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Inhaltsmasszahlen für hyperbolische Rotationskörper
1. Einleitung

Wird eine ebene Kurve k um eine Gerade z, die Rotationsachse, gedreht (drehen ist
dabei als fortgesetztes Spiegeln an den Ebenen des durch z bestimmten Ebenenbüschels

zu definieren), so beschreibt k eine Rotationsfläche. Diese Fläche bestimmt für
sich allein oder zusammen mit anderen Rotationsflächen (etwa Ebenen, die auf der
Drehachse senkrecht stehen) Rotationskörper. In der vorliegenden Arbeit werden
speziellen Körpern dieser Art im Bereich der hyperbolischen Geometrie Inhaltsmasszahlen

zugeordnet1).
Alle Untersuchungen werden im (speziellen) Poincar6-Modell durchgeführt. Wir

beschränken uns dabei auf Drehkörper, bei denen die Ausgangskurve k im Modell
einen euklidischen Kreis oder eine euklidische Gerade darstellt.

2. Hyperbolische Masszahlen im Poincare-Modell

Im Poincare-Modell gilt für die hyperbolische Länge s einer Strecke Px P2 (Figur 1,

links) bekanntlich:

5 ___
A In [ 1 + CQS0Ci 1 + cosa2-j k -n tan(q2/2)
2 [ 1 — cosa!

' 1 — cosa2J tan (04/2)
" * '

Falls die hyperbolische Gerade gleichzeitig euklidische Gerade ist (Figur 1, rechts),
wird daraus:

s kln (t) (lb)

k ist dabei ein positiver Faktor, dessen Wert von der Wahl der Längeneinheit
abhängt. Die hyperbolischen Längen von Strecken werden, zur Unterscheidung euklidischer

Längen, im Folgenden immer mit einem Querstrich versehen.

Aus der Längendefinition heraus ergibt sich ein Ausdruck für das hyperbolische
Volumelement im Poincare-Modell:

rfF *3.^__J__£. (2)

*) Einzelne der sich ergebenden Formeln finden sich bei H. Liebmann, Ntchteukhdtsche Geometrie,

Leipzig 1904.
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x, y, z sind dabei euklidische Koordinaten eines Modellpunktes (z > 0). Die
hyperbolische Inhaltsmasszahl ist damit ganz allgemein als Funktion euklidischer Grössen

dargestellt.

a| i >

//>' fv I ¦.
/ k/\ k'

Pw> \ J

Figur 1

Die Langenmasszahl im Poincare-Modell

3. Auswertung von Integralen

Das schraffierte Flächenstück der Figuren 2 und 3 rotiert um die Achse z. Wir
ordnen dem dabei entstehenden, sich ins Unendliche erstreckenden Rotationskörper
nach (2) eine Masszahl V zu:

t/ __ bz f ff ^x &y ^z
_

kB ff dx c
V ~kJ JJ ~T» ~z~JJ ~1?

¦ dy

I. Die Ausgangskurve k ist ein euklidischer Kreis (Figur 2). Kreisgleichung:
(x - fx R)2 + (z - v R)2 - R2, dabei gilt: 0 < /* < oo, v > -1.

//r
Y,Y,

lk
C3

Figur 2

h ist ein euklidischer Kreis

Wir führen jetzt an Stelle von x, y als neue Integrationsveränderliche den
Drehwinkel <p der Rotation und den Erhebungswinkel <£ S M P a ein. Dann gilt für die
Koordinaten eines Punktes auf der durch Rotation des Kreises k entstehenden Fläche:

x R cos<p (ja, — cosa) z R (v + sina) y R sin<p (ja — cosa)

Die zur Transformation benötigte Funktionaldeterminante hat den Wert

Äa sinol(ju — cosa).
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Damit erhalten wir für unsere Masszahl:

V
kz ff sina (u — cosa) d<p den

~T J J (v + sma)2
0 aj

3 f sin a dol
3 f sin a cos a rfa

k n^J ~|(v+sma)2
~" * *7 (Hsmof

Bei der späteren Verwendung dieses Integrals ist darauf zu achten, dass der Inte-
grand auch negativ werden kann.

Wir werten dieses Integral mit den üblichen Methoden aus und unterscheiden
dabei vier Fälle.

A. v > 1 (3)

-iL-
___

r_ —l£—i 4 arctan_4 (* + ir-*. 4- ^+^2(^+^) j
ÄÄ» L v(v2-l)\A^Cl^nA[Z + V >^ lJrA2(z+v-i)2)

B.

— In v + sina -
1 ' v 4- sina Jai

v 4= 0 | v | < 1 (4)

V [ 2 ji [ B
ttä3 Lv(l - v2) 1 2

B (* + v-1) - 1

B (z + v-1) + 1 +
B2 (z + v-1) - y

B^+v-1)2-!
— ln I v -f sina I —

C.

V

v 0

D.

V
71 k*

Dabei gilt:

v= 1

—^ [> ln I z I — ln I sina I]"1
n kd u" i i i moc,

r 2 (1 + 3 z) tm,. i
1 la»

— a *
x~— ln 1 + sma —r-——L ^ 3 (1 + z)z ' ' 1 + smajax

V "|«J

v+ sina Ja, "

(5)

(6)

2 tan
|/V - 1

' B j/r^
Ĉ3

r ä

Figur 3

k ist eine euklidische Gerade

II. Die Ausgangskurve k ist eine Gerade (Figur 3). Geradengleichung:

z (x -f w) tan<5, (5 ^ tz/2.
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Wir führen jetzt an Stelle von x, y als neue Integrationsveränderliche den
Drehwinkel <p der Rotation und die Strecke 0 Q X ein. Dann gilt für die Koordinaten
eines Punktes auf der durch Rotation der Geraden entstandenen Fläche:

x X cos<p y X sin<p z — (X + m) tand.

Die zur Transformation benötigte Funktionaldeterminante hat den Wert X. Damit
erhalten wir für unsere Masszahl:

2n A2

Integration liefert:

X d<p dX

K
(A4 m)2 tan2 ö

A2

kS7ZCOtg2Ö /
-j;

XdX
(X 4 m)2

-tt cotg2<5 fln I A 4- m I 4- ^~t"—
2

•%kz ö L ' ' X 4 mjx,
(7)

Damit sind alle in den folgenden Abschnitten benötigten Integrale bereitgestellt.
Für die weiteren Untersuchungen ordnen wir, wie aus den Figuren 2 und 3 ersichtlich

ist, jedem Punkt Pt auf dem Kreis bzw. auf der Geraden k bestimmte Werte
a., ßt, zx bzw. A., ßt, zt zu.

Wir wollen jetzt für einige hyperbolische Rotationskörper die Inhaltsmasszahlen
bestimmen. Die Tatsache, dass die einzelnen Körper bei den folgenden Untersuchungen

im Modell spezielle Lagen haben, bedeutet dabei keine Einschränkung.

4. Hyperbolische Kegel

Für v 0 liegen die Mittelpunkte der euklidischen Kreise k auf der Achse des

Modells, sie stellen also hyperbolische Geraden dar. Wir können in Analogie zur
euklidischen Geometrie die durch Rotation von k um z entstehenden Flächen als
Kegelflächen bezeichnen. Je nach der gegenseitigen Lage der hyperbolischen Geraden k und
z sprechen wir von einer Horo-, einer Hyper- oder einer eigentlichen Kegelfläche.

'fcc|%
1%

%

M

Figur 4

Der Horokegel

4.1 Der Horokegel. Für /a 1 sind k und z randparallel, und wir erhalten Figur 4.

Nach (la) gilt für die Länge q der hyperbolischen Strecke P2 T:
k 1 4- cosßg

~2 1 -cos/V£
" in
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Daraus folgt:

tanh(g/ß) cos/92> cosh(gjk) l/sin/?2 sinh(o/&) cotg/?2 (8)

Wegen 2 ß2 n — a2 ergibt sich also:

cosh(o/ß) l/cos(a2/2)

Der durch Rotation der einfach schraffierten Fläche entstehende Körper hat also nach
(5) den Inhalt:

V n k* [ln tan (a/2) - lnsina]*2

tt k* [ln sin (a/2) - ln cos (a/2) - ln2 - ln sin (a/2) - lncos(a/2)]Jf

—2nkz lncos (a2/2) 2 n k3 lncosh (g/k)

Damit kennen wir den Inhalt zweier kongruenter Horokegel, die durch Spiegelung an
der durch kx erzeugten Ebene ineinander übergehen. Die Spitze des einen ist der
(euklidisch unendlich ferne) Punkt S, die des anderen der Punkt Px 0. Hyperbolisch
gesehen liegen beide Spitzen im Unendlichen, q ist der Radius der Kegelgrundfläche.
Für einen einzigen solchen Kegel gilt also:

V — n ks ln cosh (gik) (9)

Rotiert in Figur 4 das doppelt schraffierte Flächenstück um z, so entsteht ein Horo-
kegelstumpf. Für seine Inhaltsmasszahl gilt mit (9):

V n k* (lncosh (g/k) - lncosh(gx/k))

g und gx sind dabei die Deckflächenradien P2 T und P3 T. Der Figur 4 entnehmen wir:

sinßa - (z2jrx) sin/?3 (zjr2)
Mit (8) ergibt sich

V nkHn 4I1|3- n #4n i^1- ^Ä8 (in ^ -ln^).sinft r% z2 \ z2 rx)
Nach (lb) erhalten wir:

(10)V n k2 (s - h)

s ist dabei die Mantellinie, h die Höhe des Horokegelstumpfes.

0

Figur 5

Der eigentliche Kegel
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4.2 Der eigentliche Kegel. Für /u < 1 (ja # 0) schneiden sich k und z, und wir erhalten

Figur 5. Durch Rotation des schraffierten Flächenstücks ergibt sich ein Körper,
dessen Inhalt mit (5) berechnet werden kann. Der Horokegel über T P2 hat den Inhalt
(9). Subtraktion beider Masszahlen ergibt den Inhalt eines eigentlichen Kegels.

tan(a2/2) ^ sina2

Mit (8) und (la) folgt

Ifx ln tan (olx/2)
ln smoC2 _ lncosh (alk))

V n kz (ja In

sina!

sina2
;)¦sin olx sinß2,

Dabei ist s die Kegelmantelhnie Px P2. Der Figur 5 entnehmen wir:

cosy cosa! (X smß2 £2/yi » sina2 z2jR sina!

Damit ergibt sich:

Mit (lb) erhalten wir

zJR.

V n kz (-T- cosy — ln -1-j,

F n k2 (s cosy — h) (ii)
h ist die Kegelhöhe Px T.

Ganz genauso lautet die Formel für den Stumpf eines eigentlichen Kegels, s ist
dann die Mantellinie und h die Höhe des Kegelstumpfs. Für y -> 0 wandert die Kegelspitze

Px ins hyperbolisch Unendliche. Aus dem eigentlichen Kegelstumpf wird ein
Horokegelstumpf. Formel (11) geht in (10) über.

C3

Figur 6

Der Hyperkegel

4.3 Der Hyperkegel. Für ja > 1 sind k und z überparallel und wir erhalten Figur 6.
An die Stelle der Kegelspitze tritt jetzt eine Ebene, welche durch Rotation des gemeinsamen

Lotes n der Geraden k und ~k um z entsteht (k ist dabei das Spiegelbild von k
an z). Diese Ebene soll jeden Hyperkegel begrenzen.

Durch Rotation der schraffierten Fläche in Figur 6 entsteht ein Hohlkörper, dessen
Volummasszahl nach (5) berechnet werden kann. Zu dieser Masszahl addieren wir
zunächst den Inhalt des Horokegels über T Px (Grundflächenradius q) und subtrahieren

schliesslich den Inhalt des Horokegels über Tx P2 (Grundflächenradius gx)

unter Verwendung von (9). So erhalten wir den Inhalt eines Hyperkegels:

F=^Ä3(^lni__{_^-lni!_$+lncosh^) -*«**&/*>)•
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Mit (1 a) und (8) wird

79

¦¦n k* [
Dabei ist s die Kegelmantelhnie Px P2.

Der Figur 6 entnehmen wir:

ln sina2 sin/?
sina! sini :)¦

sma« R sin/?! sina! -— sin/9.

cosai: sin^
Damit ergibt sich:

Mit (lb) wird
¦n k* ¥coshf

cosh (g/k)

-ln^).

V n k2 (s cosh (g/k) — h) (12)

h ist die Kegelhöhe T Tx.

Ganz genauso lautet die Formel für den Stumpf eines Hyperkegels. s ist dann die
Mantellinie und h die Höhe des Kegelstumpfs.

Für g -> 0 rutschen die Geraden k, k immer enger zusammen. Aus dem Hyper-
kegelstumpf wird ein Horokegelstumpf. Formel (12) geht in (10) über.

5. Hyperbolische Segmente und Zonen

Für ja 0, v > 1 stellt k einen hyperbolischen Kreis dar, der bei Rotation um z in
sich übergeht. Es entsteht also eine hyperbolische Kugel. Wir bestimmen jetzt die
Volummasszahl für das Kugelsegment, für die Vollkugel und schliesslich für die

Kugelzone.
W/s

Ki-R

Figur 7

Das Kugelsegment

5.1 Das Kugelsegment. Durch Rotation des schraffierten Flächenstücks in Figur 7

ergibt sich ein Körper, dessen Volummasszahl nach (3) bestimmt werden kann. Wir
wählen zunächst nß < 0Lt _S n. Der Horokegel über P{ T{ hat den Inhalt (9). Subtraktion

liefert das Volumen eines Kugelsegments:

7TÄ8
lncosh ~-k \- ln (v 4- sina) -A-- ]"'*

L
v ; v 4 sm a J {n\

lncosh |-4ln(y + sinaf) - \n(v 4- 1) + 7^7^: Hl
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Aus Figur 7 entnehmen wir:

coshl^Jk) l/sinßt XJ(v 4- sina,),

(R cosat)2 4- (v R 4- R sina,)2 X2 R2 also sina, (X2 - v2 - l)/2 v

Für die hyperbolische Länge der Strecke Tt T gilt mit (1 b):

v 4 1 „,„ _,„,_ h%
__

(v 4 l)2 - X2&ln also sinh -± -.k 2 Xt (v 4- 1)

Mit diesen drei Aussagen formen wir unser Ergebnis um und erhalten:

V
__

(v 4 1) (v 4 sma,) 1 — sma,
lt& ~ ~ n

A, (i>4 sma.) + V (H 1) (H sina,)"
""

A,_*! +ä T (H sma,) 2 A, (H 1)

(y 4 l)2 - V -^- 4- cosh -^* sinh ~-.

Bezeichnen wir die Segmenthöhe mit h und den Radius des Segmentgrundkreises mit
g, so gilt also:

V — n kz i— r- 4- cosh -^ • sinh -r (13)

Wie sich leicht zeigen lässt, bleibt diese Formel auch noch richtig für 3 nß > a, > n.
5.2 Die Kugel. Läuft a von nß bis 3 nß, so vereinfacht sich die Rechnung ganz

wesentlich, und wir erhalten den Inhalt einer Kugel, g verschwindet, und aus h wird
der Kugeldurchmesser 2 R.

V^nk*(-(2 R/k) + sinh(2 Rjk)) (14)

5.3 Die Kugelzone. Werden aus der Kugel zwei Segmente mit den Höhen hx,

h2 (h2 > hx) und den Grundkreisradien gl, g~2 ausgeschnitten, so entsteht eine Kugelzone.

Unter Verwendung der Ergebnisse über das Kugelsegment ergibt sich als
Inhaltsmasszahl :

nk9 \ 4-
v 4 sma2 v 4

__\ _ (_ h. + __\
1 / \ k v 4 smat v+ 1/

+ v sma! — sma2

h h2— hx ist dabei die Zonenhöhe.
Es gilt:

h &ln 41
A2

also
/? _« Aj A2

(v 4 smaj (v + sma2) '

1 Af — AI

Verwenden wir zur Umformung die aus Figur 7 bereits entnommenen Ausdrücke, so
erhalten wir zunächst

sina! — sina2 (Af — A|)/2 v
und weiter

V
nk*

¦ + ¦ (X\-X\)XXX%
2(f+ sinaj) (v + sma2) Xx A2
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Damit ergibt sich für den Inhalt der Kugelzone:

V nk^~~ + sinh cosh cosh

C3C3

U¥^

81

(15)

Vi 0<V<1 -1<V<0
Figur 8

Horosphären- und Hyperspharensegmente

5.4 Segmente und Zonen bei Horo- und Hypersphäre. Für [a, 0 und v 1 bzw.
| v | < 1, v # 0 ergibt sich bei Rotation von k um 2 eine Horo- bzw. Hypersphäre.
Figur 8 erläutert die Entstehung von Segmenten in diesen zwei Fällen. Die Herleitungen

in 5.1 und 5.3 lassen sich wörtlich übernehmen. Für die Inhaltsmasszahlen der
Segmente und Zonen von Horo- und Hypersphäre gelten also wieder die Formeln (13)
und (15). Ein Analogon zu Formel (14) existiert nicht. Die Masszahl des Horosphären-
segments wächst nämlich für rx -> 0 (Figur 8) unbeschränkt, ebenso die des Hyper-
sphärensegments für rx -> r0 (Figur 8).

6. Hyperbolischer Torus

Für fi ^ 1, v > 1 stellt k einen hyperbolischen Kreis dar, der bei Drehung um z

einen Torus (Figur 9) erzeugt. Durch Rotation der schraffierten Fläche in Figur 9

C3

XR

Figur 9

Der Torus

(a läuft von 0 bis n) entsteht ein Körper, dessen Volumen V2 nach (3) bestimmt werden
kann. Nimmt man zu der schraffierten Fläche noch die Kreisfläche dazu, so ergibt
sich bei Drehung ein zweiter Körper. Mit (3) lässt sich auch sein Volumen Vt ermitteln
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(a läuft jetzt von 2n bis n). Subtraktion liefert das Torusvolumen V.

2

v (v271 W 71 k* !y{^4 arctan ^- + _4f + »}

2[x
v (v2 - 1)

A arctan— — v
v

2 n ii
(v2 - 1) J/>- 1

'

Für den hyperbolischen Durchmesser 2 R des hyperbolischen Kreises k gilt nach (Ib):

v+ 1

daraus folgt

2 R * ln¬

cosh —r— — 1

Weiter erhalten wir mit (1 b):

Ä *ln

V2 - 1 '

v+ 1
£ln

v - l " *" k '
und daraus folgt X2 v2 -~ 1.

Für den hyperbolischen Abstand a des hyperbolischen Kreismittelpunktes N von 2

ergibt sich nach (8):

sinh (alk) cotgy /./A ju/yv2 — 1.

Durch Einsetzen bekommen wir schliesslich als Inhaltsmasszahl eines Torus:

V n2 k3 sinh~ (cosh —r-— 1] (16)

R ist dabei der Kreisradius und a der Abstand des Kreismittelpunktes von der
Drehachse.

7. Kegelartige Rotationskörper
Die Gerade k in Figur 3 kann als ein Hyperzyklus gedeutet werden, der mit z einen

hyperbolisch unendlich fernen Punkt gemeinsam hat. Wir wenden uns zunächst dem

Spezialfall zu, dass sich k und z auch noch in einem endlichen Punkt Px (Figur 10)
schneiden.

LM

YA

* A

h
Figur 10

Kegelartiger Drehkörper

Durch Rotation der schraffierten Fläche in Figur 10 entsteht dn Körper, dessen

Volumen nach (7) berechnet werden kann. Der Horokegel über P2 ^ hat den Inhalt
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(9). Subtraktion beider liefert die Volummasszahl eines kegelartigen Körpers. Sie soll

jetzt genauer untersucht werden.

i„2V
n kz

cotg2(5 In I A 4- m I H ^—A *— lncosh-—.ö L ' ' m 4 X Jo k

Daraus ergibt sich nach (8):

V
cotg2d ln ^ lnsin/?2

n kz b m P2 m + X2

Mit den Bezeichnungen der Figur ergibt sich weiter:

cotg2 (5.

nk* cotg2<5 In ^ -f ln {m+^^-cotgöR zx z2 (m 4 A2)

ln-
1 i ^i

—7-ä ö- + ln -—
sm2(5 ic cotg<5

Mit (lb) und (8) folgt weiter:

——- - • ——- —-— cotg<5 cotgß2 r- cosh2 —7— sinh • sinh
n kz k sin2<5 k ö ör4 k k k k k

Für die Länge des Hyperzyklenbogens Px P2 gilt bekanntlich s t cosh (ä/k), damit
erhalten wir für das Volumen unseres kegelartigen Rotationskörpers:

V n k3 l-r- cosh -j- sinh -T- • sinh -^ j.

Daraus ergibt sich sofort eine Formel für den zu diesem Körper gehörenden Stumpf:

V n k3 K- cosh ar- —, — sinh ~ (sinh -^— sinh -^M).

Dabei sind i die Mantellinie, h die Höhe, gx und o2 die Grundflächenradien des Stumpfs.
Genau die gleiche Formel erhalten wir für den Fall, dass Hyperzyklus und Drehachse

nur einen einzigen, nämlich den unendlich fernen Punkt gemeinsam haben.
Für ö nß wird a 0 und es ergibt sich die Formel (10) für den Horokegelstumpf.
Haben Hyperzyklus und Drehachse zwei unendlich ferne Punkte gemeinsam, so

bedeutet das m 0 und weiter a gl gl g. Die Stumpfformel vereinfacht sich

zu:

V=^nk2Cscosh(glk) - h)

8. Spezielle hyperbolische Rotationskörper

Um auch noch für die Integrale (4) und (6) Anwendungsbeispiele zu haben,
berechnen wir das Volumen zweier ganz spezieller Rotationskörper.

8.1 Spezialkörper, erzeugt durch Rotation eines Horozyklus. Ein Horozyklus berührt
zwei randparallele hyperbolische Geraden in den Punkten Px P2 (Figur 11). Durch
Rotation der einfach schraffierten Fläche um eine dieser Geraden entsteht ein sich ins
Unendliche erstreckender Körper. Zur Bestimmung seiner Inhaltsmasszahl verwenden

wir (6). Dabei gilt ja v= 1. Der Winkel a läuft von 0 bis n. Wir erhalten V
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(2/3) n kz. Lässt man die durch Px P2 bestimmte hyperbolische Gerade mitrotieren,
so liefert das doppelt schraffierte Flächenstück einen weiteren Körper. Zur Bestimmung

seiner Inhaltsmasszahl verwenden wir (5). Dabei gilt v 0, ja l/}/2. Der
Winkel a läuft von n/4 bis 3 n/4. Zusammen mit dem vorigen Ergebnis erhalten wir:

V nk* (f/2 ln(|/2 4- 1) - (2/3))

1Va

Figur 11

Spezialkorper mit Horozyklus

8.2 Spezialkorper, erzeugt durch Rotation eines Hyperzyklus. Ein Hyperzyklus
berührt zwei randparallele hyperbolische Geraden in den Punkten Px P2 (Figur 12). Die
durch Px P2 bestimmte hyperbolische Gerade soll den Hyperzyklus unter einem Winkel

von 30° schneiden. Durch Rotation des einfach schraffierten Flächenstücks um

w.

Figur 12

Spezialkorper mit Hyperzyklus

eine der beiden Geraden entsteht ein sich ins Unendliche erstreckender Körper. Zur
Bestimmung seiner Inhaltsmasszahl verwenden wir (4). Dabei gilt n 1, v l/(/3.
Der Winkel a läuft von 0 bis n. Wir erhalten:

V nW ((3/2) )/6 In(j/3 + ]J2) - 3)

Lässt man die hyperbolische Gerade durch Px P2 mitrotieren, so liefert das doppelt
schraffierte Flächenstück einen weiteren Körper. Zur Bestimmung seiner
Inhaltsmasszahl verwenden wir (5). Dabei gilt v 0, /* j/3/2. Der Winkel a läuft von n/6
bis 5 n/6. Zusammen mit dem vorigen Ergebnis erhalten wir:

V n k* ()/3 ln(2 + ^3) - (3/2) }/6 ln(f/3 4- )J2) 4- 3)
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9. Schlussbetrachtung

Ziel der Arbeit ist es, an Beispielen eine Methode vorzuführen, die es gestattet, die
Inhaltsmasszahlen gewisser hyperbolischer Rotationskörper zu ermitteln. Die
Auswahl der Beispiele erfolgte nach zwei Gesichtspunkten. Einmal sollten alle in Teil 3

ausgewerteten Integrale bei der Bestimmung von Masszahlen tatsächlich vorkommen.
Zum andern aber wollten wir vor allem solche Drehkörper behandeln, die in der
euklidischen Geometrie ein Gegenstück haben. Es ist besonders interessant, in diesen Fällen

den Übergang von der hyperbolischen zur euklidischen Formel durchzuführen.
Wir zeigen das am Beispiel des Torus. In Formel (16) werden die vorkommenden
hyperbolischen Funktionen in Reihen entwickelt:

"-">*(^(.)'+---)('+_(i£),+"->)
Wächst jetzt k unbegrenzt, so ergibt sich das Torusvolumen der euklidischen
Geometrie V n2 a • 2 R2. H. Zeitler, Weiden

On Sc Functions

Introduction

In this paper we prove that the Dirac Delta and all its derivatives can be
represented by sequences of constructed discontinuous functions. Although this result is
stated in [1] it is not formally proved.

We then prove that by using this definition of the n-th derivative of the Dirac
Delta its Laplace Transform is sn. This result again can be considered as " classical"
(see for example [3]) but is not proved either.

We feel that although the results are known the approach is new and our proof is

rigorous which justifies the contents of this paper.

Definition of the n-th Derivative of a Function

Let V [vx, v2,..., vn] be an n-dimensional vector. We say that the vector tends
basewise to zero if the components vk tend to zero successively. We write symbolically

Vj>0. (1)

Geometrically speaking this means that the end point of V describes a polygonal
line whose sides are parallel to the axes of the basis.

n

We shall use the notation FI V JTJ vm for the product of the components of the
vector. m 1

Let f(t) e Cn[b, c] be the class of functions that are defined and continuous as well
as their derivatives up to and including the order n for b ^ t ^ c. Let ak, k= 1,2,
n, be such that (t 4- aÄ>„) e [b, c], where aM represents the sum of any h of the n
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