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Die Realteil- und Imaginärteilflächen analytischer Funktionen

1. Einleitung
Einer komplexen Funktion

f(z) u(x, y) + i v(x, y) (z x + i y) (1.1)

kann man verschiedenartige reelle oder komplexe Flächen zuordnen. Bekannt und
eingehend untersucht sind z.B. die Betragflächen [2, 6, 7, 9, 10]. In der vorliegenden
Arbeit nehmen wir an, f(z) sei analytisch, und ordnen f(z) die Realteilfläche R(f),
definiert durch

x(x,y) {x,y,u(x,y)) (1.2)

und die Imaginärteilfläche I(f), definiert durch

x(x,y) (x,y,v(x,y)), (1.3)

zu.
In Abschnitt 3 und 4 beweisen wir, dass beide Flächen in einem behebigen Punkt

jeweils dieselbe Gaußsche Krümmung haben, dass aber diese identische Abbildung
für nichtkonstantes/nicht isometrisch ist. Die Frage nach der Existenz isometrischer

Abbildungen führt auf das komplizierte System (4.3) bzw. (5.4). In einzelnen Fällen
(u. a. ez, zn) sieht man sofort, dass R(f) und /(/) isometrisch sind. In anderen Fällen
(z.B. Inz, sin*, cos*) besteht keine Isometrie, wie gezeigt wird. Wie man Aussagen aus
den genannten Systemen in systematischer Weise gewinnt, wird in den letzten beiden
Abschnitten erörtert.

Interessanterweise fügt sich Wangerins klassisches Beispiel [8], das von Überlegungen

bei Drehflächen herrührt, auch in unsere funktionentheoretisch motivierte
Untersuchung ein.

Meinen Mitarbeitern, Herrn Doz. Dr. H.Knapp und Herrn Dr. K.Ecker, danke
ich für Diskussionsbemerkungen im Rahmen unseres differentialgeometrischen
Seminars.

2. Hilfsformeln

Die Darstellungen (1.2) und (1.3) haben die Form

*{x$y) (x,y,h(x,y)).
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Für eine solche Darstellung hat die erste Grundform die Koeffizienten

&_.= * + *;. £i2 My> gMÄl + Aj. (2.1)

also die Diskriminante

g-l + Aj + Aj. (2.2)

Die zweite Grundform hat die Koeffizienten

bn K*lfg. »ii V/ff • 6» ^y//g (2.3)

also die Diskriminante

»-Ami -_-(*„ *,,-*_,)• (2-4)

Dabei ist Rabcd der koVariante Krümmungstensor. So erhalten wir die Gaußsche

Krümmung

*=4--s-(*«**.-*;.)• (2-5)

3. Gaußsche Krümmung
Für die Realteilflache R(f) folgt aus (1.2), (2.1) und den Cauchy-Riemann-Glei-

chungen

gll 1 + (Re/')2, g12=-Re/'Im/', g22 1 + (Im/')2, (3.1)

wobei der Strich die Ableitung nach z bedeutet. So wird

g=l+|/'|2- (3-2)

Die zweite Grundform hat die Koeffizienten

hi uxxtfg b12 uxyl)jg b22 uyy/]/g (3.3)

also wegen Au 0 und (3.2) die Diskriminante

Aus (2.5) erhalten wir die Gaußsche Krümmung

*(»)"- (il^TlT- (3-5)

Wie wir aus (3.5) sehen, haben f(z) und

AM-^/M+c (y reell)

dieselbe Gaußsche Krümmung. Für y —n/2 und c 0 liefert dies den

Satss 3.1. Die Realteilflache R(f) und die Imaginärteilfläche /(/) einer analytischen
Funktion f(z) haben in entsprechenden Punkten dieselbe Gaußsche Krümmung.

Ans (3.5) und Satz 3.1 folgt ferner:

R{f) und I(f) sind mit Ausnahme der Punkte, in denen f"(z) 0 ist, hyperbolisch
gekrümmt.
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4. Isometriebedingung

Der Satz 3.1 legt es nahe, der Frage der Isometrie von R(f) und /(/) nachzugehen.
Bekanntlich gilt allgemein der

Satz4.1. a) Ist eine Abbildung A: F -> F* isometrisch, so stimmt die Gaußsche

Krümmung in einem Punkt P e F und in seinem Bild P* A P e F* überein. b) Haben

zwei Flächen dieselbe konstante Gaußsche Krümmung, so sind sie (lokal) isometrisch.

Aus (3.5) und Satz 4.1b folgt im vorliegenden Fall sofort das triviale Ergebnis,
dass für die lineare Funktion/^) a z + k die Flächen R(f) und /(/) isometrisch sind.

Der Abbildungen wegen, die wir betrachten wollen, setzen wir z* x* + i y* und
schreiben (1.3) in der Form

x*(x*, y*) (x*, y*f v(x*t y*)) (4.1)
Es gilt dann der folgende

Satz 4.2. Eine Abbildung
x* ___ a(#, y) y* ___ ß[x, y) (4.2)

der Realteilfläche R(f) einer analytischen Funktion f(z), z x + i y, auf die Imaginärteilfläche

I(f) [vgl. (4.1)] dieser Funktion ist genau dann isometrisch, wenn

a) 1 + u\ (1 + u*\) oc* - 2 ux. uy. oc, ßx + (1 + u%) ß\

b) ux uy (1 + u\\«) oc, oc - u^ uy* (oc, ß + a /?,) + (1 + u%) ßx ßy

+ «;=(! + ^*) oc* - 2 *v w>, oiy ßy + (1 + i£) j8!

(4.3)

gi/£. Hierbei bedeuten Indizes partielle Ableitungen nach den betreffenden Variablen; die

partiellen Ableitungen auf der linken Seite und von ol und ß sind an der Stelle (x, y) zu
nehmen, die übrigen an der Stelle (x*, y*).

Beweis. Die Abbildung (4.2) ist genau dann isometrisch, wenn die zu (1.2) bzw.
(4.1) gehörigen ersten Grundformen in entsprechenden Punkten übereinstimmen,
ds*2 ds2. Hieraus folgt

«11 rfi «* + 2 Si*2 «* ßx + #2*2 ßl

usw. Dabei hat ds*2 die Koeffizienten

«i* 1 + *>** >
«1*2 *V V • «2*2 1 + *£ - (4.4)

Mittels der Cauchy-Riemann-Gleichungen ersetzen wir Ableitungen von v(x*, y*)
durch solche von u(x*, y*) und erhalten (4.3).

Wir vermerken noch folgendes: Aus (4.4) ergibt sich

g* - 1 + (Im/')2, gf, Re/' Im/', g* 1 + (Re/')*, (4.5)

wobei der Strich die Ableitung nach z* bezeichnet. Im Falle der Abbildung

x* x y* y (4.6)

stimmt die Gaußsche Krümmung von R(f) und I (/) in entsprechenden Punkten überein

(Satz 3.1). Aus (3.1) und (4.5) folgt dann

«U «22 >
«1*2 ™ «12 • gn «11 » (4'7)
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und wir sehen, dass (4.6) für nichtkonstantes f(z) keine isometrische Abbildung ist.
Dies kann man auch mittels (4.3) und der Cauchy-Riemann-Gleichungen bestätigen.

5. Spezielle Ansätze

Unsere einfache Überlegung im Zusammenhang mit (4.6) zeigt, dass eine Methode,
Aussagen aus (4.3) zu gewinnen, darin besteht, die Abbildungsfunktionen (4.2) in
spezieller Weise anzusetzen und dann u(x, y) und damit f(z) zu bestimmen. Wir wollen
dies für zwei weitere Fälle erläutern.

Bei einer Translation
x* % y* y + k (5.1)

erhalten wir aus (4.3) zunächst

uxix>y) ±uy{x,y + k)

ux(x> y) uy(x> y) -ux (x> y + k)uy {%> y + *) >

uy(x>y) Tux(x>y + k) •

Der Produktansatz u(x, y) F(x) G(y) liefert beim Einsetzen

F'{x)G(y) ±F(x)G'(y + k)

usw. Separation und Integration ergibt F ecx. Das zugehörige G(y) bestimmt man
am einfachsten aus Au 0. So erhalten wir insgesamt das Ergebnis:

Bei f(z) ecz, c reell, sind R(f) und /(/) isometrisch, sogar kongruent, und können
durch die Translation (5.1) mit k n/2 c ineinander übergeführt werden.

Um die Rotation in ähnlicher Weise behandeln zu können, gehen wir zu
Polarkoordinaten r, <f> und r*, <f)* über, die durch

x — r cos<f> y r sm<f>, x* r* cos<f>*, y* r* sin^*

definiert sind. Wir schreiben einfach

f(z)^u(r,(f>)+iv(r,<f>). (5.2)
Wie Satz 4.2 ergibt sich der

Satz 5.1. Eine Abbildung
r* y(r, <f>) <f>* - co(r, <f>) (5.3)

der Realteilfläche R(f) einer analytischen Funktion (5.2) auf die Imaginärteilfläche I(f)
dieser Funktion ist genau dann isometrisch, wenn

a) 1 + u\ (1 + r*-« u%) y*~2 uf. u^ yr co, + r** (1 + u%) eo*,

b) ur u^ (1 + r*-» u\.) yf y$ - uf. u^ (yf w^ + y$ «,)
+ r**(l+u%)cora>f,

(5.4)

c) r2 + u\ (1 + r*-» «}.) yj - 2 «,. «^ y# o>^ + r*2 (1 + «».) co2

gi#, ze/ofof Indizes partielle Ableitungen bedeuten. Die partiellen Ableitungen auf der
linken Seite und von y und co sind an der Stelle (r, <f>) zu nehmen und die übrigen an der
Stelle (r*4*).
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Im Falle einer Rotation
r* r, <f>* <f> + d (5.5)

folgt aus (5.4)
ur(r,<f>) ±r-1u</>(r,<f) + d)

UM> $ u<f>(r> <t>) -ur ir> t + fyuf (r, </> + d)

*t(r><ß) Trur(r,(f> + d)

Der Produktansatz u(r, </>) R(r) 0(<p) ergibt

R'(r) 0(<ß) _=_ ±r~1 R(r) 0' (<f> + ö)

0(<f>) ®'(<f>) -&(</> + ö) 0' ((f> + d)

R(r) &'((/>) T r R'(r) 0 (<f> + d)

Separation und Integration führt auf R rc, und 0 bestimmt man am einfachsten
vermöge Au 0. Weiter folgt

0 (cß + d) -0 (<f> - d)

So erhalten wir das Ergebnis:

Bei f(z) zc, c reell, sind R(f) und I(f) isometrisch, sogar kongruent, und können
durch die Rotation (5.5) mit d n\2 c ineinander übergeführt werden.

Dasselbe gilt auch für k zc. Weiterhin hat man die folgenden Transformationen,
bei denen die Isometrie erhalten bleibt: Translationen und Rotationen in der 2-Ebene,
Addition einer Konstanten zuf(z). Hieraus folgt:

Fürf(z) — az2 + bz + c sind R(f) und I(f) isometrisch.

6. Zwei weitere Methoden

Notwendige Bedingungen für Isometrie sind die Gleichheit von K, von Vi£ und
von AK in entsprechenden Punkten. Um festzustellen, ob für eine bestimmte Funktion

f(z) Isometrie von R(f) und /(/) vorliegt, bieten sich die folgenden beiden Wege
an, die wir gemischte bzw. Minding-Methode nennen wollen.

I. Gemischte Methode: Man benutzt Satz 4.1a, um (4.2) gewisse Bedingungen
aufzuerlegen, und geht dann in (4.3) ein.

II. Mindings Methode [3]: Man benutzt die obigen notwendigen Bedingungen
allein, also (4.3) überhaupt nicht, und sieht zu, ob man daraus Bedingungen oder
Widersprüche bezüglich der gesuchten Abbildungsfunktionen erhält.

Wichtig ist in beiden Fällen die Annahme, dass die betrachteten Flächen durch
ganz bestimmte Darstellungen gegeben sind. Die Methoden sind nicht verwendbar,
wenn wir f(z) noch ganz beliebig lassen, also Klassen von Flächen betrachten. Selbst

wenn man sich auf ein Paar ganz bestimmter Flächen beschränkt, hat man im
allgemeinen mit erheblichen Schwierigkeiten zu rechnen. Deshalb wurde frühzeitig
versucht, wenigstens für Drehflächen unter Benutzung der Symmetrie praktische Resultate

zu erzielen; vgl. P. Stäckel [5]. Durch diese Arbeit angeregt, hat dann A. Wan-
gerin [8] sein bekanntes Beispiel angegeben, das zeigt, dass Gleichheit der Gaußschen

Krümmung nur notwendig, aber (im nichtkonstanten Fall) nicht hinreichend für Iso-
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metrie ist. Interessanterweise ordnet sich dieses Beispiel in unsere gegenwärtigen von
der Funktionentheorie bestimmten Untersuchungen ein, indem wir es folgendermaßen

betrachten:
f(z) \nz hat die Realteilfläche x (x, y, \nr) und die Imaginärteilfläche x*

(x*,y*,<}>*). Hierbei ist z r eitf> bzw. z* r*ei<f>*. Für die Gaußsche Krümmung
findet man

K - ,«
*

_ bzw. K*
(1 + 72)2 """' " (l + r*2)2

•

Aus K K* folgt r r*. In (5.4) ist wegen u \nr nun w^ 0, u^* 0 sowie y^ 0,
und (5.4b) gewinnt die einfache Form 0 (r2 + 1) a>r 00$. Dann wäre aber cor 0, da
anderenfalls die Funktionaldeterminante der Abbildung identisch verschwände. Aus
(5.4a) folgte dann 1 +l/r2 1, ein Widerspruch. Also lautet unser Ergebnis:

Bei f(z) lnz sind R(f) (Drehfläche der Logarithmuskurve) und I(f) (Schraubenfläche)

nicht isometrisch.

Im vorliegenden Falle ist auch Mindings Methode brauchbar und liefert dasselbe

Ergebnis: Aus K K* folgt r r*. Statt VK betrachten wir einfacher

Vr2 g11 (2 r)2 Vr*2 g11* (2 r*)2

Diese Gleichung ist wegen
ffH nrll __ 1 -f* -— y& 1 _|_ r2 * & X ' ' r

unverträglich. R(f) und /(/) sind also nicht isometrisch.
Inz und ez zusammen zeigen:

Aus der Isometrie oder Nichtisometrie von R(f) und I(f) folgt nicht die entsprechende

Aussage für die Umkehrfunktion.

Übrigens ist K bei ez ebenfalls so einfach, dass die Methoden I und II ohne
Schwierigkeiten angewendet werden können. Man hat nämlich

K - „ „^ und K*
(1 + e**)* (1 + e***)* '

K K* ergibt x x*. Weiterhin wird

V^-gu^- g2'+***sin2y

und wegen x #*

V,,* _ ,11* ,2,* __ ^+^cosyV* -« * ~ l + *2*

So erhalten wir siny ±cosy*, also y* "^7t\2, in Übereinstimmung mit unserem
vorigen Ergebnis.

Schwierig wird die Anwendung der Methoden, wenn K von beiden Variablen
abhängt. Ein typisches Beispiel ist/(2:) cos2. Hier hat R(f) die Gaußsche Krümmung

v _ cosh3 y — sin2 at
K

(cosh2 y + sin2^"
Unter Benutzung der Tatsache, dass eine isometrische Abbildung geodätisch sein

muss, erhielt H.-W.Pü [4] das Ergebnis:
Bei cosz und sin* sind die Realteil- und die Imaginärteilfläche nicht isometrisch.

Erwin Kreyszig, Universität Düsseldorf
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Über das invariante Rechtwinkelpaar einer schiefen Affinität
und dessen Zusammenhang

mit der Jakobi sehen Konstruktion der Achsen einer Ellipse

Eine Perspektive Affinität sei durch ihre orientierte Fixpunktgerade (/) (/')
und durch ein Paar zugeordneter Punkte P -> P' gegeben. Zur Beschreibung der
Abbildung legen wir (/) durch einen Einheitsvektor i fest, konstruieren den
Bildpunkt E' eines Punktes E, der den Abstand + 1 von (/) besitzt, und geben den

Bildvektor 0' E' j' — x i + X j (A^0) des Originalvektors 0 E j an (siehe Figur 1).
Die Abbildung ist durch }' oder durch die Paramter x und X eindeutig festgelegt
(vgl. [3, S. 17]).

//EL'A

äU
ÖaO'

Figur 1

/ j-XA+K$

(f)-(f)
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