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Die Realteil- und Imaginirteilflichen analytischer Funktionen

1. Einleitung
Einer komplexen Funktion

f@) =ulx,y) +iox,y) (E=x+1iy) (1.1)

kann man verschiedenartige reelle oder komplexe Flichen zuordnen. Bekannt und
eingehend untersucht sind z. B. die Betragflachen [2, 6, 7, 9, 10]. In der vorliegenden
Arbeit nehmen wir an, f(z) sei analytisch, und ordnen f(2) die Realteilfliche R(f),
definiert durch

x(x’ y) = (x: Y, u(x: y)) ’ (12)
und die Imagindrteilfliche 1(f), definiert durch
x(x,y) = (x, v, v(x,9), (1.3)

zZu.

In Abschnitt 3 und 4 beweisen wir, dass beide Flichen in einem beliebigen Punkt
jeweils dieselbe GauBsche Kriimmung haben, dass aber diese identische Abbildung
fiir nichtkonstantes f nicht isometrisch ist. Die Frage nach der Existenz isometrischer
Abbildungen fiihrt auf das komplizierte System (4.3) bzw. (5.4). In einzelnen Fillen
(u.a. e?, z") sieht man sofort, dass R(f) und I(f) isometrisch sind. In anderen Fillen
(z.B. Inz, sinz, cosz) besteht keine Isometrie, wie gezeigt wird. Wie man Aussagen aus
den genannten Systemen in systematischer Weise gewinnt, wird in den letzten beiden
Abschnitten erdrtert.

Interessanterweise fiigt sich WANGERINS klassisches Beispiel [8], das von Uberle-
gungen bei Drehflichen herriihrt, auch in unsere funktionentheoretisch motivierte
Untersuchung ein.

Meinen Mitarbeitern, Herrn Doz. Dr. H. KNaPP und Herrn Dr. K.ECKER, danke
ich fiir Diskussionsbemerkungen im Rahmen unseres differentialgeometrischen Se-

minars.
2. Hilfsformeln

Die Darstellungen (1.2) und (1.3) haben die Form
*(x,y) = (x,9, h(x, y)).
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Fiir eine solche Darstellung hat die erste Grundform die Koeffizienten
2 2
gu=1+h, gu=nhh, ge=1+h, (2.1)

also die Diskriminante

. g=1+n+n. (2.2)
Die zweite Grundform hat die Koeffizienten
bu=holg, bu=h Ve, bu=h,le, (23)
also die Diskriminante
1
b= R1212 = 'E- (h'xx hyy - hiy) . (24)
Dabei ist R,,,, der kovariante Kriimmungstensor. So erhalten wir die GauBsche
Kriimmung
b 1
K = =& (e By — B (2.5)

3. Gauf3sche Kriimmung

Fir die Realteilfliche R(f) folgt aus (1.2), (2.1) und den Cauchy-Riemann-Glei-
chungen

gn=1+ (Ref)?, gp=—Ref Imf’, gop=1+ (Imf)? (3.1)
wobei der Strich die Ableitung nach z bedeutet. So wird
g=1+|f (3.2)
Die zweite Grundform hat die Koeffizienten
by = uxx/VE’ bis = uxy/‘/g’ bas = u'yy/‘/é—’ (3.3)
also wegen A« = 0 und (3.2) die Diskriminante
_ e
b= TF (3.4)
Aus (2.5) erhalten wir die GauBsche Kriimmung
_ e
K(Z) - (1 + !}cr |2)2 * (3°5)

Wie wir aus (3.5) sehen, haben f(z) und

file) =7 fla) + ¢ (yreell)
dieselbe GauBsche Kriimmung. Fiir y = —z/2 und ¢ = 0 liefert dies den

Satz 3.1. Die Realteilfliche R(f) und die Imagindrieilfliche I(f) einer analytischen
Funktion f(z) haben in entsprechenden Punkten dieselbe Gaufsche Kriimmung.

Aus (3.5) und Satz 3.1 folgt ferner:

R(f) und I(f) sind mit Ausnahme der Punkte, in denen f"(z) = O ist, hyperbolisch
gekriimmi. .
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4. Isometriebedingung

Der Satz 3.1 legt es nahe, der Frage der Isometrie von R(f) und I(f) nachzugehen.
Bekanntlich gilt allgemein der

Satz4.1. a) Ist eine Abbildung A: F - F* isometrisch, so stimmt die Gaufsche
Kriimmung in einem Punkt P € F und in seinem Bild P* = A P € F* diberein. b) Ha-
ben zwei Flichen dieselbe konstante Gaufische Kriimmung, so sind sie (lokal) isometrisch.

Aus (3.5) und Satz 4.1Db folgt im vorliegenden Fall sofort das triviale Ergebnis,
dass fiir die lineare Funktion f(2) = a z + % die Flachen R(f) und I(f) isometrisch sind.

Der Abbildungen wegen, die wir betrachten wollen, setzen wir z* = x* 4 ¢ y* und
schreiben (1.3) in der Form

¥ (%, y¥) = (2%, y*, v(2*, ¥¥)) . (4.1)
Es gilt dann der folgende

Satz 4.2. Eine Abbildung
#*=alx,y), y*=pBx7) (4.2)

der Realteilfliche R(f) einer analytischen Funktion f(2), z = x + ¢y, auf die Imagindr-
teilfliche I(f) [vgl. (4.1)] dieser Funktion ist genau dann isometrisch, wenn

a) Lol =1+ ud)od — 20, .0, f,+ (1 + ul)
b mu, = (L) o0 — e te (o By 1y B) (L4 ) BB, | (43)
C) 1+u _( +uy*) Zu’x* y*a‘ ﬂy (1+ui*)ﬂfr

gilt. Hierbei bedeuten Indizes partielle Ableitungen nach den betreffenden Variablen, die
partiellen Ableitungen auf der linken Seite und von o und 8 sind an der Stelle (x, y) zu
nehmen, die #brigen an der Stelle (x*, y*).

Beweis. Die Abbildung (4.2) ist genau dann isometrisch, wenn die zu (1.2) bzw.

(4.1) gehorigen ersten Grundformen in entsprechenden Punkten iibereinstimmen,
ds*? = ds?%. Hieraus folgt

g1 =84 “i + 2 gi"z o, B, + 8;2 ﬁz
usw. Dabei hat ds*? die Koeffizienten
gh =144, gi"z =Vut,, gn=1+1. (4.4)

Mittels der Cauchy-Riemann-Gleichungen ersetzen wir Ableitungen von v(x*, y*)
durch solche von #(x*, y*) und erhalten (4.3).
Wir vermerken noch folgendes: Aus (4.4) ergibt sich

gh=1+ (Imf)%, g =Ref Imf, gh=1+ (Ref)?, (4.5)
wobei der Strich die Ableitung nach z* bezeichnet. Im Falle der Abbildung
x*=x, y*=y (4.6)

stimmt die GauBsche Kriitmmung von R(f) und I (f) in entsprechenden Punkten tiber-
ein (Satz 3.1). Aus (3.1) und (4.5) folgt dann

gi"l = 822 8':; = —§12> g;z == 211 4.7)
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und wir sehen, dass (4.6) fiir nichtkonstantes f(z) keine isometrische Abbildung ist.
Dies kann man auch mittels (4.3) und der Cauchy-Riemann-Gleichungen bestétigen.

5. Spezielle Ansiitze

Unsere einfache Uberlegung im Zusammenhang mit (4.6) zeigt, dass eine Methode,
Aussagen aus (4.3) zu gewinnen, darin besteht, die Abbildungsfunktionen (4.2) in
spezieller Weise anzusetzen und dann #(x, ¥) und damit f(z) zu bestimmen. Wir wollen
dies fiir zwei weitere Fille erldutern.

Bei einer Translation

*=x, y*=y+k (5.1)
erhalten wir aus (4.3) zundchst
w(%,9) = Lu, (% y+ k),
u (%, y) (%, y) = —u, (x,y + k) u, (x,y + &),
u,(%,y) = Fu, (x,y+ k).
)

Der Produktansatz u(x, y) = F(x) G(y) liefert beim Einsetzen

F'(x) G(y) = £ F(x) G' (y + )
usw. Separation und Integration ergibt F = e°*. Das zugehorige G(y) bestimmt man
am einfachsten aus A« = 0. So erhalten wir insgesamt das Ergebnis:

Bei f(z) = e°2, ¢ reell, sind R(f) und I(f) isometrisch, sogar kongruent, und konnen
durch die Tnmslatzon (6.7) mit k = ;|2 ¢ ineinander iibergefiihrt werden.

Um die Rotation in dhnlicher Weise behandeln zu koénnen, gehen wir zu Polar-
koordinaten 7, ¢ und r*, ¢* iiber, die durch
x=rcos¢, y=rsing, x*=r*cosd* y*=r*sing*
definiert sind. Wir schreiben einfach
12) = u(r, ) + i v(r, @) . (5.2)

Wie Satz 4.2 ergibt sich.der
Satz 5.1. Eine Abbildung

r*=yr.¢), ¢*=o0( ¢ (5.3)

der Realteilfliche R(f) einer analytischen Funktion (5.2) auf die Imagindrteilfidche I(f)
dieser Funktion ist genau dann isometrisch, wenn

a) 144 =1 +r*2ul) 9l — 2u.ugy, 0, + 72 (1 + ul) o
b)  w,uy = (1 +7r*-2 “¢~) VeVg — Ypr Ugn (v, wy + Y4 ,) ]
g (5.4)
+ 72 (1 + ) 0, 0y, J
c)  Pug=(147"20ul) y5 — 2 U g s 04+ 72 (1 +.0l) @]

gilt, wobei Indizes partielle Ableitungen bedeuten. Die partiellen Ableitungen auf der
linken Seite und von v und w sind an der Stelle (v, ¢) zu nehmen und die iibrigen an der
Stelie (r*, ¢*).
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Im Falle einer Rotation

r*=r, ¢*=¢+90 (5.5)
folgt aus (5.4)
u,(r, ) = £ u¢ ,$+9d),
(7, d) uy(r, d) = (r,d+0) uy(r,d+9),
u¢(7,¢ qiru (r,d +9) .

Der Produktansatz u(r, §) = R(r) D(¢) ergibt

R
R'(") D(¢) = +7r L R(\D (¢ +9),
DY)V (P) =D ($+0)P ($+9),
R D'($) = FrR(MP($+9).

Separation und Integration fithrt auf R = ¢, und @ bestimmt man am einfachsten
vermoge Au = 0. Weiter folgt

D(P+0)=—-D(d—0).
So erhalten wir das Ergebnis:

Bei f(2) = z¢, c reell, sind R(f) und I(f) isometrisch, sogar kongruent, und kinnen
durch die Rotation (5.5) mit 0 = m|2 ¢ ineinander iibergefiihrt werden.

Dasselbe gilt auch fiir % 2°. Weiterhin hat man die folgenden Transformationen,
bei denen die Isometrie erhalten bleibt: Translationen und Rotationen in der z-Ebene,
Addition einer Konstanten zu f(z). Hieraus folgt:

Fiir f(2) = a 2> 4+ b 2 + ¢ sind R(f) wund I(f) isometrisch.

6. Zwei weitere Methoden

Notwendige Bedingungen fiir Isometrie sind die Gleichheit von K, von VK und
von AK in entsprechenden Punkten. Um festzustellen, ob fiir eine bestimmte Funk-
tion f(z) Isometrie von R(f) und I(f) vorliegt, bieten sich die folgenden beiden Wege
an, die wir gemischte bzw. Minding-Methode nennen wollen.

I. Gemischte Methode: Man benutzt Satz 4.1a, um (4.2) gewisse Bedingungen auf-
zuerlegen, und geht dann in (4.3) ein.

I1. Mindings Methode [3]: Man benutzt die obigen notwendigen Bedingungen al-
lein, also (4.3) tiberhaupt nicht, und sieht zu, ob man daraus Bedingungen oder Wider-
spriiche beziiglich der gesuchten Abbildungsfunktionen erhilt.

Wichtig ist in beiden Féllen die Annahme, dass die betrachteten Fldchen durch
ganz bestimmte Darstellungen gegeben sind. Die Methoden sind nicht verwendbar,
wenn wir f(z) noch ganz beliebig lassen, also Klassen von Fldchen betrachten. Selbst
wenn man sich auf ein Paar ganz bestimmter Flidchen beschrdnkt, hat man im allge-
meinen mit erheblichen Schwierigkeiten zu rechnen. Deshalb wurde friihzeitig ver-
sucht, wenigstens fiir Drehflichen unter Benutzung der Symmetrie praktische Resul-
tate zu erzielen; vgl. P. STACKEL [5]. Durch diese Arbeit angeregt, hat dann A. WaN-
GERIN [8] sein bekanntes Beispiel angegeben, das zeigt, dass Gleichheit der GauBschen
Kriimmung nur notwendig, aber (im nichtkonstanten Fall) nicht hinreichend fiir Iso-
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metrie ist. Interessanterweise ordnet sich dieses Beispiel in unsere gegenwirtigen von
der Funktionentheorie bestimmten Untersuchungen ein, indem wir es folgenderma-
Ben betrachten:

f(z) = Inz hat die Realteilfliche ¥ = (x, y, In7) und die Imaginirteilfliche x* =
(x*, y*, ¢*). Hierbei ist z =7 ¢ bzw. 2* = r* ¢, Fiir die GauBsche Kriimmung

findet man
1 1
K=*—'W§' bZW. K*=—W2)—2*
Aus K = K* folgt r = r*. In (5.4) ist wegen % = In7 nun u; = 0, uy = 0 sowiey, = 0,
und (5.4b) gewinnt die einfache Form 0 = (2 4 1) w, w,. Dann wire aber w, = 0, da
anderenfalls die Funktionaldeterminante der Abbildung identisch verschwidnde. Aus

(5.4a) folgte dann 1 +1/72 = 1, ein Widerspruch. Also lautet unser Ergebnis:

Bei f(z) = Inz sind R(f) (Drehfliche der Logarithmuskurve) und I(f) (Schrauben-
fldche) nicht tsometrisch.

Im vorliegenden Falle ist auch Mindings Methode brauchbar und liefert dasselbe
Ergebnis: Aus K = K* folgt » = r*. Statt VK betrachten wir einfacher
Vr2 = gll (27)2 = Vp*2 = glix (2 y%)2
Diese Gleichung ist wegen
n__"
S e
unvertréglich. R(f) und I(f) sind also nicht isometrisch.
Inz und e? zusammen zeigen:

g =1, r¥=y

Aws der Isometrie oder Nichtisometrie von R(f) und I(f) folgt nicht die entsprechende
Aussage fir die Umkehyfunktion.

Ubrigens ist K bei e* ebenfalls so einfach, dass die Methoden I und II ohne Schwie-

rigkeiten angewendet werden kénnen. Man hat ndmlich
ezx 321*

K=—m§;)~z‘ und K*‘:—*(i—:?m.

K = K* ergibt x = x*. Weiterhin wird
e2* -+ e** sin?y

X — oll p2x
Ver = glle T

und wegen x = x*
et + elx cos’y*

14 e2*
So erhalten wir siny = 4- cosy*, also y* = Fx/2, in Ubereinstimmung mit unserem
vorigen Ergebnis.

Schwierig wird die Anwendung der Methoden, wenn K von beiden Variablen ab-
hingt. Ein typisches Beispiel ist f(z) = cosz. Hier hat R(f) die GauBsche Kriimmung

K=—

cosh3 y — sin?x
(cosh® y 4 sin%x)? °
Unter Benutzung der Tatsache, dass eine isometrische Abbildung geodatlsch sein
muss, erhielt H.-W.Pu [4] das Ergebnss:

Bei cosz und sinz sind die Realteil- und die Imagindrteilfliiche nicht isometrisch.
ErwiIN KRrEYSZIG, Universitiat Diisseldorf
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Uber das invariante Rechtwinkelpaar einer schiefen Affinitit
und dessen Zusammenhang
mit der JakoBischen Konstruktion der Achsen einer Ellipse

Eine perspektive Affinitdt sei durch ihre orientierte Fixpunktgerade (f) = (f’)
und durch ein Paar zugeordneter Punkte P - P’ gegeben. Zur Beschreibung der
Abbildung legen wir (f) durch einen Einheitsvektor i fest, konstruieren den Bild-

punkt E’ eines Punktes E, der den Abstand + 1 von (f) besitzt, und geben den Bild-

vektor 0’ E' = =i+ M (A # 0) des Originalvektors OE = i an (siehe Figur 1).
Die Abbildung ist durch i’ oder durch die Paramter » und A eindeutig festgelegt

(vgl. [3, S. 17)).
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