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6 O. BorTEMA: A Theorem of BoBiLLIER on the Tetrahedron

Nach zweimaliger Anwendung des Induktionsschrittes erhalten wir die Giiltigkeit
von (5), (6) und (7) fiir beliebige 4, B € B,, also fiir beliebige Polyeder, womit die
ausstehenden Beweise vollstindig erbracht sind. H. E. DEBRUNNER, Bern
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A Theorem of BOBILLIER on the Tetrahedron

1. Almost one and a half centuries ago BOBILLIER [1] gave the following theorem:
any plane through the midpoints of two opposite edges of a tetrahedron divides it in fwo
parts of equal volume. This statement may be found in some texts for secondary
schools and in books of higher level such as MOLENBROEK [2], HADAMARD [3], HoLz-
MULLER [4], ALTSHILLER-COURT [5] and the Exercices of F.G.M. [6]. The last two
authors add a generalization on which we will return at the end of this paper.

S

Figure 1

We consider (Fig.1) an arbitrary transversal PQ of the opposite edges 4, 4, and
Az A4 of the tetrahedron 4, 4, 43 A, and study the ratio of the volumes of the two
parts in which it is divided by a variable plane « through P Q. P is given by the ratio
A,P:PA,=pand Q by 43 0:Q A, = g, so that p > 0, ¢ > 0. Two sets of planes «
have to be considered, one consisting of planes (such as in Fig.1) which intersect the
edges A, Agand 4, 4,1in S, and S, respectively ; the other set consists of planes having
points of intersection S and S; with 4, A, and 4, 4;. We consider for the time being
the first set; a plane of this set is given by-the position of S;, thatisby 4, S,:5; 43 =
x, x =0. .
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S; Q and S, P have a point of intersection S, lying on the line 4; 4,. MENELAUS’
theorem, applied to the triangle 4, A5 4, gives us

SA4,:S4,=¢qx:1. 1)

If g x > 1 we have the situation as shown in Fig. 1, S lying on the extension of 4, 4,;
for g x = 1 S is at infinity and for ¢ x << 1 S is on the extension of A, 4,. In all three
cases the following derivation is essentially the same. If we apply MENELAUS to the
triangle 4, 4, A, we obtain

One of the parts in which « divides the tetrahedron is the polyhedron 4, PS; 4,0S,,
which is the difference between the tetrahedra S 4, P S, and S 4,Q S, having
respectively the trihedra 4, and 4, in common with 4; 4, A4 A,. If the volume of the
latter is unity, the volume J, of 4; P S; A, Q S, is therefore

Jym= - g% _x P _ 1 R A
"gx—1 x+1 p+1 gx—1 gx+p q+1 l 3)
b g+ N)gatgatp) —(p+ 1) (v 1) ]

gx—1 P+1)(@+1)(gx+p)(x+ 1)

As could be expected ¢ x — 1 is a factor of the numerator and the result is

g+ N2+ (p+1) @+ )x+ (p+ 1)
h=t =g hgri G+ )

The other part has the volume /, = 1 — J, and we obtain for the required ratio

Ji _ _ P g+ )P+ p+)g+)x+(p+ 1)
A AR 2F ey o vy g N o oy IR )

So much for the first set of planes «. We denote the planes of the second set by the
ratio 4, §7:S; Ay =1y, y = 0. The two sets have two planes in common: x = 0 and
y = 0, giving the plane 4, 4, Q and x = o0, y = oo the plane 4, 4, P. It is obvious
that we obtain the ratio according to which the planes of the second set divide the
tetrahedron if we replace in (5) x by y and ¢ by ¢~!. Moreover we have to keep in mind
that ‘ the’ ratio of two volumes is an ambiguous concept, because it can be inter-
changed with its inverse. As will be clear from the figure, in order that the ratio for
x = 0 and y = 0 be the same, we must take for the ratio of the second set

TolJi =€, 8, 9) =y, b, ¢7) . (6)

By (5) and (6) for all planes & through P Q the ratio of the volumes is given. We remark
that f(co, 9, q) = P, gl(oo, $, ¢) = 1/p, so that there is a discontinuity for the plane
through 44 4,. That is what we expect: if x goes from oo to 0 and then y from 0 to oo
we have at the end the same plane as at the start, but it has rotated through an
angle 7.

2. We discuss now our results (5) and (6).

For p = ¢ = 1 we see that f and g are independent of x and y, and each equal to
one. That is BOBILLIER'S theorem.
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If P does not coincide with the midpoint M of 4; 4,, neither Q with the midpoint
N of A4 A,, then we may without any loss of generality suppose p > 1, ¢ << 1, because
this can always be arrived at by interchanging 4, and 4,, or 4; and A, if necessary.
The derivative of f reads, if N(x) stands for the denominator of (5):

df(i’éxﬁ'_’f)_ - g CN22) (p+1) @+ D{lg+Dx+ o+ DHlg—-Dx+ (-1}  (7)

and its sign is therefore that of the last factor.
Hence, putting

%= -1)/01-9, (8)
%, being a positive number, we have
df df(x,) df
- >0 for 0=x<x, éx" =0, —-<0 for x> x,

The function f is therefore increasing from the value f(0) = 1/¢ to its maximum

p . PetpP—3q+1
m—fog =L . LLELZIOH L ] o
P 2(-D+2(-9-(=-1(-9 |
g 20-1)+2(Q1-9+@F-1)(1-9
and then decreasing to f(co) = . The minimum value of f(x) being the smaller of the
numbers 1/¢g and p, each more than one, there is among the planes of the first set no
one which bisects the tetrahedron.

The derivative of f(y, $, ¢71) is obtained by replacing in (7) ¢ by ¢~! and is therefore
always positive; that means that f(y, $, ¢7) increases if y goes from zero to infinity.
The conclusion is that g(y, p, ¢) is a decreasing function of y, starting with the value g1
and ending with $-1. Hence there is one value of y, the positive root of the quadratic
equation g(y, $, ¢) = 1 for which the corresponding plane divides the tetrahedron in
two equal parts. We remark that

af0) _ (@+1 -1 ag(0) _ (¢+1)(p—-1) .

ax pq ’ dy p ¢ ’

hence the derivation of our ratio is discontinous for « coincident with 4, 4, Q.

Summing up we have the following statements. If i the tetrahedron A, Ay A3 A,
we consider the pencil of planes o through the transversal P Q (Pon Ay A,, Ay P:P A, =
p>1,Qo0n Az A,, A30:0Q A, = q < 1), starting with the plane A3 A4 Q, rotating it
around P Q through the angle 7t and ending therefore at the initial position, then the ratio
of the volumes of the parts of the tetrahedron (taken in a certain order) starts with the
value p, increases to the value m given by (9) and then decreases to the value p1.

There is always one and only one plane through P Q which bisects the tetrahedron.

Independently of the order of the two parts the maximum of the ratio equals m
and the minimum is m~1.

The border cases p = 1 or ¢ = 1 are easily dealt with. Forp = ¢ = 1wehavem = 1.

3. An attractive generalization of BOBILLIER’s theorem given by LEvY [7] has-been
reproduced several times in the course of the years, inter alia by F.G.M. and by
ALTSHILLER-COURT. It reads as follows: if a transversal P Q divides 4, A, and A5 4,
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in the same ratio, then each plane through P Q divides the tetrahedron in the same
ratio. That would mean that f(x), given by (5) would be independent of x if p = ¢. This
is immediately seen not to be the case, f being a constant only if p = ¢ = 1. Therefore
the generalization can not be correct. If we check the proof given by the authors just
mentioned we see that they consider the two parts of the tetrahedron (Fig.1) as the
sum of 4;. PS;0Q0S,and A; A, Q S, and that of 4,. PS;0S,and 4, 430 S;. The
first terms have the ratio A; P: P 4, = p. The second terms are tetrahedra which
have respectively the trihedra 4, and A; in common with 4, A, A5 A,; hence their
ratio is

that is for p = ¢ equal to

1 LS S S
1+x p+1 142 p+1 P

The second terms have therefore the same ratio as the first but unfortunately in the
wrong order, so that the conclusion is not valid. The generalization is obviously too
good to be true.

4. We consider in five-dimensional affine space a simplex 4, 4,... 44 and the
midpoints P,, P,, P, of three mutually skew edges 4; 4,, A3 4,, A5 A4 1f we intro-
duce barycentric coordinates x,( =1, ..., 6), then P; = (110000), etc. Hence the
equation of any four-dimensional space V' through P,, P, and P, reads

Ay (% — %) + Ag (%3 — x4) + A3 (%5 — x¢) =0 . (10)

The point of intersection of V' and the line A; 4; will be denoted by S;;. Without loss
of generality we may suppose 4; > 0. Hence A,, A,, A5 are on one side of V and 4,,
Ay, Ag on the opposite side. A point S;; is on an edge if + and j have different parity.
One of the two parts in which the simplex is divided by ¥V is the polyhedron
Ay Ay Ag S;j, 4 # 7 (mod 1), which is the sum of the three simplices

Al S12 S14 S16 513 515 ’ A3 534 S36 S32 S35 531 ’ A5 556 552 554 S51 553 . (11)

From (10) it follows that S;, = (4,004, 00) and thus 4, S;4:4; Ay =A: (4 + 4,);
furthermore S;3 = (—24,00 4, 00) and therefore 4, S;3:4; 43 = A,:(4; — 4,). If the
volume of the simplex A; is unity then that of the first simplex of (11) is

(A} — 28 (41 — 4)

the sum of the three simplices (11) is seen to be 1/2. The argument can be applied to
any space with an odd number of dimensions. Hence we have proved the following
generalization of BOBILLIER's theorem: If in a space of (2 n — 1)-dimensions a simplex
Ay Ay ... Ay isgiven, P, (i = 1,3,... 2 n — 1) being the midpoints of a set of n mutually
skew edges such as Agy—y ox(k =1, ... n), then all (co"?) (2 n — 2)-dimensional spaces
through P; divide the simplex in two parts of equal volume.

O.BotTEMA, Technische Hogeschool, Delft
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Anschauliche Behandlung eines Vcrz&cigungsprozesscs
(branching process)

Verzweigungsprozesse (branching processes) geben eine mathematische Darstel-
lung der Entwicklung einer « Bevélkerung» (population), bestehend aus irgendwelchen
Elementen, die sich nach Wahrscheinlichkeitsgesetzen fortpflanzen und nach Wahr-
scheinlichkeitsgesetzen sterben. Sowohl die Elemente dieser Gesamtheit als auch die
Art des Fortpflanzungsvorganges kénnen in sehr verschiedener Art gewdhlt werden;
indessen diirfen sich die Glieder gegenseitig weder hemmen noch fordern. T. E. HARRIS
hat in den letzten Jahren in [2] eine zusammenfassende Theorie dieser Prozesse gege-
ben. — In den folgenden Zeilen soll fiir einen besonders einfachen Verzweigungsprozess,
den Galton-Watson-Prozess, zunichst ein Urnenschema entwickelt werden; aus die-
sem sollen in anschaulicher Weise einige Folgerungen gezogen werden, die nachher vor
allem auf das Problem des Aussterbens der Geschlechter angewendet werden.

1. Ein Urnenschema

Wir denken uns eine mit Kugeln gefiillte Urne. Jede Kugel trage eine nichtnegative
ganze Zahl z als Nummer; im iibrigen seien alle Kugeln gleich und 0 < z < w. Die
Wahrscheinlichkeit, aus der gut durchmischten Urne eine Kugel mit der Zahl z als

Nummer zu ziehen, sei p,. Es ist dann 2 p,=1,und es sei p, # Ound p, # 1. Nun
werde folgendes Spiel gespielt: 1=

1. Akt: Es wird eine Kugel gezogen und ihre Nummer z = z, notiert. Dann wird sie
zuriickgelegt, und die Urne wird wieder gut durchmischt.

2. Akt: Nun werden nacheinander z; Kugeln gezogen. Dabei legen wir jede Kugel,
nachdem wir ihre Nummer notiert haben, wieder zuriick und mischen, bevor die
nichste Kugel gezogen wird («Ziehen mit Zuriicklegen»). Wir bilden die Summe z, der
in diesem Akt notierten Nummern.

3. Akt: In analoger Weise ziehen wir jetzt z, Kugeln, wieder mit Zuriicklegen, und
bilden die Summe z; ihrer Nummern, #sw.

Sobald eine der Summen z; = 0 ist, brechen wir das Spiel ab; wir setzen in nahe-
liegender Weise in diesem Falle z;,,, =0fir £ =1,2,3, ...

Wir stellen jetzt die Frage: Wie gross ist die Wahrscheinlichkeit g,, dass z, = 0
ist? g, ist also die Wahrscheinlichkeit dafiir, dass unser Spiel spdtestens mit dem n-ten
Akt abbricht.
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