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Anschauliche Behandlung eines Vcrz&cigungsprozesscs
(branching process)

Verzweigungsprozesse (branching processes) geben eine mathematische Darstel-
lung der Entwicklung einer « Bevélkerung» (population), bestehend aus irgendwelchen
Elementen, die sich nach Wahrscheinlichkeitsgesetzen fortpflanzen und nach Wahr-
scheinlichkeitsgesetzen sterben. Sowohl die Elemente dieser Gesamtheit als auch die
Art des Fortpflanzungsvorganges kénnen in sehr verschiedener Art gewdhlt werden;
indessen diirfen sich die Glieder gegenseitig weder hemmen noch fordern. T. E. HARRIS
hat in den letzten Jahren in [2] eine zusammenfassende Theorie dieser Prozesse gege-
ben. — In den folgenden Zeilen soll fiir einen besonders einfachen Verzweigungsprozess,
den Galton-Watson-Prozess, zunichst ein Urnenschema entwickelt werden; aus die-
sem sollen in anschaulicher Weise einige Folgerungen gezogen werden, die nachher vor
allem auf das Problem des Aussterbens der Geschlechter angewendet werden.

1. Ein Urnenschema

Wir denken uns eine mit Kugeln gefiillte Urne. Jede Kugel trage eine nichtnegative
ganze Zahl z als Nummer; im iibrigen seien alle Kugeln gleich und 0 < z < w. Die
Wahrscheinlichkeit, aus der gut durchmischten Urne eine Kugel mit der Zahl z als

Nummer zu ziehen, sei p,. Es ist dann 2 p,=1,und es sei p, # Ound p, # 1. Nun
werde folgendes Spiel gespielt: 1=

1. Akt: Es wird eine Kugel gezogen und ihre Nummer z = z, notiert. Dann wird sie
zuriickgelegt, und die Urne wird wieder gut durchmischt.

2. Akt: Nun werden nacheinander z; Kugeln gezogen. Dabei legen wir jede Kugel,
nachdem wir ihre Nummer notiert haben, wieder zuriick und mischen, bevor die
nichste Kugel gezogen wird («Ziehen mit Zuriicklegen»). Wir bilden die Summe z, der
in diesem Akt notierten Nummern.

3. Akt: In analoger Weise ziehen wir jetzt z, Kugeln, wieder mit Zuriicklegen, und
bilden die Summe z; ihrer Nummern, #sw.

Sobald eine der Summen z; = 0 ist, brechen wir das Spiel ab; wir setzen in nahe-
liegender Weise in diesem Falle z;,,, =0fir £ =1,2,3, ...

Wir stellen jetzt die Frage: Wie gross ist die Wahrscheinlichkeit g,, dass z, = 0
ist? g, ist also die Wahrscheinlichkeit dafiir, dass unser Spiel spdtestens mit dem n-ten
Akt abbricht.
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2. Die Berechnung von q,

Natiirlich ist g, = p,. Wie gross ist g, fiir » > 1? Wir konnen diese Wahrschein-
lichkeit rekursiv berechnen, indem wir die nachfolgenden Ereignisse E, E;, E,, ... E
betrachten, die sich alle gegenseitig ausschliessen:

Ey: Es wird im ersten Akt eine Kugel mit der Nummer 0 gezogen. Esist also z; = 0,
und das Spiel bricht bereits mit dem ersten Akt ab: P(E,) = p,.

E;: Es wird im ersten Akt eine Kugel mit der Nummer 1 gezogen, und das Spiel
bricht spitestens mit dem #n-ten Akt ab. Es ist also z; = 1. Wenn wir nun im zweiten
Akt 1 Kugel ziehen, so kénnen wir diese Fortsetzung des Spieles als Beginn eines
neuen Spieles betrachten; dieses neue Spiel soll nun aber bereits nach spitestens
(n — 1) Akten abbrechen. Deshalb ist P(E,) = $, ¢, _ ;.

E,: Es wird im ersten Akt eine Kugel mit der Nummer 2 gezogen, und das Spiel
bricht spitestens mit dem #n-ten Akt ab. Es ist also z; = 2. Wenn wir nun im zweiten
Akt 2 Kugeln ziehen (mit Zuriicklegen!), so kénnen wir diese Fortsetzung unseres
Spieles als Beginn von zwei neuen Spielen betrachten, die wir uns der Einfachheit
halber auch an zwei Urnen der oben beschriebenen Art fortgesetzt denken konnen;
beide Spiele sollen nun aber bereits nach spitestens (» — 1) Akten abbrechen. Somit:
P(Ey) = p3 05 _1-

Analog definieren wir die weitern Ereignisse; E; bedeutet also fiir 0 << j < w: Im
ersten Akt ergibt sich z; = 7, und die Fortsetzung des Spieles betrachten wir als Beginn
von | neuen Spielen, die wir uns auch an j Urnen der obigen Art fortgesetzt denken
kénnen und die alle nach spitestens (» — 1) Akten abbrechen sollen. Also ist P(E;) =
pj an -1

Wir erhalten somit

()

¢1=7po und fir »>1: ‘]n:“"ZP(Ei)ZZPiQf;-r (1)
by} iso

Mit welcher Wahrscheinlichkeit wird unser Spiel im Laufe der Zeit iiberhaupt einmal
abbrechen? Um diese Frage zu beantworten, betrachten wir die durch (1) gegebene

FOlge q1, 92 g3, «---

¢, =po 1
Ga=1to+P1qs +b2qt +Psdi + - +P,40 =flg)
93="20+ P19 +¢2qg +753qg + o+ b, = flgl)

.......................................

..........................................

Die Untersuchung der Frage, mit welcher Wahrscheinlichkeit unser Spiel im Laufe
der Zeit abbricht, lduft nun auf die Untersuchung von nlimooq,, hinaus. Aus (2) folgt
zunichst

Po=q1 <flgr) = ¢ < flgo) = @5 < -+ < f@u-1) = 0 <S) = Qi1 <+ (3)

die Folge der g, ist also monoton wachsend. Da die g, Wahrscheinlichkeiten darstellen,
ist sie auch nach oben beschrinkt. Somit existiert der Grenzwert ¢ dieser Folge, und
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es 1st
¢g= lm g¢,= lim f(g, ,) oder g¢=/flg).

n—>00

Die Wahrscheinlichkeit q, dass unser Spiel tm Laufe der Zeit abbricht, ist somit ge-
geben als eine Losung der Gleichung

Z=f(x) =P+ pr %+ paa® + Py AP+ .. + P, 2°. ()

3. Die Berechnung von ¢q

Gleichung (4) hat als eine Wurzel sicher 1, da nach der Definition unseres Spieles

Z p, =1 ist. Hat sie im Intervall 0 < x < 1 noch weitere Wurzeln ? Diese Frage
2=0
kann - in Weiterfithrung eines Gedankens, der sich bei A. LoTkA in [4] und W.FELLER

in [1] findet — wie folgt anschaulich behandelt werden: Wir betrachten die Graphen
der beiden Gleichungen y = x und y = f(x), wobei f die bisherige Bedeutung habe.
Wegen 1 = f(1) schneiden sich die beiden Graphen im Punkte (1/1), und wir haben zu
untersuchen, ob sich im Intervall 0 < x < 1 noch weitere Schnittpunkte befinden;
solche wiirden uns weitere Losungen von Gleichung (4) ergeben. Fiir x = 0 ist nun der
Graph von f konvex, und somit sind nur die drei Fille denkbar:

a) Zweiter Schnittpunkt ausserhalb 0 < x < 1:

YA
y=fix)
y=x
7 P
Fo
] ¥
Figur 1
b) Beriihrung im Punkie (1/1):
7} y-1)
V=X
7 P
Py
*

Figur 2
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In diesen beiden Fillen ist also 1 die einzige uns interessierende Wurzel von Glei-
chung (4), und die Wahrscheinlichkeit ¢, dass unser Spiel im Laufe der Zeit abbricht,
ist in diesen Fillen ¢ = 1; das Spiel bricht sicher ab, wenn es lange genug gespielt

wird.
c) Zweiter Schnittpunkt innerhalb 0 < x < 1:
VA y=flx)

P

P

] 5%

TFigur 3

Nur in diesem Falle hat Gleichung (4) eine von 1 verschiedene Wurzel & im uns
interessierenden Intervall; es ist — wie aus der Figur sofort ersichtlich - ¢, = po< &
<C 1. Daraus folgt nun aber sofort f(g,) = ¢, << f(§) = & usw., also auch f(g,_,) =
g, < f(§) = &. In diesem Falle hat also die Folge der ¢, dieses & << 1 zum Grenzwert.
Er stellt die Wahrscheinlichkeit ¢ dafiir dar, dass das Spiel im Laufe der Zeit abbricht;
1 — g > 0 ist dann die Wahrschesnlichkeit dafiir, dass das Spiel niemals abbricht.

Nun wollen wir beachten, dass die ersten beiden Fille, a und b, durch f'(1) <1
und der dritte Fall, ¢, durch f'(1) > 1 charakterisiert sind.

Was bedeutet f'(1) =1p;, +2p,+ 3 p3+ -+ + wp,? Wir betrachten eine zu-
fallige Variable Z, die die Werte 0, 1, 2, 3, ... mit den Wahrscheinlichkeiten p,, p,, Ps,
Ps, ..., beziehungsweise p, annimmt; Z ist also gegeben durch die Nummern der
Kugel, die bei einem Zug aus unserer Urne erscheinen kénnen. Dann ist f'(1) gerade
der Erwartungswert E(Z) dieser zufdlligen Variablen Z, und wir haben das Ergebnis:
Die Wahrscheinlichkeit q, dass das Spiel im Laufe der Zeit abbricht, ist genau dann <1,
wenn E(Z) > 1.

4. Beispiele

4.1 Wir denken uns einen mdnnlichen Neugeborenen als Stammuvater eines Geschlech-
tes; er reprasentiere die 0. Generation. Die Zahl seiner médnnlichen Nachkommen, die
als Stammbhalter fiir den Fortbestand des Geschlechtes sorgen, wollen wir als Wert
einer zufilligen Variablen Z auffassen; fiir die Werte z von Z gelte 0 < 2 < w. Die

zugehorigen Wahrscheinlichkeiten seien 2,; 2 p,= 1. Diese minnlichen Nach-
2=0
kommen bilden die 1. Generation. Unabhingig von Einfliissen der Vererbung, der

Zeit oder der Umwelt bestehe nun fiir jeden méinnlichen Neugeborenen der 1. Genera-
tion wieder die Wahrscheinlichkeit $,, im Laufe seines Lebens genau z ménnliche
Nachkommen zu haben. Diese mdnnlichen Nachkommen der 1. Generation bilden die
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2. Generation. Wiederum bestehe fiir jeden von diesen — unabhingig.von dea genann-
ten Einfliissen — die Wahrscheinlichkeit ,, im Laufe seines Lebens genau z médnnliche
Nachkommen zu erhalten, usw. Offensichtlich ldsst sich die Entwicklung dieses Ge-
schlechtes durch unser obiges Urnenschema darstellen. Das Ergebnis des zweiten
Abschnittes gibt uns jetzt die Moglichkeit, die Wahrscheinlichkeit dafiir zu berechnen,
dass in einer Generation 0 méannliche Nachkommen sein werden, mit andern Worten,
die Wahrscheinlichkeit dafiir zu finden, dass das Geschlecht ausstirbt. Diese Wahrschein-
lichkeit ist gerade durch unser g gegeben. Der oben eingefiihrte Erwartungswert E(Z)
erhilt nun ebenfalls eine sehr anschauliche Bedeutung: E(Z) stellt den Erwartungs-
wert der direkten (médnnlichen) Nachkommen fiir ein Element irgendeiner Generation
dar, also etwa die «mattlere Anzahl von direkten (mannlichen) Nachkommen» eines Ele-
mentes 1rgendeiner Generation. Und das Ergebnis unserer Untersuchung besagt: Die
Wahrscheinlichkeit, dass das Geschlecht im Laufe der Zeit ausstirbt, ist genau dann
kleiner als 1, wenn die «mittlere Anzahl von direkten (minnlichen) Nachkommen»
eines Elementes grosser als 1 ist. Genau in diesem Falle besteht also eine von 0 ver-
schiedene Wahrscheinlichkeit dafiir, dass das vom Stammvater hoffnungsvoll be-
griindete Geschlecht weiterbliiht ...

Es ist vielleicht angebracht, nochmals auf die wesentlichsten unserer vereinfachenden
Annahmen fiir die Entwicklung eines Geschlechtes hinzuweisen: Wir haben die ¢, als
zeitlich konstant vorausgesetzt; die Statistiker weisen indessen darauf hin, dass zundchst
infolge des Riickganges der Sterblichkeit immer mehr Neugeborene das heiratsfihige
Alter erreichen und dass ferner eine sikulare Zunahme der Heiratsfihigkeit festgestellt
werden kann. (Man vergleiche dariiber z. B. A.MosgR [5].) Wir haben weiter auch voraus-
gesetzt, dass die p, nicht davon abhidngen, ob das Element, das Nachkommen erzeugt,
etwa aus einer Familie mit viel oder wenig Nachkommen stammt.

In diesem Zusammenhange mogen Schitzwerte fiir die p, und fiir E(Z) interessie-
ren. Soviel uns bekannt ist, lassen sich solche Schiatzwerte nicht ohne weiteres aus
bereits vorhandenen statistischen Unterlagen gewinnen. Wir sind dieser Frage in [3]
nachgegangen. Eine Untersuchung in Luzern (durchgefiihrt fiir Korporationsbiirger)
ergab nach Ausgleichung die folgenden Schitzwerte:

bo = 0,605; p. ~x 0,654 60972 firz =1; E(Z)~ 0,635.

In Deutschland sind vor einem Jahrzehnt Erhebungen iiber die «ideale Familien-
grosse» durchgefithrt worden; es ist dabei auch auf die gute Ubereinstimmung zwi-
schen der «idealen», d.h. der gewiinschten, und der tatsichlichen Kinderzahl hinge-
wiesen worden. Fiir Geschlechter, die sich nach diesem «Idealfall» entwickeln, lassen
sich ebenfalls Schidtzwerte fiir die p, errechnen, wenn noch einige naheliegende weitere
Annahmen gemacht werden:

po = 0,43; p, = 0,30; p, = 0,21; p3 = 0,053; p, =~ 0,005; p, =~ 0,002; E(Z) =~ 0,91.

Fiir alle Einzelheiten und weitere Schiatzwerte sei auf die bereits genannte Arbeit
[3] verwiesen. In den beiden genannten Fillen ist also E(Z) geschdtzt kleiner als 1;
Familien, die sich so entwickeln, sterben mit Sicherheit aus. — A.LoTkA gibt in [4]
entsprechende Schitzwerte, die auf der amerikanischen Bevolkerungsstatistik des
Jahres 1920, die weisse Rasse betreffend, basieren; hier ergab sich fiir E(Z) &~ 1,260
und eine Wahrscheinlichkeit von etwa 829, fiir das Aussterben einer solchen Linie.
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4.2 Unser Urnenschema ist aber nicht nur fiir dieses Problem aus der Familien-
statistik anwendbar. So hat E.SCHRODINGER in [6] derartige Betrachtungen an
Kettenreaktionen angestellt : Durch ein Neutron der geeigneten Energie (0. Generation)
wird mit der Wahrscheinlichkeit p ein schwerer Kern gespalten, dabei mégen m Neu-
tronen entstehen. Diese bilden die 1. Generation. Nun denken wir uns den Prozess
fortgesetzt, wobei fiir jedes dieser Neutronen wieder die Wahrscheinlichkeit p bestehe,
neue Kerne zu spalten usw. Hier ist also py=1— $ und p,, = p; fiir z # 0, m ist
$., = 0. In gewissen einfachen Fillen kénnte unser Schema ferner auf Warteschlangen
angewendet werden: An einem Arbeitsplatz, an welchem immer nur ein Stiick repa-
riert werden kann, befinde sich ein Stiick in Reparatur (0. Generation). Alle Stiicke,
die wihrend der Zeit eintreffen, da dieses Stiick repariert wird, gelten als seine «Nach-
kommen» und bilden die 1. Generation. p, ist dann die Wahrscheinlichkeit dafiir, dass
wihrend der Zeit, da das Stiick der 0. Generation instand gestellt wird, genau z weitere
Stiicke eintreffen und warten miissen. Alle Stiicke, die eintreffen, wihrend ein Stiick
der 1. Generation wiederhergestellt wird, bilden die 2. Generation usw. Sobald eine
Generation 0 Stiicke umfasst, werde die Arbeit eingestellt. — Hinweise auf analoge
Problemstellungen bei gewissen chemischen Kettenreaktionen oder bei Fragen der
Genetik finden sich z.B. bei T.E. HARRIS in [2].

5. Der Galton-Watson-Prozess

Unser Urnenschema stellt, wie in der Einleitung erwidhnt, einen sogenannten
Galton-W atson-Prozessl) dar, den wir im Anschluss an T.E.HARrris [2] wie folgt
definieren konnen:

a) Wir denken uns Objekte, die weitere Objekte derselben Art, ihre Nachkommen,
erzeugen koénnen.

b) Die am Anfang gegebene Menge solcher Objekte nennen wir die 0. Generation,
ihre Nachkommen bilden die 1. Generation, deren Nachkommen die 2. Generation
usw.

c) Die Anzahl der Objekte in der i-ten Generation ist ein Wert einer zuféilligen
Variablen Y, 2 =0, 1, 2,.... Wir setzen stets Y, = 1; die Wahrscheinlichkeit, dass
Y,=2%mitz=0,1, 2, ... w, bezeichnen wir mit p,:

P(Y, =2 =p,, Z;pz:: :

d) Fiir jedes Objekt in irgendeiner Generation sei nun die Wahrscheinlichkeit, im
Laufe seines ganzen Lebens z Nachkommen zu haben (z = 0, 1, 2, ... w) wieder durch
diese p, gegeben.

Die Y; bilden dann offenbar eine (einfache, homogene) Markoffsche Kette: Die
Wahrscheinlichkeit, dass in der (# + 1)-ten Generation £ Objekte vorkommen, hingt
nur davon ab, wie gross die Zahl der Objekte in der #-ten Generation ist:

P(Y, =kY,=))=w,;, hkn=012 .. Y,=1.

1) Nach dem Botaniker F.GaLTON, der sich ebenfalls mit dem Prozess des Aussterbens der Geschlechter
befasst hat, und H. W.WaTson, der eine erste mathematische (unvollstiindige) Losung dieses Problems ge-
geben hat (1874). Watson hat die mégliche Existenz einer Wurzel £ = ¢ < 1 iibersehen.
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(Diese Ubergangswahrscheinlichkeiten w; , sind als bedingte Wahrscheinlichkeiten nicht
definiert fiir jene j, fiir die P(Y, =) = O ist.)

Diesen Galton-Watson-Prozess, der also eine spezielle Markoffsche Kette darstellt,
haben wir in unseren obigen Betrachtungen daraufhin untersucht, dass er spitestens
in der n-ten Generation abbricht, wofiir wir die Wahrscheinlichkeit

g, = P(Y, = 0)
durch (1) angegeben haben. Ist aber Y, = 0, so folgt aus der Definition des Prozesses

P(Y, ,=0/Y,=0)=wg=1.

n+1"

Das heisst aber, dass mit der #-ten auch alle spitern Generationen 0 Objekte haben:

Die Linie erlischt, das Geschlecht stirbt aus. Der Zustand Y, = 0 stellt einen absorbie-

renden Zustand dar; er kann nicht mehr verlassen werden. — Mit ¢ = lingo g, haben
n—

wir weiter die Wahrscheinlichkeit dafiir berechnet, dass die Linie im Laufe der Zeit
erlischt.

Soll unser Prozess in anderer Richtung untersucht werden, indem wir z.B. nach
der Wahrscheinlichkeit fragen, in einer bestimmten Generation eine gewisse Anzahl
von Objekten vorzufinden, so bieten sich als geeignete mathematische Hilfsmittel er-
zeugende Funktionen an; es sei dafiir auf [1], [3] oder [4] verwiesen.

RoBERT INEICHEN, Luzern/Fribourg
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Kleine Mitteilungen

Super Perfect Numbers

A positive integer # is called a super perfect number if ¢(o(n)) = 2 n, where g(n) is the
sum of all the divisors of #. The problem of finding super perfect numbers is similar to that
of finding perfect numbers.

In this note we prove the following theorem concerning even super perfect numbers and
pose the existence of odd super perfect numbers as a problem:

Theorem. An even integer » is super perfect if and only if # is of the form 27, where
2r+1 — 1 is a prime.

Proof. Firstly, let n = 27, where 2't1 — 1 is a prime. Then o(g(n)) = o (2! — 1) =
2rtt = 2 ;, so that » is a super perfect number.

Secondly, let #n be any even super perfect number. Then we can write n = 27 ¢, where
¢ is odd. Since » is super perfect, we have

21 g = 2m = o(a(n)) = o (27 — 1) v(g)) . (1)
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