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Inhaltsmasszahlen fiir hyperbolische Rotationskérper
1. Einleitung

Wird eine ebene Kurve £ um eine Gerade z, die Rotationsachse, gedreht (drehen ist
dabei als fortgesetztes Spiegeln an den Ebenen des durch z bestimmten Ebenenbii-
schels zu definieren), so beschreibt % eine Rotationsfliche. Diese Fliche bestimmt fiir
sich allein oder zusammen mit anderen Rotationsflichen (etwa Ebenen, die auf der
Drehachse senkrecht stehen) Rotationskérper. In der vorliegenden Arbeit werden
speziellen Korpern dieser Art im Bereich der hyperbolischen Geometrie Inhaltsmass-
zahlen zugeordnet?).

Alle Untersuchungen werden im (speziellen) Poincaré-Modell durchgefiihrt. Wir
beschrinken uns dabei auf Drehkoérper, bei denen die Ausgangskurve & im Modell
einen euklidischen Kreis oder eine euklidische Gerade darstellt.

2. Hyperbolische Masszahlen im Poincaré-Modell

Im Poincaré-Modell gilt fiir die hyperbolische Linge s einer Strecke P, P, (Figur 1,
links) bekanntlich:

Ez%ln[

1+ cosay | 14 cos%] — Bl tan («,/2)
1 — cosa; = 1 — cosay, tan («,/2) °

(1a)

Falls die hyperbolische Gerade gleichzeitig euklidische Gerade ist (Figur 1, rechts),
wird daraus:

5 = it 3

5= kln (22) (1b)
%k ist dabei ein positiver Faktor, dessen Wert von der Wahl der Léingeneinheit ab-
hingt. Die hyperbolischen Langen von Strecken werden, zur Unterscheidung euklidi-
scher Lingen, im Folgenden immer mit einem Querstrich versehen.

Aus der Lingendefinition heraus ergibt sich ein Ausdruck fiir das hyperbolische

Volumelement. im Poincaré-Modell:

dx dy dz
dek"-——-;;-—

(2)

1) Einzelne der sich ergebenden Formeln finden sich bei H.L1EBMANN, Nichteuklidische Geometrie,
Leipzig 1904.
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%, ¥, z sind dabei euklidische Koordinaten eines Modellpunktes (z > 0). Die hyper-
bolische Inhaltsmasszahl ist damit ganz allgemein als Funktion euklidischer Grossen
dargestellt.

f
p 2
P i 2
4
L2X\e
Figur 1

Die Lingenmasszahl im Poincaré-Modell

3. Auswertung von Integralen

Das schraffierte Flichenstiick der Figuren 2 und 3 rotiert um die Achse z. Wir
ordnen dem dabei entstehenden, sich ins Unendliche erstreckenden Rotationskérper
nach (2) eine Masszahl V zu:

_kaff dxdyﬁzm/' dx dy
i 22 ’

I. Die Ausgangskurve % ist ein euklidischer Kreis (Figur 2). Kreisgleichung:
(x—pu R+ (z— v R)2= R? dabeigilt: 0 <y << oo,»> —1.

h
Z\ BIANG
<l X
&
5 M
2
Bi X
t
J
Figur 2

k ist ein euklidischer Kreis

Wir ftihren jetzt an Stelle von #, y als neue Integrationsverinderliche den Dreh-
winkel ¢ der Rotation und den Erhebungswinkel <t S M P = « ein. Dann gilt fiir die
Koordinaten eines Punktes auf der durch Rotation des Kreises & entstehenden Fléiche:

%= Rcosp(u—cosa), z=R(y+sina). y= Rsingv(,u-—cbsm) -
Die zur Transformation benétigte Funktionaldeterminante hat den Wert

R?sina (4 — cosa) .
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Damit erhalten wir fiir unsere Masszahl:

Zn oy

e 29 Olg
3 . B . .
V= k2 // sine (4 — cosa) dp da :k3n‘u/‘_sma do —k"n/ sina cosadan
0 ay ‘

(» + sina)? (v + sina)? (v + sina)?
oy [+ £

Bei der spiteren Verwendung dieses Integrals ist darauf zu achten, dass der Inte-
grand auch negativ werden kann.

Wir werten dieses Integral mit den iiblichen Methoden aus und unterscheiden
dabei vier Fille.

A. y>1 (3)

22 2u 4 v+ A2 (2 4+ v
Py [— “f(a‘)?:vf)"{A arctan4 (z 4+ »1) + ¥ AT 1)'“1)2}
. y [+ 23
—In|v + sina | — v+sff§]a,'
B. v+0, [r|[<1 (4)
Y B, |Blz+rh—1 Bz(z+v—1)—v}
nksh[v(l——vé_)&{’é‘ n B4+ v+ 1 B2(z4+v1)2 -1
. v %y
—In|» + sina | — T%—“—sih?]a,'
C. =20 )
— = (pIn[z | — In|sina []3:.
v=1 ©
Vo 2(14+32) 1 .
nk [M 3(1+42)3% lnl 1+ sina l 1+ sincx]al'
Dabei gilt:
¢4 v v
- * - ' B=_r
2 tan(z), A sz_l s Vi
z‘ ,////
b U
7 K
R h
/ I
1] B a;
~— ——_ ’
m P X
7
Figur 3

k ist eine euklidische Gerade

I1. Die Ausgangskurve % ist eine Gerade (Figur 3). Geradengleichung:
z = (x + m) tand, d # n/2.
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Wir fithren jetzt an Stelle von «, y als neue Integrationsverdnderliche den Dreh-
winkel ¢ der Rotation und die Strecke O Q = A ein. Dann gilt fiir die Koordinaten
eines Punktes auf der durch Rotation der Geraden entstandenen Fliche:

x=Acosp, y=Asinp, z=(A+ m)tand.

Die zur Transformation benétigte Funktionaldeterminante hat den Wert A. Damit
erhalten wir fiir unsere Masszahl:

2n Ay
e Adpdh . 2/ A da
V_T//(l+m)2tan26 kP 7 cotg®o (A + m)2 *
0" 4

Integration liefert:

Ay

e = cotg®d [In| 2+ m | + Ll (7)
Damit sind alle in den folgenden Abschnitten benétigten Integrale bereitgestellt.

Fiir die weiteren Untersuchungen ordnen wir, wie aus den Figuren 2 und 3 ersicht-
lich ist, jedem Punkt P; auf dem Kreis bzw. auf der Geraden % bestimmte Werte
& Bir 2; bzw. A, B, 2; zu.

Wir wollen jetzt fiir einige hyperbolische Rotationskérper die Inhaltsmasszahlen
bestimmen. Die Tatsache, dass die einzelnen Korper bei den folgenden Untersuchun-
gen im Modell spezielle Lagen haben, bedeutet dabei keine Einschriankung.

4. Hyperbolische Kegel

Fiir v = 0 liegen die Mittelpunkte der euklidischen Kreise £ auf der Achse des
Modells, sie stellen also hyperbolische Geraden dar. Wir kénnen in Analogie zur eukli-
dischen Geometrie die durch Rotation von 2 um z entstehenden Fliachen als Kegel-
flichen bezeichnen. Je nach der gegenseitigen Lage der hyperbolischen Geraden %z und
z sprechen wir von einer Horo-, einer Hyper- oder einer eigentlichen Kegelfliche.

Figur 4
Der Horokegel

4.1 Der Horokegel. Fiir u = 1 sind k und z randparallel, und wir erhalten Figur 4.
Nach (1a) gilt fiir die Linge g der hyperbolischen Strecke P, T':

- k& 1 4 cosf,
9“71 1 — cosp, °
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Daraus folgt:
tanh (p/k) = cosf,, cosh(g/k) = 1/sinf,, sinh(g/k) = cotgp, . (8)
Wegen 2 8, = n — «, ergibt sich also:

cosh (g/k) = 1/cos (aty/2) .

Der durch Rotation der einfach schraffierten Flidche entstehende Koérper hat also nach
(5) den Inhalt:

V =7 k3 [Intan («/2) — Insine]g®
=gt k3 [Insin (a/2) — Incos(x/2) — In2 — Insin («/2) — Incos («/2)]5
— —2 7 k3 Incos(ay/2) = 2 7 %3 Incosh (/) .

Damit kennen wir den Inhalt zweier kongruenter Horokegel, die durch Spiegelung an
der durch %, erzeugten Ebene ineinander iibergehen. Die Spitze des einen ist der
(euklidisch unendlich ferne) Punkt S, die des anderen der Punkt P, = 0. Hyperbolisch
gesehen liegen beide Spitzen im Unendlichen. g ist der Radius der Kegelgrundfliche.
Fiir einen einzigen solchen Kegel gilt also:

V = 7z k3 Incosh (g/) . 9)

Rotiert in Figur 4 das doppelt schraffierte Flachenstiick um 2, so entsteht ein Horo-
kegelstumpf. Fiir seine Inhaltsmasszahl gilt mit (9):

V = 7 k3 (Incosh (o/k) — Incosh (g, /%)) .
o und (;1 sind dabei die Deckflichenradien P, T und P4 T. Der Figur 4 entnehmen wir:

sinfl, = (25/71) ,  sinfg = (z4/7) -
Mit (8) ergibt sich

V=nklln Sinfy o psin BT — g (ln % n -12—) :
sin f, Yy 2y 2y 7y

Nach (1b) erhalten wir:

V=nki(s—h). (10)

s ist dabei die Mantellinie, %# die Hohe des Horokegelstumpfes.

Figur 5
Der eigentliche Kegel
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4.2 Der eigentliche Kegel. Fiir u << 1 (u # 0) schneiden sich % und z, und wir erhal-
ten Figur 5. Durch Rotation des schraffierten Flachenstiicks ergibt sich ein Korper,
dessen Inhalt mit (5) berechnet werden kann. Der Horokegel iiber T P, hat den Inhalt
(9). Subtraktion beider Masszahlen ergibt den Inhalt eines eigentlichen Kegels.

_ tan (oy/2) sin e -
V=mnkd (,u In tan(o:/Z) — Sino: — Incosh (g/k)) .
Mit (8) und (1a) folgt
- s sino,
V=ak (,u, k In sina, sinﬁz)'

Dabei ist s die Kegelmantellinie P; P,. Der Figur 5 entnehmen wir:
cosy = cosa; =@, Sinfy = z/r;, sinay=2,/R, sina; =z/R.

Damit ergibt sich:

|

Vznk‘*( cosy—ln%).

1

Mit (1b) erhalten wir

V =g k2 (s cosy — h) . (11)

# ist die Kegelhshe P, T.

Ganz genauso lautet die Formel fiir den Stumpf eines eigentlichen Kegels. s ist
dann die Mantellinie und % die Héhe des Kegelstumpfs. Fiir y - 0 wandert die Kegel-
spitze P; ins hyperbolisch Unendliche. Aus dem eigentlichen Kegelstumpf wird ein
Horokegelstumpf. Formel (11) geht in (10) iiber.

Zz

Figur 6
Der Hyperkegel

4.3 Der Hyperkegel. Fiir u > 1 sind % und z tiberparallel und wir erhalten Figur 6.
An die Stelle der Kegelspitze tritt jetzt eine Ebene, welche durch Rotation des gemein-
samen Lotes # der Geraden k und % um z entsteht (& ist dabei das Spiegelbild von &
an z). Diese Ebene soll jeden Hyperkegel begrenzen.

Durch Rotation der schraffierten Flache in Figur 6 entsteht ein Hohlkorper, dessen
Volummasszahl nach (5) berechnet werden kann. Zu dieser Masszahl addieren wir
zunichst den Inhalt des Horokegels tiber T P; (Grundflachenradius p) und subtra-
hieren schliesslich den Inhalt des Horokegels iiber T, P, (Grundflichenradius g,)
unter Verwendung von (9). So erhalten wir den Inhalt eines Hyperkegels:

V=ak(pn tan(ea/2) 1, 3% 4 1ncosh(g/k) — Incosh @/h).

tan(a,/2) ~ sing,
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Mit (1a) und (8) wird
V — o 3 (,ui In sinaasingl_).

R sina, sinf,
Dabei ist s die Kegelmantellinie P, P,.
Der Figur 6 entnehmen wir:

\ 2y . 5 . 21 . 2,
sina, = —, sinf, = o sinay = —, sinf3, = o
1

n 1

coS&,; = m = sinf, = ‘cosh (g/k)

Damit ergibt sich:
e
cosh 5 In )

Yn

Vznk3(
Mit (1b) wird

V = 7 k% (s cosh (g/k) — ) . (12)

h ist die Kegelhohe T 7.

Ganz genauso lautet die Formel fiir den Stumpf eines Hyperkegels. s ist dann die
Mantellinie und % die Hohe des Kegelstumpfs.

Fiir p > 0 rutschen die Geraden %, & immer enger zusammen. Aus dem Hyper-
kegelstumpf wird ein Horokegelstumpf. Formel (12) geht in (10) iiber.

5. Hyperbolische Segmente und Zonen

Fiir u = 0, » > 1 stellt % einen hyperbolischen Kreis dar, der bei Rotation um z in
sich iibergeht. Es entsteht also eine hyperbolische Kugel. Wir bestimmen jetzt die
Volummasszahl fiir das Kugelsegment, fiir die Vollkugel und schliesslich fiir die
Kugelzone.

Figur 7
Das Kugelsegment

5.1 Das Kugelsegment. Durch Rotation des schraffierten Flachenstiicks in Figur 7
ergibt sich ein Korper, dessen Volummasszahl nach (3) bestimmt werden kann. Wir
wihlen zunichst /2 << «; < &. Der Horokegel iiber P; T; hat den Inhalt (9). Subtrak-
tion liefert das Volumen eines Kugelsegments:

LA e _ [ inet) — -—— ] %
—% — Incosh =/ [ In(v + sina) — - sy N

14 v

=lncosh—9ki + In(v + sina;)) — In(» + 1) + y¥sma " yET
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Aus Figur 7 entnehmen wir:
cosh (g;/k) = 1/sinB; = 4,/(» + sina,),
(Rcosa)2+ (» R+ Rsina,)2= A7 R? also  sina; = (A2 — 42— 1)/2».
Fiir die hyperbolische Lange der Strecke 7, T gilt mit (1b):

- 1j~1 . E_(v+1)3—li2
h;=FkIn Y also sth BREEACES
Mit diesen drei Aussagen formen wir unser Ergebnis um und erhalten:
vV —1n v+ 1) (» + sino;) L 1-— sinoy
n k3 A; (v + sina,) (v + 1) (v + sina,)
____?[i_ Ay (v+ 1)2 =22 hi QT : hi
=~ % T e¥sma) ZAGFT & Tcoshsinho

Bezeichnen wir die Segmenthéhe mit % und den Radius des Segmentgrundkreises mit
o, so gilt also:

V =nk? (— ;EA + cosh % . sinh -Z) (13)

Wie sich leicht zeigen ldsst, bleibt diese Formel auch noch richtig fiir 3 z/2 > «; > x.
5.2 Die Kugel. Lauft a von n/2 bis 3 n/2, so vereinfacht sich die Rechnung ganz

wesentlich, und wir erhalten den Inhalt einer Kugel. ¢ verschwindet, und aus # wird
der Kugeldurchmesser 2 R.

V =m k3 (— (2 RJE) + sinh (2 RJE)) . (14)

5.3 Die Kugelzone. Werden aus der Kugel zwei Segmente mit den Hohen }71-,
l_z; (iz; > iz;) und den Grundkreisradien p,, g, ausgeschnitten, so entsteht eine Kugel-
zone. Unter Verwendung der Ergebnisse iiber das Kugelsegment ergibt sich als In-
haltsmasszahl:

___K_._( by v v )__(_.!z;dr i)
nkd Uk v 4+ sina, y+ 1 k v + sine, v+ 1

_h sina; — sinog
- = = “__k——*_v (v + sina,) (v + sinay) ’
h = hy — h, ist dabei die Zonenhohe.
Es gilt:
7 Ay .o h 1 B—H
h=~FkIn 7 also  sinh I W)

Verwenden wir zur Umformung die aus Figur 7 bereits entnommenen Ausdriicke, so
erhalten wir zundchst
sin, — sina, = (A} — 42)/2 v
und weiter
14 =_:h_+ (A2 — 28) 41 4
n k3 k 2 (v + sinay) (v + sinay) 4, 4, °
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Damit ergibt sich fiir den Inhalt der Kugelzone:

V=n k3(— % + sinh % cosh % cosh %“;) X (15)
A \ A
as as
-
h P
0 7
0
g ra— ———— o e —
fy fy i h
h
v=] 0<y<] -l <y<l
Figur 8

Horosphiren- und Hypersphirensegmente

5.4 Segmente und Zonen bes Horo- und Hypersphire. Fir y = 0 und » = 1 bzw.
| v| <1, v # 0 ergibt sich bei Rotation von 2 um z eine Horo- bzw. Hypersphire.
Figur 8 erldutert die Entstehung von Segmenten in diesen zwei Féllen. Die Herleitun-
gen in 5.1 und 5.3 lassen sich wortlich iibernehmen. Fiir die Inhaltsmasszahlen der
Segmente und Zonen von Horo- und Hypersphire gelten also wieder die Formeln (13)
und (15). Ein Analogon zu Formel (14) existiert nicht. Die Masszahl des Horosphéren-
segments wichst ndamlich fiir », > 0 (Figur 8) unbeschrinkt, ebenso die des Hyper-
sphirensegments fiir », - 7, (Figur 8).

6. Hyperbolischer Torus

Fir 4 = 1, v > 1 stellt k& einen hyperbolischen Kreis dar, der bei Drehung um z
einen Torus (Figur 9) erzeugt. Durch Rotation der schraffierten Fliache in Figur 9

Z)
>3
M
N
AR
I4
Figur 9
Der Torus

(e 1duft von 0 bis ) entsteht ein Korper, dessen Volumen V', nach (3) bestimmt werden
kann. Nimmt man zu der schraffierten Flache noch die Kreisfliche dazu, so ergibt
sich bei Drehung ein zweiter Kérper. Mit (3) lasst sich auch sein Volumen V, ermitteln
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(a lduft jetzt von 2 & bis ). Subtraktion liefert das Torusvolumen V.

vV V-V, 2u A -
T ua-v(vz“—_l){Aarctan7+A?+v}
2 p ] A . 2 pu
+—v—m A“Z"—Aarctan—;‘—'l’}——

W —1))rr—1
Fiir den hyperbolischen Durchmesser 2 R des hyperbolischen Kreises % gilt nach (1b):

2R = k1”+1

1 »
daraus folgt
2R 2
COShT— 1=F*1* .
Weiter erhalten wir mit (1b):
R=tln 2 —pm?tL,
v — k

und daraus folgt A2 =2 — 1.
Fiir den hyperbolischen Abstand a des hyperbolischen Kreismittelpunktes N von z
ergibt sich nach (8):

sinh (a/k) = cotgy = p/A = ,u/’/v2 —1.

Durch Einsetzen bekommen wir schliesslich als Inhaltsmasszahl eines Torus:

V = m? k3 sinh % (cosh e 1) (16)

R ist dabei der Kreisradius und a der Abstand des Kreismittelpunktes von der Dreh-
achse.

7. Kegelartige Rotationskoérper

Die Gerade % in Figur 3 kann als ein Hyperzyklus gedeutet werden, der mit z einen
hyperbolisch unendlich fernen Punkt gemeinsam hat. Wir wenden uns zunichst dem
Spezialfall zu, dass sich £ und z auch noch in einem endlichen Punkt P, (Figur 10)
schneiden.

'Y
\C/

t K
J np
F 0

(Y
] h
m 2
Figur 10

Kegelartiger Drehkorper

Durch Rotation der schraffierten Fliche in Figur 10 entsteht éin Kérper, dessen
Volumen nach (7) berechnet werden kann. Der Horokegel iiber P, T hat den Inhalt
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(9). Subtraktion beider liefert die Volummasszahl eines kegelartigen Korpers. Sie soll
jetzt genauer untersucht werden.

14 m | e
s = cotg?d [ln\ A+ m |+ 7?7—{—7]0 — Incosh —-.

Daraus ergibt sich nach (8):

Vv 9 Ay + m . Ay 9
5% — cotg dln -+ Insin g, — N cotg?d .
Mit den Bezeichnungen der Figur ergibt sich weiter:
Vv _ 2 %2 %3 % (m + 25) Ay
W——cotgélnz—l-i-lnRzl—22(m+12) cotgd 1 )
2y 21 Ao
= lnz—1 gt ln-ﬁ ~ cotgd .
Mit (1b) und (8) folgt weiter:
v ot 1 h ¢ sa h . ,a .0
— T simis T h cotgd cotgf, = " cosh ) iy sinh b sinh '

Fiir die Linge des Hyperzyklenbogens P, P, gilt bekanntlich s = t cosh (a/k), damit
erhalten wir fiir das Volumen unseres kegelartigen Rotationskorpers:

s
k

a I3 ) a .. 0
cosh ) Bl sinh 5 sinh ‘k“)'

V=nk3( 7

Daraus ergibt sich sofort eine Formel fiir den zu diesem Korper gehdrenden Stumpf:

V =nk? (i cosh & — " _sinh : (sinh e sinh %L)) .

k k k k

Dabei sind s die Mantellinie, % die Hohe, g; und g, die Grundflichenradien des Stumpfs.
Genau die gleiche Formel erhalten wir fiir den Fall, dass Hyperzyklus und Dreh-
achse nur einen einzigen, nimlich den unendlich fernen Punkt gemeinsam haben.
Fiir 6 = m/2 wird a = 0 und es ergibt sich die Formel (10) fiir den Horokegelstumpf.
Haben Hyperzyklus und Drehachse zwei unendlich ferne Punkte gemeinsam, so
bedeutet das m = 0 und weiter a = g; = g, = p. Die Stumpfformel vereinfacht sich
zu:

V = 7 k2 (s cosh (o/k) — h) .

8. Spezielle hyperbolische Rotationskorper

Um auch noch fiir die Integrale (4) und (6) Anwendungsbeispiele zu haben, be-
rechnen wir das Volumen zweier ganz spezieller Rotationskdrper.

8.1 Spezialkirper, erzeugt durch Rotation eines Horozyklus. Ein Horozyklus beriihrt
zwei randparallele hyperbolische Geraden in den Punkten P, P, (Figur 11). Durch
Rotation der einfach schraffierten Fliche um eine dieser Geraden entsteht ein sich ins
Unendliche erstreckender Korper. Zur Bestimmung seiner Inhaltsmasszahl verwen-
den wir (6). Dabei gilt 4 = » = 1. Der Winkel « lduft von 0 bis 7. Wir erhalten V =
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(2/3) 7t k3. Ldsst man die durch P, P, bestimmte hyperbolische Gerade mitrotieren,
so liefert das doppelt schraffierte Fliachenstiick einen weiteren Korper. Zur Bestim-
mung seiner Inhaltsmasszahl verwenden wir (5). Dabei gilt » = 0, u = 1//2. Der
Winkel « 1duft von 7z/4 bis 3 #/4. Zusammen mit dem vorigen Ergebnis erhalten wir:

v=ak(f2In)2+1) - 23)

50

Figur 11
Spezialkorper mit Horozyklus

8.2 Spezialkorper, erzeugt durch Rotation eines Hyperzyklus. Ein Hyperzyklus be-
rithrt zwei randparallele hyperbolische Geraden in den Punkten P, P, (Figur 12). Die
durch P, P, bestimmte hyperbolische Gerade soll den Hyperzyklus unter einem Win-
kel von 30° schneiden. Durch Rotation des einfach schraffierten Fldchenstiicks um

Figur 12
Spezialkorper mit Hyperzyklus

eine der beiden Geraden entsteht ein sich ins Unendliche erstreckender Korper. Zur
Bestimmung seiner Inhaltsmasszahl verwenden wir (4). Dabei gilt u = 1, » = 1/|/3.
Der Winkel « lduft von 0 bis 7. Wir erhalten:

V=nk(3/2))6n(3+)2)-3).

Lidsst man die hyperbolische Gerade durch P; P, mitrotieren, so liefert das doppelt
schraffierte Flichenstiick einen weiteren Korper. Zur Bestimmung seiner Inhalts-
masszahl verwenden wir (5). Dabei gilt » = 0, u = }/3/2. Der Winkel « lduft von /6
bis 5 7/6. Zusammen mit dem vorigen Ergebnis erhalten wir:

V=ab(3m@+}3) - @2 )6m(3+)2+3).
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9. Schlussbetrachtung

Ziel der Arbeit ist es, an Beispielen eine Methode vorzufiihren, die es gestattet, die
Inhaltsmasszahlen gewisser hyperbolischer Rotationskdrper zu ermitteln. Die Aus-
wahl der Beispiele erfolgte nach zwei Gesichtspunkten. Einmal sollten alle in Teil 3
ausgewerteten Integrale bei der Bestimmung von Masszahlen tatsdchlich vorkommen.
Zum andern aber wollten wir vor allem solche Drehkérper behandeln, die in der eukli-
dischen Geometrie ein Gegenstiick haben. Es ist besonders interessant, in diesen Fil-
len den Ubergang von der hyperbolischen zur euklidischen Formel durchzufiihren.
Wir zeigen das am Beispiel des Torus. In Formel (16) werden die vorkommenden
hyperbolischen Funktionen in Reihen entwickelt:

g (T L (AP, (2R
V=mt b (o gr () + ) (2 (5 )+ )
Wichst jetzt k2 unbegrenzt, so ergibt sich das Torusvolumen der euklidischen Geo-

metrie V =n%a -2 R2 H.ZEeI1TLER, Weiden

On S¢ Functions
Introduction

In this paper we prove that the Dirac Delta and all its derivatives can be repre-
sented by sequences of constructed discontinuous functions. Although this result is
stated in [1] it is not formally proved.

We then prove that by using this definition of the #z-th derivative of the Dirac
Delta its Laplace Transform is s*. This result again can be considered as “ classical ”’
(see for example [3]) but is not proved either.

We feel that although the results are known the approach is new and our proof is
rigorous which justifies the contents of this paper.

Definition of the n-th Derivative of a Function

Let V = [vy, v, ..., v,] be an n-dimensional vector. We say that the vector tends
basewrse to zero if the components v, tend to zero successively. We write symbolically

V—*>0. (1)

Geometrically speaking this mgans that the end point of V¥ describes a polygonal
line whose sides are parallel to the axes of the basis.

We shall use the notation I7 V = n v, for the product of the components of the
vector. m=1

Let f(t) € Cn[b, c] be the class of functions that are defined and continuous as well
as their derivatives up to and including theordern forb < ¢ <c.Leta,2=1,2, ..,
n, be such that (¢ + «, ,) € [b, c], where a, , represents the sum of any % of the »
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