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]

Figur 4

also: Jeder Punkt der X Y-Ebene ist ein Fixpunkt der Abbildung. Die durch die For-

meln (5) vermittelte Abbildung muss also die identische Abbildung sein.
Es muss also gelten:

0x=0byfi+bfat bisfs,
0V =by [y + bagfo+ b3 5,

02 =by fy + b fo+ bg3 /5.
Wegen B # O folgt daraus

% byp b3 by % byg by byp %
flz'gg" Y by bog |, fa= % | boy ¥ bag |, f3= %"' boy baa ¥ |-
% bgy a3 b3y 2 b3 b3y b3q 2

Die gesuchten Abbildungsgleichungen sind daher linear und homogen.
J.MALL, Miinchen
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Kleine Mitteilungen

Uber « Super perfect numbers »

In Band 24, S. 16-17 dieser Zeitschrift, hat Herr D. SURYANARAYANA eine kleine
Mitteilung veroffentlicht mit dem Titel « Super perfect numbers». Er betrachtet natiirliche
Zahlen »n, welche

a(o(n)) = 2n (1)

geniigen, wobei o(n) die Summe aller (positiven) Teiler von # bedeutet. Eine solche Zahl
wird «super perfect number» genannt. Wir wollen kurz s.p.n. schreiben. In der obigen
Mitteilung wird der folgende Satz bewiesen: «Eine gerade Zahl » ist genau dann eine s.p.n.,
wenn # = 27, und 2t! — 1 eine Primzahl ist.»

In diesem Beweis ist eine kleine Ungenauigkeit, welche aber leicht zu beheben ist.
Im zweiten Teil des Beweises wird behauptet, dass (2"t — 1) o(q); o(¢); 2"+ — 1 und 1



062 Kleine Mitteilungen

verschiedene Teiler von (2+1 — 1) ¢(q) sind. Das ist aber nur richtig, wenn o(g) + 2"t1 — 1
erfiillt ist. (Gegenbeispiel: ¢ = 25, » = 4).

Man kann aber den Beweis so fithren: Ist ¢ > 1, so sind (2! — 1) o(q); o(g); 1 ver-
schiedene Teiler von (271 — 1) o(gq). Es folgt

2rttg =z (28 = 1) o(q) + o(g) + 1 > 27" a(q) .

Weil o(q) > ¢, ergibt sich ein Widerspruch.
Am Schluss wird die Frage nach der Existenz einer ungeraden s.p.n. gestellt. Dazu
gilt der

Satz. Ist n eine ungevade s.p.n., so muss n eine Quadratzahl sein.

k
Beweis. Essein =[] p:“ in der kanonischen Zerlegung gegeben. Dann gilt
x=1

k !
o(n) = IT (1 + put -+ 1) = [1 4% (2)
wobei der letzte Ausdruck die kanonische Zerlegung von o(n) sein soll. Fiir eine s.p.n.
gilt nach (1)

! k
o(o(m) = [T (1+ ga+ o+ g} = 2n=2 IT p* - (3)
o(o(n))  o(n) f 1 1 k 1 1
B WL = 1 . e — ) L o donne S =2.
o(n) n /1]=]1 4 ga ki T qga xl=]1 ( + DPx T * P:n v (4)
Ist » ungerade und keine Quadratzahl, dann folgt o(n) = 0 (mod 2), d.h. 0.B.d.A.
g= 2. (5)

Aus (3) folgt weiterhin o0.B.d.A.
pr=1+424 .. 4 2P=2ht1_ 1, (6)
Nach (4) und (6) erhalten wir

Bi+1
2= 21 bkt <1+...+ }u> ’}<1+...+ pi%)

2f P A=2 q; 2 M
br+1 _ Bi+1
= _2“_” - lA : ,,_-g.k,,m___ - 2 (7)
2/31 2!51 +1 1 :
Hieraus ergibt sich sogleich
E=1=1, a=1und p, =21 _1, (8)
Dann folgt
—_ _ obi+1. — oht+2 4
a(n) = py + 1= 2571, g(o(n) = 2 1=2p,, (9)
worin der Widerspruch ersichtlich wird. H.-J. KanoLp, Braunschweig

Zur Mobiusinvolution der Ebene

7. Herr STRUBECKER hat in einer Abhandlung gleichen Titels [1] einen ausfiihrlichen
Bericht iiber zwei sich bei einer M6biusinvolution darbietende Probleme gegeben: 1. das
Problem, ihre beiden Fixpunkte und 2. bei zwei gegebenen Punktepaaren (4, 4’) und
(B, B’) zu einem weiteren Punkt C den Bildpunkt C’ zu konstruieren. Es gelang ihm, fiir
das 2. Problem eine ganz besonders einfache Losung in zweierlei Gestalt zu finden:

Bezeichnen (AB’C), (A’BC), (ABC), (A’B’C’) die Kreise durch die drvei eingeklammerten
Punhkte, und (AB'C) - (A’BC) =D, (ABC) - (A’B’C) = D’ die Schnittpunkte der einge-
klammerten Kreise, so ist entweder (A BC) - (A’B’D) = C’ oder auch (AB’D’) - (A’BD’) = C’.

Die Einfachheit der Konstruktion legt nahe, einen ebenso einfachen Beweis fiir sie zu
suchen, ohne die Theorie der harmonischen Quadrupel (H. Wiener) oder rdumliche Be-
trachtungen dafiir (K. Strubecker) in Anspruch zu nehmen.
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2. Eine Mdbiusinvolution ist zunichst in komplexen Koordinaten durch eine Gleichung
Az+ B

Co—d M)
gegeben, wo 4, B, C komplexe Konstanten mit nichtverschwindender Determinante

—~ A? — B C + 0sind. Bezeichnet man zwei entsprechende Punktepaare von (1) mit (a, a)
und (b, b), so lautet die durch sie gegebene Involution

2 =

l22 2 + 2 1

adia+al|—o. (2)

bbb+ b1
Wir bezeichnen nun die Koordinaten der in 7. angegebenen Punkte 4, 4’; B, B’; C, C’;
D mita, a:b,b;z zund u. Nach der angegebenen Konstruktion sollen «, a, b, z auf einem
Kreise liegen, also muss das Doppelverhiltnis (DV)

H=2.27% (3)
u—>b z-—25>

veell sein, ndmlich gleich dem DV der Strecken u_a-/;g : E/;g (die Umfangswinkel iiber ab
in # und z sind gleich).

Genau so miissen die Gleichungen gelten:

u—a z—a ua - zb
Wb b P T g )
u—a i-e_, W% )
u—>b z-—0b ub - za
w—a i—a |, wua-ib

- o e e = /l = - — (())
u—b z-—0b ub - za

Aus den linken Seiten von (3) bis (6) ldsst sich nun der Hilfspunkt « sofort eliminieren und
es kime, wenn die Gleichung (7) A u = A" u’ gelten wiirde, sofort die Gleichung

5—a i-b z—a z-—0

PR S SR (8)
Diese ist aber nichts anderes als die Gleichung der Mébiusinvolution, die nach Abscheidung
des Faktors Z — z + 0 in die einfache Gleichung (2) iibergeht. Die Gleichung (7) aber lautet

Z-zb  3b-zb
—_— = T == = (9)
a * z2a Za * za
und sie gilt tatsdchlich. Da ndmlich die Zuordnung
z>% a>d,a>a b>b b>b
gilt, so ist die linke Seite von (9) die bekannte Inversionsinvariante, oder, da sie ebenso
fiir Bewegungen und Ahnlichkeitstransformationen gilt, Mdbiusinvariante von vier

Strecken zwischen vier Punkten. Damit ist aber die Strubeckersche Konstruktion auf
sehr einfache Weise bewiesen.

K. Frapt, Calw

LITERATURVERZEICHNIS
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Eine Bemerkung iiber mehrdimensionale Axonometrien

Definitionen: Eine lineare Abbildung =n von E, auf E, C E, heisst (n,m)- Pavallelpro-
jektion, wenn P € n~1 P fiir jedes P € E, gilt. Istn~1 P | E,, so bekommt man eine (#,m)-
Norwmalprojektion. Eine (n,m)-Parallelprojektion n:E, - E, zusammen mit einem festen
orthonormierten %-Bein (ny, ..., n,) in E, heisst eine (n,m)-Axonometrie. Eine (n, m)-Nor-
malprojektion n: E, - E, gemeinsam mit einem festen orthonormierten »-Bein (n, ..., n,)
in E, heisst (n,m)-Normalaxonometrie. Weiter setzen wir

=|an;|, 2=1,...,n und ;= XN, an fir 4,7=1,...,n

L.A. JazkewITSCH zeigte in [2], dass in jeder (%, m)-Normalaxonometrie
ai + -+ al =m, a1+~-~+an£.l/%;17n
gilt. Dagegen bewies J.ScHoPP in [3], dass in jeder (#,# — 1)-Axonometrie
ad+-+aiz=zZn—-1<a +--+a,

in Kraft ist. Im folgenden mochten wir diese Beziehungen noch verallgemeinern.
Behauptung 1. In einer beliebigen (n, m)-Axonometrvie gilt fiir die Summe s, samtlicher
k-Hauptminoren der Matrix || a; a; cosa,; || die Ungleichung

k-
(—1)" -s;2(1:), 1<k <m.

Dabei gilt das Gleichheitszeichen genaw im Falle dev (n, m)-Novrmalaxonometrie.

Der Beweis ergibt sich unmittelbar aus folgendem Satz ([4]): Es sei (al, a) ein
Vektor-n-tupel in E, C E,. Eine (n,m)-Axonometrie n:E, > E, mit xn; = a; 1= 1, n,
existiert gevade dann wenn fity die (notwendig veellen) Elgenwerte h=...= A von || a, a] I
die Beziehungen Ap_pmyy =+ =4, =1, dpyy =+ =1,=0 gelte'n. Hieszei chamktem’sim
der Fall Ay = +-- =}, = 1 gevade die (n,m)-Novmalaxonometrien. Es geniigt jetzt, die be-
kannten Eigenschaften der elementarsymmetrischen Polynome zu verwenden (vgl. [1],
S.83), um die Behauptung 1 zu gewinnen. Fiir 2 = 1 erhdlt man s, = a} + --- + a3 = m
(vgl. [3]) und s, = a? + -+ + a% = m gilt genau im Falle der (n,m)-Normalaxonometrie
(vgl. [2] und [3]). Einen einfachen direkten Beweis der in jeder (»,m)-Normalaxonometrie
geltenden Gleichung a} + .- + a? = m bekommen wir auch so: Es sei

E, ={(#,...%) | ¥mpy=+=x,=0} und n;=(¢;y,...,¢,), =1 ..., n.

Hieraus ergibt sich

I
[urs

AN = (€1 oeer i 0y vy 0), 4

—— —

s e, M
n—m

Weil || ¢;; || eine orthogonale Matrix ist, so ist auch || ¢;; [|T” eine orthogonale Matrix, woraus
folgt

”m ”n
=14 e+ 1=m.

Behauptung 2. I'x einer beliebigen (n, m)-Axonometrien: E, > E, gilta, + -+ + a, > m.
Beweis. Es sei 7 eine (n, m)-Normalaxonometrie. Dannist |z n; | < | n;|,d.h. a; < 1;
1= 1, ..., n. Gleichheit kann hier héchstens in m Fillen auftreten. Also ist

al<<a,; i=1..,n und a}+ --+ai<a+--+a,.
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Aus ai + --- + a% = m ergibt sich m < a, + ++- 4+ a_. Ist nun = nicht die (x, m)-Normal-
axonometrie, so verwenden wir eine m-Ebene E* | a1 P, P e E, und die (n,m)-Normal-
axonometrie n*: E, - E* mit demselben orthonormierten #-Bein (n,, ..., n,) wie 7. Nach
vorigem ist hier af + --- + a* > m, wo a* = | n* w, |, i=1,...,n Es ist aber auch
a; > af,i=1,...,n wel a* (x n;) = a*(n;), i = 1, ..., n. Hieraus folgt a; + -+ + a, >
af + ... + af, so dass a; + :-- + a, > m, was zu beweisen war. VAcrav HAVEL, Brno
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Aufgaben

Aufgabe 573. Man konstruiere (mit Zirkel und Lineal) a) ein beliebiges rechtwinkliges,
b) ein beliebiges nichtgleichseitiges, gleichschenkliges Dreieck aus den Schnittpunkten
seiner Mittelsenkrechten, seiner Hohen und seiner Winkelhalbierenden.

K. KoprrFERMANN, Hannover

Losung: Bezeichnungen: Umkreismittelpunkt O, Inkreismittelpunkt 7, Hohenschnitt-
punkt H.

a) Wegen HO? — OI* = HO - HI - 212 kann jede Seite des Dreiecks OHI aus den
beiden andern berechnet werden, weshalb wir voraussetzen, dass O, H und I «richtig»
liegen.

Der Kreis um O mit Radius OH (Umkreis) wird von der Geraden durch H und I ein
zweites Mal in P geschnitten. Der zu PO normale Durchmesser ist die Hypotenuse, H die
Rechtwinkelecke des Dreiecks.

b) I ist innerer Teilpunkt von OH, Y der I harmonisch zugeordnete dussere Teilpunkt.
Der Mittelpunkt P des Kreises (Apolloniuskreis) mit dem Durchmesser 1Y liegt auf dem
Umkreis des Dreiecks. Die Schnittpunkte von Umkreis (Radius OP) und Apolloniuskreis
inzidieren mit den Endpunkten der Dreiecksbasis, womit das Dreieck gezeichnet werden
kann.

Bemerkungen: Y ist der Mittelpunkt des Ankreises, welcher die Basis des Dreiecks
beriihrt. I darf nicht Mittelpunkt von OH sein. F. LEUENBERGER, Feldmeilen

Weitere Lésungen sandten M. BacumaNn (Kiisnacht), P. Bunpscaun (Freiburgi. Br.),
J. FeEnEr (Pécs/Ungarn), H. FrRiscHKNECHT (Berneck), K. HopeL (Wadenswil), I. PAASCHE
(Miinchen), O. REUTTER (Ochsenhausen), E. WiDMER (Biel).

Aufgabe 574. Sei » der Inkreisradius, s die Summe der (orientierten) Abstdnde des
Mittelpunktes des Feuerbachkreises von den Seiten des Dreiecks.

Man beweise oder widerlege: Jedes nichtgleichseitige Dreieck, fiir das s = 3 7 ist, ldsst
sich aus den Schnittpunkten der Mittelsenkrechten, der Héhen und der Winkelhalbieren-
den (mit Zirkel und Lineal) konstruieren. K. KoprErMANN, Hannover

Losung des Aufgabenstellers: Es gibt unendlich viele konstruierbare und unendlich
viele nicht konstruierbare Dreiecke dieser Art.
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