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Es sei C C O Ay = @; mit 0C=a, cos ¢ und C A, = a, sin @ ergibt sich:
0_4: = a2 cos® ¢ + (a; sin ¢ — b,)® _071:: = a2 cos® @ + (a, sin @ + b,)®
=al+ b —2a b sing =a+ b+ 2a, b sing

Nun ist aber 24, b;singp =2a b (Flichentreue!) und a2 + b% = a? + b%; damit
ergibt sich:

Ody — (a— b | 04y — (a+ b g.e.d.

R. JakosI hat seine Konstruktion im Jahre 1952 veroffentlicht und durch kine-
matische Betrachtungen bewiesen (vgl. [1]). O. TAMASCHKE gab 1963 einen elemen-
targeometrischen Beweis (vgl. [4]). H. SIEBER fithrte 1967 zwei abbildungsgeome-
trische Beweise, die nur Drehungen, Parallelverschiebungen und Geradenspiege-

lungen verwenden (vgl. [3], S. 37-39). HeLmuT SIEBER, Boblingen
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Eine Bemerkung zum Verfahren von Leverrier

Verschiedene mathematische und technische Probleme fithren auf die Berechnung des

charakteristischen Polynoms
P4 4) =det(A E — 4),

wobei A eine beliebige Matrix aus M,(K), dem Ring der komplexen # X n-Matrizen, und
E die Einheitsmatrix ist. Entwickelt man diese Determinante in iiblicher Weise als Summe
von Produkten ihrer Elemente und ordnet dann nach fallenden Potenzen von 2, so erhilt

man das Ergebnis
n

Pah) =2 (—1)c, 4",

w=0

wobeicy =1, ¢, =det4 und fiirallej=1,2,...,n — 1

Ayyy, = Ay, Yi
lry - vjleK; Ayjyy =+ Qygy;

ist. K; ist dabei die Menge simtlicher Kombinationen j-ter Klasse ohne Wiederholung:
oy -enylcl .. ,nund 1l =y, < ... <y £ ([6], S.114).
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Diese direkte Berechnung der Koeffizienten des charakteristischen Polynoms ist sehr
aufwendig und fiir grosse Werte von # nur von theoretischem Interesse. Ein anderes Ver-
fahren, das die Berechnung der Koeffizienten von p 4(2) gestattet, ist unter dem Namen
«Verfahren von LEVERRIER» bekannt [1]. Es stellt wohl die dlteste Methode dar, wenn man
von der obenerwihnten direkten Berechnung absieht. Vor allem besitzt das Verfahren von
LEVERRIER gegeniiber verschiedenen anderen Verfahren den Vorzug, dass an die betrach-
tete Matrix 4 keinerlei zusétzliche Forderung gestellt werden muss. Dieses Verfahren wur-
de wiederentdeckt von HorsT [2], schliesslich verbessert und verallgemeinert von SOURIAU
[3], FADDEEV-Sominskir [5] und FrRaME [4]. Alle diese Uberlegungen beruhen auf den so-
genannten Newtonschen Formeln, die die Berechnung der Koeffizienten des charakteri-
stischen Polynoms auf die Berechnung der Spuren der # aufeinanderfolgenden Matrix-

potenzen A, A?, ..., A7 und die Losung eines gewissen linearen Gleichungssystems zuriick-
fithren.
Setzen wir
n
pad) =M+ X puk*"° und si—SpAk (k=1,2,..,%), (1)
w=1

so lauten die Newton’ schen Formeln

Skt SkaPrt Skabat ot S Peat+hpi=0 (k=1,2,...,%). (2)
Wir kénnen (2) auch in Form eines linearen Gleichungssystems fiir die Koeffizienten
D eves Pr
Lp=vr (3)

schreiben, wobei

1

S 2 O

L= Sg Sy 3 , p=col(py ..., Pn) und
Sp-15n-254-3--m

¥ = col(—s,, ..., —S,) zu setzen ist. Eine Moglichkeit, das System in (3) nach p aufzuldsen,
ist die Bestimmung von L-1; dann ist p = L~1 7. Wir wollen uns jetzt iiberlegen, wie man
die explizite Berechnung der Matrix umgehen kann, indem wir die spezielle Form von L
ausniitzen.

Zuerst setzen wir R = L — D mit D = diag(1, 2, ..., #), dann D1 R = B = (by;). Mit
dieser Bezeichnung ist L = D (E + B) und daher

L-1= (E + B)-1 D1, (4)

Aus der Struktur der Matrizen D und R findet man leicht, dass die Elemente der Matrix B
den Bedingunget
bpy=0 [I=Fk (5)

geniigen. Nach (5) besitzt B daher nur den n-fachen Eigenwert 0 und erfiillt somit die
Gleichung B”» = 0, woraus trivialerweise

Brti=0 §=0,1,2,... (6)
folgt.
Nach einem bekannten Satz (siehe z.B. [8], S.98, Satz 49) gilt dann fiir die Matrix B
o o]
(E+B)t= 3 (—1)°B”. (7)
w=0

Mit (6) reduziert sich die unendliche Summe auf der rechten Seite in (7) auf eine endliche
Summe “

n—1
(E+ B)= 3 (—1)°B”. (8)

w=0
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Schliesslich folgt aus (4) und (8) das Ergebnis

n 1
L7 = 3 (- 1)"B” D,

w -0
In (3) cingesctzt, erhalten wir [iir die Unbekannten py, ..., p,

n -1

b= col(py, ..., pa) = D) (=1)” B* D1y,

w--0

Wir haben damit dic Inversion der Matrix L auf Multiplikationen von Matrizen (derselben
Ordnung) zuriickgefiihrt. R.Z.Doxiary, Graz
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Eine Bemerkung zur eindeutigen Primfaktorenzerlegung in Halbgruppen

Es sei H eine kommutative Halbgruppe mit neutralem Element e. Sie sei ferner regu-
lar, d.h. in H gelte die Streichungsregel (@ ¢ = bc = a = b fiir alle a, b, ¢ € H). Wie iiblich
heisst a Teiler von b (in Zeichen a | b), wenn es ein ¢ € H mit a ¢ = b gibt. Das Element e
soll keine Teiler # e haben, d.h. also H \ {¢} ist eine Unterhalbgruppe. Ein Element a € H
heisst irreduzibel, wenn es ausser a und e keine Teiler hat. p € H heisst Primelement, wenn
firallea, b € H gilt: p | a b = p | a oder p | b. Bekanntlich ist jedes Primelement irreduzi-
bel.

Hilfssatz: Gibt es in H eine assoziative Verkniipfung x mit den Eigenschaften:

axbla, axb|b (firallea,beH) (1)
axblc, cla, clb=>c=axb (firallea, b, cecH) (2)

so gilt: .
cla, c¢|b=ciaxb (firallea, b ceH). (29

Beweis mittels (1) und (2):
Ausc|a,c|bergibtsicha x ¢ = ¢, b * ¢ = ¢, wegen der Assoziativitit also (@ * b) * ¢ =
ax (bxc)=axc=cund daher nach (1) ¢|a % b.



38 Kleine Mitteilungen

Bekanntlich besagen (1), (27), dass a % b der ggT von a, b (und somit * assoziativ) ist.
Daraus ergibt sich?): Jedes irreduzible Element ist Primelement.

Setzt man nun noch die Giiltigkeit des Tcilerkettensatzes voraus (das heisst: im Falle
a,., | a, fiiralle n € Nist stets {a, | » ¢ N} endlich), so folgt bekanntlich?) weiter, dass jedes
Element von H bis auf die Reihenfolge eindeutig als Produkt von Primelementen darge-
stellt werden kann. Eine Verkniipfung % mit (1), (2) kann man nun leicht angeben, wenn
in H eine Relation ¢« <» mita | b = a < b (fir alle a, b € H) existicrt, beziiglich der stets
T(a) N T(b) (mit T(a) als der Menge der Teiler von a) ein maximales Element2) hat. Ordnet
man jetzt jedem Paar a,b als Verkniipfungsergebnis @ % b ein maximales Element von
T(a) N T'(b) zu, so erfiilll x offenbar dic Bedingungen (1) und (2).

Die im Vorstehenden an die kommutative Halbgruppe H mit dem neutralen Element e
und die Relation « <<» gestellten Forderungen (mit Ausnahme der Assoziativitit von x)
sind nun erfiillt, wenn man «<Z» als eine mit der Halbgruppenverkniipfung vertriagliche
(d.h. a < b = ac < bc) Wohlordnung voraussetzt. Offenbar ist dann H reguldar. Man
zeigt ferner, dass e klcinstes Element ist. Aus a < e wiirde namlich a# < a7~ (» € N) folgen,
im Widerspruch dazu, dass die Kette {a” | n € N} ein kleinstes Element haben muss. Wegen
e Scgitnunae <acunddahera|d=a <0

Jedes Element von H hat jetzt nur endlich viele Teiler. Im andercn Ifalle wiirde es
nimlich b,, ¢, e H (veN) geben mit b,¢, =a und u <v=1b, <, (u, v eN), daraus
wiirde aber y << » = ¢, > ¢, (u, » € N) folgen, so dass {c, | » € N} kein kleinstes Element
haben konnte. Es gilt also der Teilerkettensatz, und T(a) N T(b) hat stets ein grosstes Ele-
ment. Dann wird wie oben a x b als dieses grosste Element von T'(a) n T(b) gewéhlt. Setzt
man jetzt noch die Assoziativitit von % voraus, so ist jedes Element von H bis auf die
Reihenfolge eindeutig als Produkt von Primelementen darstellbar.

Satz: In einer kommutaliven Halbgruppe mit neutralem Element ¢ ist genau dann
H\{e} Unterhalbgruppe und jedes Llement eindeutig (abgesehen von der Reihenfolge) als
Primelementeprodukt darstellbar, wenn es eine mit dev Halbgruppenverkniipfung vevtrdgliche
Wohlordnung gibt und diejenige Verkniipfung assoziativ?®) ist, die jedem Elementepaar den
beziiglich der Wohlordnung gréssten gemeinsamen Teiler zuordnet.

Beweis: Es wurde gezeigt, dass die Bedingung hinreichend ist. Die Notwendigkeit wird
so bewiesen: Die Menge P der Primelemente von H sei wohlgeordnet. Es seci f,: P >N
eine Abbildung von ) in N mit a = Hp’a“’)» wobei f,(p) # 0 fiir endlich vicle p € P. Die

pe

Elemente a, b € H werden antilexikographisch geordnet nach dem beziiglich der Wohlord-
nung von ) grossten Element p € P, fiir das f,(p) von f,(p) differiert?). Diese Ordnung ist
eine Wohlordnung. Man zeigt das unter Benutzung bekannters) Uberlegungen. Wegen
fap = 1, + [, ist diese Wohlordnung vertriglich mit der Halbgruppenverkniipfung. Jedes
Elementepaar a,b besitzt einen ggT, und die ggT-Bildung ist assoziativ. Der grosste ge-
meinsame Teiler von a,b ist aber zugleich das beziiglich der Wohlordnung grosste Element
a * b von T(a) 0 T(b). Damit ist die Notwendigkeit der Bedingung bewiesen.

H.WiscHg, Liibeck
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On (m,n)-ideals in subcommutative semigroups

Let S be a semigroup?). Following the terminology of the theory of rings we say that S
is subconumnutative if in S the equation

ab=-ca (1)

always has a solution ¢ given a and b. Obviously every commutative semigroup is sub-
commutative. We show by an example that there exists a subcommutative semigroup
which is not commutative:

0 1 2 3

0]0 0 0 0
110 1 0 1

212 2 2 2

312 3 2 3

The semigroup S of four elements 0, 1, 2, 3 with the above multiplication table is sub-
commutative but not commutative.

It is easy to sce that the following assertion is true.

Proposition 1. A semigroup S is subcommutative if and only if the velation a S < S a
holds for each element a in S.

The Proposition 1 implies the

Proposition 2. In a subcommutative semigroup S every left ideal is a two-sided ideal.

As the author introduced (sce e.g. [2]) a subsemigroup 4 of a semigroup S is called an
(m, n)-ideal of S, if the inclusion

AnS Anc A (2)
holds, where 1, are arbitrary non-negative integers and A™ is suppressed if m = 0. Con-
cerning the (1, n)-ideals of semigroups the author proved, among others, that a semigroup
is a group if and only if it has no proper (m, n)-ideals, where m,n arc fixed positive integers
[3]. Let = be a finite sequence 7y, ..., &, of the symbols / and . A subsemigroup 4 of S is
said to be a n-ideal if

A=85,5.,c...€5 =S (3)

holds, where S, is a left [right] ideal of S;_, if », = I [#] (i= 1, ..., #). In the sequence n let
m[n] be the number of occurrences of 7[I]. The author proved that a subset A of a semigroup
S is a n-ideal if and only if A is an (m,n)-ideal of S. If S is a regular semigroup (i.e.a€a Sa
for cach a in S), then a subset 4 of S is an (s, #)-ideal if and only if it is the intersection of
an (m,0)-ideal and a (0,n)-ideal of S (see [2]).

In the theory of (m,n)-ideals the Proposition 2 may be easily generalized as follows,

Proposition 3. In a subcommutative seniigroup every (m,n)-ideal is at the same time an
(m + 1,n — 1)-ideal.

This statement has some consequences.

Corollary 1. In a subcommutative semigroup every (0,2)-ideal is a bi-ideal.

Corollary 2. In a subcommutative semigroup every (m,n)-ideal is an (m + n,0)-ideal.

Corollary 3. In a subcommutative semigroup every (0,n)-ideal is a (p,q)-ideal, where p,q
are arbitrary non-negative integers such that p + q = n.

It is easy to show that the subcommutative semigroups have the following property,
too.

Proposition 4. In a subcommutative semigvoup every quasi-ideal is a right ideal and
conversely. S.Lajos, Budapest, Hungary

1) For the terminology we refer to [1].
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A Note on Integral Domains that are not Right Distributive

The following are threc well known or easily proven results about integral domains.

Thearem 1: If (R, |-, *) is an integral domain with charactevistic m > 0, then m is a
prime and all the non-zero elements in R have ovder m.

Theorem II: [f (K, +, *) is an integral domain and R is finite, then (R, +, ) is a

division ving.

Theorem IIl: [f (R, 4, ) is an inlegral domain and e € R is a non-zero idempotent,

then e is an identity for (R, +, ).

It is the purpose of this note to show that analogous results can not be obtained if just

one of the distributive laws hold in (R, 4, *).

Recall that (N, -+, *) is a near-ring if (N, +) is a group (not necessarily abelian), if (, +)
is a semi-group, and if whenever @, b,ce N, thena- (b+ ¢) =a-b+ a-c. Forlack of a
better name, a near integral domain 1s a near-ring (N, -+, -) such that if N* are the non-zero
elements of N, then (N*, ) is a semi-group. Similarly, a near-ficld is a near-ring (N, +,+)

such that (N'*, -) is a group.

The following result shows that analogues to Theorem I, Theorem IT and Theorem IT1

do not hold for ncar integral domains.

Theorem A: Let (G, +) be a group (mot necessarily abelian). Let * and - be binary
operations defined on G as follows: a* b =10 for any pair a,beG; a-b= "> for any pair
a,beGifa # 0,and0-b =0 for any b € G. Then (G, +, *) and (G, +, *) are near integral

domains.

This result follows immediately from [2], or from Theorem 1.8 of [1], or it can easily
be proven by the reader.

It is interesting to note that the two near integral domains defined in Theorem A are
the only ones definable on (£, +), (Z;, +), and (S;, +) where (Z,, +) denotes the cyclic
group of order #, and (S,, +) denotes the symmetric group on = letters, the operation
written additively instead of the usual O for composition. (These results are observed from
Section II in [1].) For all other non-trivial groups of order less than eight there are addi-
tional near integral domains. Below are non-trivial examples for (Z;, +) and (Z,, +).

*10o 1 2 3 4
o040 O O O O
110 1 2 3 4
210 4 3 2 1
3i0 1 2 3 4
410 4 3 2 1

*

0

1

| S.1Lajos, Generalized Ideals in Semigroups, Acta Sci. Math. 22, 217-222 (1961).
1 S.1Lajos, Notes on (m,n)-ideals 1-111, Proc. Japan Acad. 39, 419-421 (1963); 40, 631~
632 (1964); 4/, 383-385 (1905).

0o 1 2 3 4 353 6
0o o0 o0 o0 0 0 ©O0
0 2 4 6 1 3 5
o 4 1 5 2 6 3
0 4 1 5 2 6 3
0 1 2 3 4 5 o6
0 2 4 o6 1 3 5
0O 1 2 3 4 5 6

L]
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Based upon empirical evidence and efforts to show the contrary, the author makes the
following
Conjecture. If (N, +, -) is a near integral domain with characteristic m > 0and if - is
not one of the two binary operations defined in Theorem A, then  is a prime.
JamEes R.Cray, University of Arizona, Tucson, Arizona, U.S.A.
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Aufgaben

Aufgabe 569. Gegeben sind ein Tetraeder 4, 4, 4, 4, mit den Seitenflichen «,, a,,
a3, o, und ein Tetraeder B, B, B; B, mit den Seitenfldchen f,, f,, s, f,. {; ist die Senk-
rechte von A4; auf 8;, m; die Senkrechte von B, auf «; (¢ = 1, 2, 3, 4). Man zeige: Wenn
die Geraden /; durch einen Punkt gehen, dann gehen auch die Geraden m; durch einen
Punkt. O. BorTEMA, Delft

Lésung: Der gemeinsame Punkt der Geraden /, sei L. Das Tetraeder B; B; B; By sei
zu A, A, A3 A, polarreziprok inbezug auf eine Kugel mit Zentrum L. Da seine Fldchen
parallel zu 8, B, B3, B4 sind, ist es &hnlich und in &hnlicher Lage zum Tetraeder B, B, B; B,.
Die Lote von den Ecken B (i = 1, 2, 3, 4) auf die Flichen «; gehen durch einen Punkt
(ndmlich L); also gilt dasselbe von den zu ihnen parallelen (und damit in jener Ahnlichkeit
homologen) Geraden m ;. (Die Aufgabe findet sich auch bei J. HADAMARD, Legons de
géométrie élémentaire, vol. II, 7 éd., Probléme 559. In Probléme 1215Pbis wird eine inter-
essante Eigenschaft eines solchen Tetraederpaares angegeben.)

C. BINDSCHEDLER, Kiisnacht

I. PaascHE (Miinchen) zeigt, dass die entsprechende Aussage auch beim ebenen
Simplex gilt.

Aufgabe 570. Démontrer qu’il existe une infinité de nombres naturels & pour lesquels
il existe seulement un nombre fini > 0 de nombres triangulaires qui sont sommes de %
nombres triangulaires consécutifs. W. SiErPINSKI, Varsovie

Solution:
1
bt gt ot = 0l [k a®+ k%a +

E=nkE+ D)
: .

Let k [a? + k a + (k% — 1)/3] = m (m + 1), therefore

3 __
@m+ 12—k @a+pp= 4TS

Let % be an even perfect square 4 ¢2, > 1, that is not divisible by 3.

6415 — 162 + 3
2m4+14+2t(2a+ 4182 = 3 + , 2m+1—2t(2a+483) =1
gives4 ¢t (2a+ 4#2) = (64— 16¢)/30r 2a+ 4= (164 — 4¢)/3hence a = — 242 +
(8 #5 — 2¢)/3 an integer. Further we have 4 m = (64 t® — 16 #?)/3 or m is an integer.
Hence there will be at least one solution and at most a finite number of solutions if &
is so chosen. G. WuLczyN, Bucknell University, USA

P. BunpscHuH (Freiburg i. Br.) bewies die Aussage der Aufgabe fiir 2 = 9 (2¢ — 1)2
(t=1,2..).
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