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Die Konstante C berechnet sich aus der Forderung, dass wn(x) für n -> oo eine
oo

Dichtefunktion der Variablen x sein muss, d.h. j wn(x) dx muss gleich 1 sein. Da

/ e~x* dx \/n ist, folgt C l/|/2 nn p q.
-oo

Zusammenfassend erhält man also den Satz von Laplace:
Wenn die Wahrscheinlichkeit für das Auftreten des Ereignisses A in n unabhängigen
Versuchen konstant gleich p (0 < p < 1) ist, so genügt die Wahrscheinlichkeit

dafür, dass in diesen Versuchen das Ereignis A genau %-mal eintritt, für n -> oo der
Beziehung

(*- npY

wn(x)^-^^^ .e~ 2w^
y 2 7i n p q

und zwar gleichmässig für alle x, für die sich die nach (2) entsprechende Grösse z in
einem endlichen Intervall befindet. F.Heigl, Weiden BRD
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Allgemeine Gestalt einer geradenerhaltenden Abbildung
In der folgenden Abhandlung soll gezeigt werden, dass eine stetige geradenerhaltende

Abbildung der Ebene auf sich projektiv sein muss. Zu diesem Zweck wird
zunächst Satz 1 bewiesen.

Satz 1: Es gibt genau eine projektive Abbildung der Ebene auf sich, die 4 Punkte
A, B, C, 0 in allgemeiner Lage1) in 4 Punkte Px, P2, P3, P4 in allgemeiner Lage
überführt, wobei A in Px, B in P2, C in P3 und 0 in P4 übergeht.

Beweis: Den folgenden Überlegungen sind homogene Koordinaten zugrunde
gelegt. Die gesuchte projektive Abbildung werde in der Gestalt

q x alx u + a12 v + a13 w

T: q y — a2X u + a22 v + a23 w

Q Z azxU + a32 V + a33 W

angesetzt. Das Koordinatendreieck wollen wir dabei so wählen, dass seine Ecken mit
A, B, C zusammenfallen, während 0 der Einheitspunkt ist, was stets möglich ist, da
ja A, B, C und 0 in allgemeiner Lage sind. Für die Koordinatendarstellung von A, B,
C und 0 gilt dann:

.4(1,0,0), ß(0,l,0), C(0,0, 1), 0(1,1,1).
x) 4 Punkte heissen «in allgemeiner Lage», wenn keine drei auf einer Geraden liegen.
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Setzen wir nun die Koordinaten von Px(xx, yx, zx), P2(x2, y2, z2), P3(xz, y3, z3),

P4(x4, y4, z4) und die Koordinaten von A, B, C und 0 in T ein, so folgt

(i)

fv Xx — au> i x2 aX2, m Xq — #13

kyx a21 > t y2 #22 > m y% #23

k zx asi> l Z2 #32 W 23 #33

nx4 #11 + <*12 + #13

ny4 ==: #21 ' #22 ' #23

nz4 — #31 + #32 + #33

(2)

&, /, w und n sind dabei von Null verschiedene noch näher zu bestimmende
Proportionalitätsfaktoren

Setzt man die Beziehungen (1) in (2) ein, so folgt

n x4 k xx + l x2 + m x3

ny* kyx + ly2 + wy3, { (3)

w 24 & zx + l z2 -{- m z3

Zur Abkürzung führen wir ein

A

Dann folgt aus den Beziehungen (3)

k:l:m:n D1:{-D2):DS:DA.

Da die Punkte Px, P2, P3 und P4 nicht zu je dreien in einer Geraden liegen, sind die
4 Determinanten Dx, D2, Dz und D4 von Null verschieden. Das Verhältnis der von
Null verschiedenen Proportionalitätsfaktoren k, l, m und n lässt sich daher eindeutig
bestimmen. Es ist jetzt noch zu zeigen, dass die Transformation T eindeutig umkehrbar

ist. Zu diesem Zweck muss gezeigt werden, dass die Determinante \atk\ ^ 0 ist.
Aus den Formeln (1) entnimmt man

x2 x§ x4 1 3 4 1 2 4 #1 #2 ^3

y2 ys y* Dt yi ys y* D» y± y2 y4 ^4 yi y2 y3

Z2 £3 Z4 zx zz z4 ^1 Z2 ^4 ^1 Z2 ZS

k * / • m -

xx x2 x§

yx y2 ys

zx z2 z3

+ o,

womit alles gezeigt ist.
Satz 2: Jede umkehrbar eindeutige stetige Abbildung der Ebene auf sich, die

Gerade in Gerade überführt, ist eine Projektivität.
Beweis: Durch die homogenen stetigen Funktionen

*' fi(*> y> *) > y' /s(*> y>z) >
z' fs(%> y>z) (4)
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sei eine umkehrbar eindeutige und geradentreue Abbildung der projektiven Ebene auf
sich gegeben. Gegeben sei nun das Rechteck OABC. Die Eckpunkte dieses Rechtecks
OABC werden durch die Abbildung (4) in die Punkte Qx, Q2, Q3, Q4 übergeführt. Qx,

Qz> Qs> (?4 smd 4 Punkte in allgemeiner Lage. Würden nämlich etwa die Punkte Qx,

Q2, Qz in gerader Linie liegen, so musste dasselbe wegen der Geradentreue für die
Punkte 0, A, B gelten, im Gegensatz zur Voraussetzung, dass OABC ein Rechteck ist.

Ingur 1

Nun existiert nach Satz 1 genau eine lineare umkehrbare Transformation, die die
Punkte Qx, Q2, Q3, Q4 in die Punkte 0, A, B, C überführt. Für diese mögen die folgenden

Formeln gelten:

q u blx x' + b12 y' + b13 z'

q v + b22 y' + &23 z' B=\btk\ +0.
qw=- &31 x' + b32 y' + 633 z'

o ist dabei ein von Null verschiedener Proportionalitätsfaktor. Durch die Funktionen

QU - blxfx \ b12f2 I- 613/3,

qv b21fx + b22f2 + b2Zfz,

QW= &31/1+ ^32/2 + ^33/3

(5)

werden daher die Punkte 0, A, B, C auf sich abgebildet. Es handelt sich hier also um
eine Abbildung mit 4 Fixpunkten 0, A, B, C.

ß3 Bt 82 ^ß

cy £^"> h

ZT <? _y>- 1S __r
*3

Figur 2

Da die Geraden OB und AC bei der zusammengesetzten Abbildung in sich
übergehen, ist ihr Schnittpunkt M ebenfalls ein Fixpunkt der Abbildung. Die Fixgeraden
OC und AB schneiden sich in ihrem Fernpunkt, der deshalb ein Fixpunkt der Abbil-
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dung sein muss. Das gleiche gilt für den Fernpunkt der Geraden OA und CB. Die
Gerade MAX parallel zur Y-Achse ist ebenfalls eine Fixgerade, da M ein Fixpunkt ist
und die Gerade MAX auch durch den Fixpunkt von OC und AB hindurchgeht. Daher
sind auch Ax und Bx Fixpunkte der Abbildung. Analog zeigt man, dass auch Cx und
C2 Fixpunkte der Abbildung sind. Weitere analoge Betrachtungen kann man bei den
Rechtecken OAxBxC und AXABBX vornehmen. Man erhält dadurch weitere Fixpunkte
_43 und _42 auf der X-Achse zwischen den Punkten 0 und A.

Durch Fortsetzung dieses Verfahrens (fortgesetztes Halbieren) erkennt man sofort,
dass die Fixpunkte der Abbildung auf den Strecken OA und OC überall dicht liegen.
Wir wollen nun zunächst zeigen, dass jeder Punkt der Strecke OA Fixpunkt ist.

J

Figur 3

X sei ein beliebiger Punkt der Strecke OA. Wir nehmen zunächst an, er sei kein
Fixpunkt der Abbildung. Der ihm entsprechende Punkt auf der X-Achse sei U, und es

sei | U — X | d. U könnte auch ausserhalb der Strecke OA liegen.
Nach den obigen Betrachtungen kann man nun X durch fortgesetztes Halbieren

so zwischen zwei Fixpunkte Fn und Fn+1 einschliessen, dass gilt:

X - EII < X - Fn+1 | <<* »

wobei (5 wegen der fortgesetzten Intervallhalbierung beliebig klein gemacht werden
kann. Wegen der Stetigkeit der Abbildung musste dann auch | U — Fn\ und

behebig klein gemacht werden können. Für beide Absolutbeträge gilt\U-Fn + 1

aber stets
U - Fn I > d - d und U-F„ + i >d-dl

was einen Widerspruch gegen die vorausgesetzte Stetigkeit der Abbildung darstellt.
Sämtliche Punkte der Strecke OA sind daher Fixpunkte der Abbildung. Analog zeigt
man, dass sämtliche Punkte der Strecke OC Fixpunkte der Abbildung sind.

Nunmehr verbinden wir einen beliebigen Punkt V der X-Achse mit OV > OA mit
dem Fixpunkt M durch eine Gerade. Diese Gerade schneidet OC in dem Fixpunkt W.
WMV ist also eine Fixgerade. Da die X-Achse eine Fixgerade ist, ist auch V ein
Fixpunkt der Abbildung. Sämtliche Punkte der positiven X-Achse und, wie man analog
beweist, der positiven Y-Achse sind also Fixpunkte. Ebenso zeigt man, dass auch die

negative X- und Y-Achse aus lauter Fixpunkten besteht.
Z sei nunmehr ein beliebiger Punkt der XY-Ebene. Zwei beliebige Geraden g und

h durch Z schneiden die X- und Y-Achse in Fixpunkten, sind also selbst auch
Fixgeraden. Ihr Schnittpunkt Z muss also ein Fixpunkt der Abbildung sein. Wir sehen
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>/

Hgur 4

also Jeder Punkt der XY-Ebene ist em Fixpunkt der Abbildung Die durch die
Formeln (5) vermittelte Abbildung muss also die identische Abbildung sein

Es muss also gelten

Q%=biifi+ h* U + \s is >

Qy b2ifi + b22 h + ^23 fs

Q Z hS\ /l + &32 U + ^33 fs

Wegen B + 0 folgt daraus

/i Q

B

% °X2 bxz bxx x bX3 bxx bX2 x

y h22 &23
> /,= Q

B
&21 y ^23 /a

Q

B h\ ^22 y

Z ^32 ^33 ^31 Z ^33 &31 ^32 Z

Die gesuchten Abbildungsgleichungen smd daher linear und homogen

J Mall, München
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Kleine Mitteilungen

Über <c Super perfect numbers »

In Band 24, S 16-17 dieser Zeitschrift, hat Herr D Suryanarayana eme kleine
Mitteilung veröffentlicht mit dem Titel « Super perfect numbers» Er betrachtet natürliche
Zahlen n, welche

a(a(n)) 2 n (1)

genügen, wobei a(n) die Summe aller (positiven) Teiler von n bedeutet Eme solche Zahl
wird «super perfect number» genannt Wir wollen kurz s p n schreiben In der obigen
Mitteilung wird der folgende Satz bewiesen «Eme gerade Zahl n ist genau dann eme s p n
wenn n 2r, und 2r+1 — 1 eine Primzahl ist »

In diesem Beweis ist eine kleine Ungenauigkeit, welche aber leicht zu beheben ist
Im zweiten Teil des Beweises wird behauptet, dass (2r+1 — 1) o(q), a(q), 2r+1 — 1 und 1
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