+1

L [Sc(t, n)] =/e—“ [}i_r)no a—"—120 (—=1)m ( m ) u(t—m a)} dat .
o+ "=
Since the integration is independent of 4 and m we may change the order of opera-
tions, i.e.
n+1 *+ 0

£ Se(t, m)]) = Jim a1 37 (1) (~ 1) fe—stu (t — m a) dt
m=0

a—>0
0+

= ali_£n0 a“"’l’:zz ("; 1) (—=1)™ [u (¢t — m a)]

4 —_n— K n+1 m p— mas
= lim a lmzs;(m)(-«l) ¢~ masfy

= lim (1 — e os)**1[s g+l = 5",
a—0

It follows that
L[Sc(,n)]=s",
or,
Sc(t, n) = 0"() = L1 s".
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Thus the Sc (¢, #) function, i.e. the #-th derivative of the Dirac Delta is the inverse
Laplace Transform of s*. This result is considered classical and can be found for
example in [4]. S.TAUBER, Portland State University USA
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Aufgaben

Aufgabe 577. K. Rapziszewsk! (Ann. Univ. Marie Curie-Sklodowska A4 10, 57-59,
1956) hat bewiesen: Es sei P der Flacheninhalt des Rechtecks, das einem gegebenen Oval
umschrieben ist und das eine Seite in der Richtung 6 hat. Der Flicheninhalt des Ovals
sei S. Dann ist

2n
15<F=J¢/Pd6
n 2

0

mit Gleichheit nur fiir den Kreis. Man beweise: Es sei S* der Flicheninhalt der Fusspunkt-
kurve des Ovals fiir einen beliebigen inneren Punkt. Dann ist

P<is*
T

mit Gleichheit nur, wenn das Oval durch eine Rotation von 90° in sich iibergefiihrt werden
kann. S* hat ein einziges Minimum, wenn der Aufpunkt im Inneren variiert. Fiir glatte
Ovale wird das Minimum im Kriimmungsschwerpunkt angenommen.

H. GUGGENHEIMER, Polytechnic Institute of Brooklyn, USA

Lésung des Aufgabenstellers: Das Oval habe die Stiitzfunktion #4(6), gegeben als
Funktion des Tangentenwinkels. Dann ist

2n
2

Fzgfh(e)h(6+ 2 as.
0

Wenn der Nullpunkt des Koordinatensystems ein innerer Punkt des Ovals ist, so ist die
Fusspunktkurve die Kurve deren Polargleichung 7(¢) = k(0) ist, 6 = ¢ + n/2. Daher ist

2n
S* — %fhs(a) ao.
0

Die gefragte Ungleichung folgt sofort aus der Schwarzschen Ungleichung fiir das Integral P.
Gleichheit besteht, wenn 4(0) = 4 (8 + =/2) fiir alle 0.
Eine Translation des Aufpunktes resultiert in einer Anderung der Stiitzfunktion

h(6) > h(0) + acos@ + bsinb .
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