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Über das invariante Rechtwinkelpaar einer schiefen Affinität
und dessen Zusammenhang

mit der Jakobi sehen Konstruktion der Achsen einer Ellipse

Eine Perspektive Affinität sei durch ihre orientierte Fixpunktgerade (/) (/')
und durch ein Paar zugeordneter Punkte P -> P' gegeben. Zur Beschreibung der
Abbildung legen wir (/) durch einen Einheitsvektor i fest, konstruieren den
Bildpunkt E' eines Punktes E, der den Abstand + 1 von (/) besitzt, und geben den

Bildvektor 0' E' j' — x i + X j (A^0) des Originalvektors 0 E j an (siehe Figur 1).
Die Abbildung ist durch }' oder durch die Paramter x und X eindeutig festgelegt
(vgl. [3, S. 17]).
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Da die Frage nach dem invarianten Rechtwinkelpaar für x 0 (Identität,
normale Geradenspiegelung, normale Affinität) uninteressant ist, soll x ^ 0 vorausgesetzt

werden. Für x # 0, X 1 erhalten wir eine Scherung, für x ^ 0, X — 1

eine Schrägspiegelung, für x ^ 0, |A| ^ 1 eine eigentliche schiefe Achsenaffinität.
Unsere Untersuchungen für x # 0, X # 0 schhessen also die Sonderfälle Scherung
und schiefe Geradenspiegelung ein. In bekannter Weise konstruieren wir zunächst
das invariante Rechtwinkelpaar rx und r2' einer solchen perspektivaffinen
Punktverwandtschaft (siehe Figur 2; vgl. z. B. [2, S. 78]) und berechnen dann die zu rx
und r2' gehörenden, auf (/) (/') bezogenen Richtungswinkel o/ und q2' aus den
Skalaren x und X.
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Figur 2

1. Die Richtungswinkel des invarianten Rechtwinkelpaares

Wegen qx g2' ± 90° genügt es, einen der beiden Winkel mit Hilfe von x und
X auszudrücken.

Nach dem Satz vom Mittelpunktswinkel ist <£ R2 M E' 2 qx (siehe Figur 2).
Da cot 2 qx cot 2 o2' ist, gilt für jeden Richtungswinkel q/ des invarianten
Rechtwinkelpaares cot 2 0/ MEq'JEq E'. Nun

/ ist cot 2 q/
ist H0 £0' x/2. Wegen

((x/2) - /)/A mit l H0M. AusM £,' Ho £j/_- #o Af
tan a ££'/££ (A - l)/w und tan a HJMjHJI 2 //(l + A) ergibt sich / (A2

- l)/2x. Also gilt:

cot2e; i-(-_il_i)^o, A*0

Durch Spezialisierung von (1) für X + 1 (Scherung) und für A

Spiegelung) erhalten wir für diese Abbildungen:

Scherung: cot 2 q'{ x/2 x + 0

Schrägspiegelung: cot 2gj —x/2 x # 0

(i)

¦1 (Schräg-

(i')
(i")

Das Rechtwinkelpaar einer Schrägspiegelung mit Parameter x ergibt sich aus
dem Rechtwinkelpaar einer Scherung mit demselben Parameter und derselben
Achse durch Normalspiegelung an dieser Achse. Geometrisch ist das evident, da
sich diese Schrägspiegelung durch Hintereinanderausführung der Scherung und der
Normalspiegelung ersetzen lässt.
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In der Literatur wird eine schiefe Affinitat häufig nicht durch die
Parameter x und A, sondern durch a und A angegeben (oc gibt die Affmitatsnchtung an,
A heisst Affmitatsverhaltnis oder Affimtatsfaktor) Mit tan a (X — l)/x oder
x (X — 1) cot a wird (1) zu

cot 2 q[ ~ (^j~- cot a - A+L tan <x) A # 0, a ^ 0°, 90° (2)

2. Zur Konstruktion des invarianten Rechtwinkelpaares

Fur die Scherung liefert die Beziehung (1') unmittelbar eme einfache
Konstruktion des invarianten Rechtwmkelpaares (siehe Figur 3)
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Figur 3

Es ist dieselbe Konstruktion, die m [3, S 25/26] durch rem geometrische Betrachtungen
gewonnen worden ist Wir wollen untersuchen, ob sich aus der allgemeineren
Beziehung (1) eine Konstruktion fur das Rechtwmkelpaar einer eigentlichen schiefen
Affinität herleiten lasst

Durch Umformung von (1) ergibt sich

A — 1 A + l x\
x x A /

cot2ft' i-(£ x,X # 0

Fuhren wir Winkel <p, <plf cp2 mit

tan cp —, tan cpx

em (siehe Figur 4), so wird (1) zu

cot2ft'

tan <p2:
A + l

tan cpx tan q>2
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Daraus folgt

^ f _
2 tan <p

__
tan <px + tan q?2

"f 1 — tan q>x tan q>2 1 — tan q>x tan q>2

2 tan (p

tan^j + tan9?2

Da E' E' E' E' ist Eq E' das arithmetische Mittel von EQ' E' und E0' E' Daraus
folgt, dass tan <p 1/2 (tan <px + tan <p2) und (2 tan <p) /(tan <px + tan <p2) 1 ist

Damit wird tan 2 (>/ tan (<px + 9?2), und es gilt der

Satz Die beiden Rechtwinkelrichtungen smd die Winkelhalbierenden der Geraden

0 E' und 0 E' (siehe Figur 4)

3. Der Zusammenhang mit der Konstruktion von R. Jakobi
Mit Hilfe der Konstruktion von Figur 4 können wir die Richtungen der Achsen

einer Ellipse konstruieren, von der zwei konjugierte Durchmesser gegeben sind
(siehe Figur 5)
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Figur 5

Es seien A1A2 2ax und BXB2 2 bt konjugierte Durchmesser einer Ellipse
(e), die sich gegenseitig m 0 halbieren Dann bildet die eindeutig bestimmte Perspektive

Affinität mit Achse Bx B2, die Punkt B m den Bildpunkt A2 überfuhrt, den

Kreis um 0 mit Radius r bx m (e) Bb Das invariante Rechtwinkelpaar dieser
Affinität liefert die Richtungen der Ellipsenachsen Unterwerfen wir die zu dieser

Affinitat gehörende Figur 4 einer zentrischen Streckung mit Zentrum 0 und Streckfaktor

blt so gehen die Punkte E, E't E't E' von Figur 4 m die Punkte B, A2, A2, A2
von Figur 5 über, und aus der Konstruktion von Figur 4 wird die Konstruktion von
R Jakobi

Die Langen der Ellipsenachsen a und b ergeben sich aus 0 A2 a — b und

0 A% a + b Diese Langen lassen sich durch abbildungsgeometnsche Überlegungen

oder auch durch einfache Rechnung gewmnen
Nach dem Lehrsatz von Pythagoras ist

OAl - 0C% + CA\ I OA% =0C + CA2
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Es sei <£ C 0 A2 cp) mit ÖC ö1 cos cp und C A2 ax sin 9? ergibt sich:

2

0J2 al cos2 9? + («j sin cp — bx)2

a\ + b\ — 2 axbx sin cp

0A2 aj cos2 9? + (a2 sin cp + 62)2

0% + b\ + 2 axbx sin 99

Nun ist aber 2 äx ^ sin 9? 2 a b (Flächentreue!) und a\ + b\ a2 + b2; damit
ergibt sich:

Ö42 (a - b)2 | 0A2 =(a + bf q.e.d.

R. Jakobi hat seine Konstruktion im Jahre 1952 veröffentlicht und durch
kinematische Betrachtungen bewiesen (vgl. [1]). O. Tamaschke gab 1963 einen
elementargeometrischen Beweis (vgl. [4]). H. Sieber führte 1967 zwei abbildungsgeometrische

Beweise, die nur Drehungen, Parallelverschiebungen und Geradenspiegelungen

verwenden (vgl. [3], S. 37-39). TT _ _....,.Helmut Sieber, Böblingen
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Kleine Mitteilungen

Eine Bemerkung zum Verfahren von Leverrier
Verschiedene mathematische und technische Probleme fuhren auf die Berechnung des

charakteristischen Polynoms
pA(X) det(A E - A)

wobei A eme behebige Matrix aus Mn(K), dem Rmg der komplexen n x w-Matrizen, und
E die Einheitsmatrix ist. Entwickelt man diese Determinante m üblicher Weise als Summe
von Produkten ihrer Elemente und ordnet dann nach fallenden Potenzen von A, so erhält
man das Ergebnis

wobei c0 1, cn

ist. Kj ist dabei die Menge sämtlicher Kombinationen ;-ter Klasse ohne Wiederholung:
l>i> • • •» yj C [1, n] und 1 ^ yx < <y ^n. ([6], S. 114).

PaW ~1)°> '.*•- •

detA und für alle ; 1, 2, ,n~ 1

[y_, •

E det
aYiVi "

\aYlVl


	Über das invariante Rechtwinkelpaar einer schiefen Affinität und dessen Zusammenhang mit der Jakobischen Konstruktion der Achsen einer Ellipse

