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Anschauliche Behandlung eines Verzweigungsprozesses
(branching process)

Verzweigungsprozesse (branching processes) geben eine mathematische Darstellung

der Entwicklung einer «Bevölkerung» (population), bestehend aus irgendwelchen
Elementen, die sich nach Wahrscheinlichkeitsgesetzen fortpflanzen und nach
Wahrscheinlichkeitsgesetzen sterben. Sowohl die Elemente dieser Gesamtheit als auch die
Art des Fortpflanzungsvorganges können in sehr verschiedener Art gewählt werden;
indessen dürfen sich die Glieder gegenseitig weder hemmen noch fördern. T. E. Harris
hat in den letzten Jahren in [2] eine zusammenfassende Theorie dieser Prozesse gegeben.

- In den folgenden Zeilen soll für einen besonders einfachen Verzweigungsprozess,
den Galton-Watson-Prozess, zunächst ein Urnenschema entwickelt werden; aus
diesem sollen in anschaulicher Weise einige Folgerungen gezogen werden, die nachher vor
allem auf das Problem des Aussterbens der Geschlechter angewendet werden.

1. Ein Urnenschema
Wir denken uns eine mit Kugeln gefüllte Urne. Jede Kugel trage eine nichtnegative

ganze Zahl z als Nummer; im übrigen seien alle Kugeln gleich und 0 gj z fg oo. Die
Wahrscheinlichkeit, aus der gut durchmischten Urne eine Kugel mit der Zahl z als

CO

Nummer zu ziehen, sei pz. Es ist dann JT ftz—l> undesseift0 =£ 0und^0 ^ 1. Nun
werde folgendes Spiel gespielt: *=0

/. Akt: Es wird eine Kugel gezogen und ihre Nummer z zx notiert. Dann wird sie

zurückgelegt, und die Urne wird wieder gut durchmischt.
2. Akt: Nun werden nacheinander zx Kugeln gezogen. Dabei legen wir jede Kugel,

nachdem wir ihre Nummer notiert haben, wieder zurück und mischen, bevor die
nächste Kugel gezogen wird («Ziehen mit Zurücklegen»). Wir bilden die Summe z2 der
in diesem Akt notierten Nummern.

3. AM: In analoger Weise ziehen wir jetzt z2 Kugeln, wieder mit Zurücklegen, und
bilden die Summe zz ihrer Nummern, usw.

Sobald eine der Summen z{ 0 ist, brechen wir das Spiel ab; wir setzen in
naheliegender Weise in diesem Falle zi+k 0 für k 1, 2, 3, —

Wir stellen jetzt die Frage: Wie gross ist die Wahrscheinlichkeit qn, dass zn 0
ist qn ist also die Wahrscheinlichkeit dafür, dass unser Spiel spätestens mit dem n-ten
AM abbricht.
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2. Die Berechnung von qn

Natürlich ist qx ft0 Wie gross ist qn fur n > 1 Wir können diese Wahrschein
henkelt rekursiv berechnen, indem wir die nachfolgenden Ereignisse E0, Ex, E2, E0}

betrachten, die sich alle gegenseitig ausschhessen

Eq Es wird im ersten Akt eme Kugel mit der Nummer 0 gezogen Es ist also zx 0,
und das Spiel bricht bereits mit dem ersten Akt ab P(E0) ft0

Ex Es wird im ersten Akt eme Kugel mit der Nummer 1 gezogen und das Spiel
bricht spätestens mit dem n ten Akt ab Es ist also zx 1 Wenn wir nun im zweiten
Akt 1 Kugel ziehen, so können wir diese Fortsetzung des Spieles als Beginn emes
neuen Spieles betrachten, dieses neue Spiel soll nun aber bereits nach spätestens
(n — 1) Akten abbrechen Deshalb ist P(EX) px qn _ x

E2 Es wird im ersten Akt eme Kugel mit der Nummer 2 gezogen, und das Spiel
bricht spätestens mit dem n ten Akt ab Es ist also zx 2 Wenn wir nun im zweiten
Akt 2 Kugeln ziehen (mit Zurücklegen'), so können wir diese Fortsetzung unseres
Spieles als Beginn von zwei neuen Spielen betrachten, die wir uns der Einfachheit
halber auch an zwei Urnen der oben beschriebenen Art fortgesetzt denken können,
beide Spiele sollen nun aber bereits nach spätestens (n—l) Akten abbrechen Somit

Analog definieren wir die weitern Ereignisse Ef bedeutet also fur 0 < y g a> Im
ersten Akt ergibt sich zx ] und die Fortsetzung des Spieles betrachten wir als Beginn
von ] neuen Spielen, die wir uns auch an ] Urnen der obigen Art fortgesetzt denken
können und die alle nach spätestens (n — 1) Akten abbrechen sollen Also ist P(Ej)
Pjtfn-l

Wir erhalten somit

<?! />„ und fur «>1 qH=ZP(E,) 2Jp,qtn i ("
t 0 i 0

Mit welcher Wahrscheinlichkeit wird unser Spiel im Laufe der Zeit überhaupt einmal
abbrechen Um diese Frage zu beantworten, betrachten wir die durch (1) gegebene
Folge qx, q2, qz,

(2)

_i A»

.2 Po + P\ _1 H />»_? 1 /_._ + + P<otf /(?_

.3 Po + Pl _2 + /-_2 + _»»_. + + _>.__ /(.2,

in ~Po + Pl Qn-1 + P2 ql-1 + Pz fn-1 + + Pto <ln-l /fe-l)

Die Untersuchung der Frage, mit welcher Wahrscheinlichkeit unser Spiel im Laufe
der Zeit abbricht, lauft nun auf die Untersuchung von hm qn hinaus Aus (2) folgt
zunächst

Po ?1 </(?l) ^2 </(ft) % < </(?„-l) 9n <f(9n) - in + 1 < > (3)

die Folge der qn ist also monoton wachsend Da die qn Wahrscheinlichkeiten darstellen,
ist sie auch nach oben beschrankt Somit existiert der Grenzwert q dieser Folge, und



12 R. Ineichen: Anschauliche Behandlung eines Verzweigungsprozesses (branching process)

es ist

0= lim qn= lim f(qn_x) oder q f(q)
»—?oo »->oo

Zh'ß Wahrscheinlichkeit q, dass unser Spiel im Laufe der Zeit abbricht, ist somit
gegeben als eine Lösung der Gleichung

x _=/(*) Pt + p1x + pt# + pz**+... + f>„x». (4)

3. Die Berechnung von q

Gleichung (4) hat als eine Wurzel sicher 1, da nach der Definition unseres Spieles

2J pz 1 ist. Hat sie im Intervall 0 ^ x ^ 1 noch weitere Wurzeln Diese Frage

kann - in Weiterführung eines Gedankens, der sich bei A. Lotka in [4] und W. Feller
in [1] findet - wie folgt anschaulich behandelt werden: Wir betrachten die Graphen
der beiden Gleichungen y x und y =f(x), wobei / die bisherige Bedeutung habe.

Wegen 1 =/(l) schneiden sich die beiden Graphen im Punkte (1/1), und wir haben zu
untersuchen, ob sich im Intervall 0 fg x f£ 1 noch weitere Schnittpunkte befinden;
solche würden uns weitere Lösungen von Gleichung (4) ergeben. Für x ^ 0 ist nun der
Graph von / konvex, und somit sind nur die drei Fälle denkbar:
a) Zweiter Schnittpunkt ausserhalb 0 ^ x ^ 1:

¥k
yflx)

rx

b) Berührung im Punkte (1/1);
Figur 1

ml
yx

Figur 2
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In diesen beiden Fallen ist also 1 die einzige uns interessierende Wurzel von Glei
chung (4), und die Wahrscheinlichkeit q, dass unser Spiel im Laufe der Zeit abbricht,
ist in diesen Fallen q 1, das Spiel bricht sicher ab, wenn es lange genug gespielt
wird
c) Zweiter Schnittpunkt innerhalb 0 ^ x fg 1

yflx)yn

yx

1i-ui 3

Nur m diesem Falle hat Gleichung (4) eme von 1 verschiedene Wurzel f im uns
interessierenden Intervall, es ist - wie aus der Figur sofort ersichtlich - qx ft0 < £

< 1 Daraus folgt nun aber sofort f(qx) q2 < /(£) £ usw also auch f(qn-\)
in < /(£) f In diesem Falle hat also die Folge der qn dieses | < 1 zum Grenzwert
Er stellt die Wahrscheinlichkeit q dafür dar, dass das Spiel im Laufe der Zeit abbricht,
1 — q > 0 ist dann die Wahrscheinlichkeit dafür, dass das Spiel niemals abbricht

Nun wollen wir beachten, dass die ersten beiden Falle, a und b, durch/'(l) <£ 1

und der dritte Fall, c, durch/'(l) > 1 charakterisiert smd
Was bedeutet ff(l) 1 px -f 2 ft2 -r 3 ft3 + + co pM Wir betrachten eine

zufällige Variable Z, die die Werte 0, 1,2, 3, mit den Wahrscheinlichkeiten ft0, px, p2,

ft3, beziehungsweise ftw annimmt, Z ist also gegeben durch die Nummern der
Kugel, die bei einem Zug aus unserer Urne erscheinen können Dann ist/'(l) gerade
der Erwartungswert E(Z) dieser zufälligen Variablen Z, und wir haben das Ergebnis
Die Wahrscheinlichkeit q, dass das Spiel im Laufe der Zeit abbricht, ist genau dann < 1,

wenn E(Z) > 1

4. Beispiele

4 1 Wir denken uns einen männlichen Neugeborenen als Stammvater eines Geschlechtes

er repräsentiere die 0 Generation Die Zahl seiner männlichen Nachkommen, die
als Stammhalter fur den Fortbestand des Geschlechtes sorgen, wollen wir als Wert
einer zufälligen Variablen Z auffassen, fur die Werte z von Z gelte 0 < z <£ co Die

zugehörigen Wahrscheinlichkeiten seien ft,_ > _27 ft2 1 Diese männlichen Nach-
z 0

kommen bilden die 1 Generation Unabhängig von Einflüssen der Vererbung, der
Zeit oder der Umwelt bestehe nun fur jeden mannlichen Neugeborenen der 1 Generation

wieder die Wahrscheinlichkeit pz, im Laufe seines Lebens genau z männliche
Nachkommen zu haben Diese mannlichen Nachkommen der 1 Generation bilden die
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2 Generation Wiederum bestehe fur jeden von diesen - unabhängig von den. genann
ten Einflüssen - die Wahrscheinlichkeit pz, im Laufe seines Lebens genau z männliche
Nachkommen zu erhalten, usw Offensichtlich lasst sich die Entwicklung dieses
Geschlechtes durch unser obiges Urnenschema darstellen Das Ergebnis des zweiten
Abschnittes gibt uns jetzt die Möglichkeit, die Wahrscheinlichkeit dafür zu berechnen,
dass m einer Generation 0 männliche Nachkommen sein werden, mit andern Worten,
die Wahrscheinlichkeit dafür zu finden, dass das Geschlecht ausstirbt Diese Wahrscheinlichkeit

ist gerade durch unser q gegeben Der oben eingeführte Erwartungswert E(Z)
erhalt nun ebenfalls eme sehr anschauliche Bedeutung E(Z) stellt den Erwartungswert

der direkten (mannlichen) Nachkommen fur em Element irgendeiner Generation
dar, also etwa die «mittlere Anzahl von direkten (männlichen) Nachkommen» eines
Elementes irgendeiner Generation Und das Ergebnis unserer Untersuchung besagt Die
Wahrscheinlichkeit, dass das Geschlecht im Laufe der Zeit ausstirbt, ist genau dann
kleiner als 1, wenn die «mittlere Anzahl von direkten (männlichen) Nachkommen»
eines Elementes grosser als 1 ist Genau m diesem Falle besteht also eme von 0 ver
schiedene Wahrscheinlichkeit dafür, dass das vom Stammvater hoffnungsvoll
begründete Geschlecht weiterbluht

Es ist vielleicht angebracht, nochmals auf die wesentlichsten unserer vereinfachenden
annahmen fur die Entwicklung eines Geschlechtes hinzuweisen Wir haben die pz als
zeitlich konstant vorausgesetzt die Statistiker weisen indessen darauf hm, dass zunächst
infolge des Ruckganges dei Sterblichkeit immer mehr Neugeborene das heiratsfähige
Alter erreichen und dass ferner eine säkulare Zunahme der Heiratsfahigkeit festgestellt
werden kann (Man vergleiche darüber z B A Moser [5] Wir haben weiter auch voraus
gesetzt, dass die pz nicht davon abhangen ob das Element das Nachkommen erzeugt
etwa aus einer Familie mit viel oder wenig Nachkommen stammt

In diesem Zusammenhange mögen Schatzwerte fur die pz und fur E(Z) interessieren

Soviel uns bekannt ist, lassen sich solche Schatzwerte nicht ohne weiteres aus
bereits vorhandenen statistischen Unterlagen gewinnen Wir smd dieser Frage in [3]
nachgegangen Eme Untersuchung m Luzern (durchgeführt fur Korporationsburger)
ergab nach Ausgleichung die folgenden Schatzwerte

p0 « 0,605, pz « 0,654 e-0977* furz ^ 1, E(Z) « 0,635

In Deutschland smd vor einem Jahrzehnt Erhebungen uber die «ideale Famihen-

grosse» durchgeführt worden, es ist dabei auch auf die gute Übereinstimmung
zwischen der «idealen», d h der gewünschten, und der tatsachlichen Kinderzahl
hingewiesen worden Fur Geschlechter, die sich nach diesem «Idealfall» entwickeln, lassen
sich ebenfalls Schatzwerte fur die pz errechnen, wenn noch einige naheliegende weitere
Annahmen gemacht werden

ft0 « 0,43, pt « 0,30, ft2 « 0,21, ft3 « 0,053, ft4 « 0,005, ft5 « 0,002, E(Z) « 0,91

Fur alle Einzelheiten und weitere Schatzwerte sei auf die bereits genannte Arbeit
[3] verwiesen In den beiden genannten Fallen ist also E(Z) geschätzt kleiner als 1,
Familien, die sich so entwickeln, sterben mit Sicherheit aus - A Lotka gibt m [4]
entsprechende Schatzwerte, die auf der amenkamschen Bevölkerungsstatistik des

Jahres 1920, die weisse Rasse betreffend, basieren, hier ergab sich fur E(Z) « 1,260
und eine Wahrscheinlichkeit von etwa 82% für das Aussterben einer solchen Linie



R Ineichen Anschauliche Behandlung eines Verzwugungsprozesscs (bianchmg process) 15

4 2 Unser Urnenschema ist aber nicht nur fur dieses Problem aus der Famihen-
statistik anwendbar So hat E Schrodinger in [6] derartige Betrachtungen an
Kettenreaktionen angestellt Durch em Neutron der geeigneten Energie (0. Generation)
wird mit der Wahrscheinlichkeit ft em schwerer Kern gespalten, dabei mögen m
Neutronen entstehen Diese bilden die 1 Generation Nun denken wir uns den Prozess

fortgesetzt, wobei fur jedes dieser Neutronen wieder die Wahrscheinlichkeit ft bestehe,
neue Kerne zu spalten usw Hier ist also ft0 1 — ft und ftm ft, fur z # 0, m ist
pz — 0 In gewissen einfachen Fallen konnte unser Schema ferner auf Warteschlangen
angewendet werden An einem Arbeitsplatz, an welchem immer nur em Stuck repariert

werden kann, befinde sich em Stuck m Reparatur (0 Generation) Alle Stucke,
die wahrend der Zeit eintreffen, da dieses Stuck repariert wird, gelten als seine
«Nachkommen » und bilden die 1 Generation pz ist dann die Wahrscheinlichkeit dafür, dass

wahrend der Zeit, da das Stuck der 0 Generation instand gestellt wird, genau z weitere
Stucke eintreffen und warten müssen Alle Stucke, die eintreffen, wahrend em Stuck
der 1 Generation wiederhergestellt wird, bilden die 2 Generation usw Sobald eme
Generation 0 Stucke umfasst, werde die Arbeit eingestellt - Hinweise auf analoge
Problemstellungen bei gewissen chemischen Kettenreaktionen oder bei Fragen der
Genetik finden sich z B bei T E Harris m [2]

5. Der Galton-Watson-Prozess

Unser Urnenschema stellt, wie m der Einleitung erwähnt, einen sogenannten
Galton-Watson-Prozess1) dar, den wir im Anschluss an T E Harris [2] wie folgt
definieren können

a) Wir denken uns Objekte, die weitere Objekte derselben Art, ihre Nachkommen,
erzeugen können

b) Die am Anfang gegebene Menge solcher Objekte nennen wir die 0 Generation,
ihre Nachkommen bilden die 1 Generation, deren Nachkommen die 2 Generation
usw

c) Die Anzahl der Objekte in der ^-ten Generation ist em Wert einer zufälligen
Variablen Yt, i 0, 1, 2, Wir setzen stets Y0 1, die Wahrscheinlichkeit, dass

Yx z, mit z 0, 1, 2, co, bezeichnen wir mit pz

w

P(Yl z) pt, ZP^1
z 0

d) Fur jedes Objekt in irgendeinei Generation sei nun die Wahrscheinlichkeit, im
Laufe seines ganzen Lebens z Nachkommen zu haben (z 0, 1,2, co) wieder durch
diese pz gegeben

Die Yt bilden dann offenbar eme (einfache, homogene) Markoffsche Kette Die
Wahrscheinlichkeit, dass in der (n -f- l)-ten Generation k Objekte vorkommen, hangt
nur davon ab, wie gross die Zahl der Objekte in der n-ten Generation ist

P(Y„ + 1 Ä/Y„ ,)_„>,, ,,„,» 0,1,2, Y0=l
*) Nach dem Botaniker F Galton, der sich ebenfalls mit dem Prozess des Aussterbens der Geschlechter

befasst hat, und H W Watson, der eme erste mathematische (unvollständige) Losung dieses Problems
gegeben hat (1874) Watson hat die mögliche Existenz einer Wurzel | - q < 1 übersehen
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(Diese Ubergangswahrschemhchkeiten w3 k smd als bedingte Wahrscheinlichkeiten nicht
definiert fur jene /, fur die P(Yn ;) 0 ist)

Diesen Galton-Watson-Prozess, der also eine spezielle Markoffsche Kette darstellt,
haben wir m unseren obigen Betrachtungen daraufhin untersucht, dass er spätestens
in der n-ten Generation abbricht, wofür wir die Wahrscheinlichkeit

qn P(Yn 0)

durch (1) angegeben haben Ist aber Yn 0, so folgt aus der Definition des Prozesses

P(Yn + 1 0/Fn 0) Woo=l

Das heisst aber, dass mit der n-ten auch alle spatern Generationen 0 Objekte haben
Die Linie erlischt, das Geschlecht stirbt aus Der Zustand Yn 0 stellt einen absorbierenden

Zustand dar, er kann nicht mehr verlassen werden - Mit q -= hm qn haben
fi,—>oo

wir weiter die Wahrscheinlichkeit dafür berechnet, dass die Linie im Laufe der Zeit
erlischt

Soll unser Prozess in anderer Richtung untersucht werden, indem wir z B nach
der Wahrscheinlichkeit fragen, m einer bestimmten Generation eme gewisse Anzahl
von Objekten vorzufinden, so bieten sich als geeignete mathematische Hilfsmittel
erzeugende Funktionen an, es sei dafür auf [1], [3] oder [4] verwiesen

Robert Ineichen, Luzern/Fnbourg
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Kleine Mitteilungen
Super Perfect Numbers

A positive integer n is called a super perfect number if o(o(n)) 2 n, where a(n) is the
sum of all the divisors of n The problem of finding super perfect numbers is similar to that
of fmding perfect numbers

In this note we prove the following theorem concerning even super perfect numbers and
pose the existence of odd super perfect numbers as a problem

Theorem. An even integer n is super perfect if and only if n is of the form 2r, where
2'+i — 1 is a prime

Proof Firstly, let n 2r, where 2r+1 - 1 is a prime Then o(a(n)) =- a (2r+1 - 1)
2r+i _- 2 n, so that n is a super perfect number

Secondly, let n be any even super perfect number Then we can write n — 2r q, where
q is odd Smce n is super perfect, we have

2H* f=2n a(a(n)) a {(2'+i - l) 0(q)) (1)
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