Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 23 (1968)

Heft: 6

Rubrik: Mitteilung der Redaktion

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

mod n gebunden sind. In den zwei Hauptkapiteln wird die Theorie dieser beiden Gruppen dargestellt, und es werden Beispiele solcher Gruppen angegeben. Anschliessend findet man Anwendungen auf die Theorie der freien Gruppe.

Der Abschluss stellt eine kurze Einführung in die Theorie der P-Produkte und ihre Anwendungen für P-Gruppen dar. Dabei sind P-Produkte und P-Gruppen folgendermassen definiert: Die multiplikative Gruppe G mit dem Erzeugendensystem A und der Menge F der definierenden Relationen besitze die Untergruppen G_{λ} . A_{λ} sei Erzeugendensystem und F_{λ} Menge der definierenden Relationen von G_{λ} . G heisst P-Produkt der Untergruppen G_{λ} , falls $A = \bigcup_{i} A_{\lambda}$ und $F = F_{P} \cup \bigcup_{i} F_{\lambda}$, wobei jede Relation in F_{P} nicht nur aus Elementen

eines Erzeugendensystems A_{λ} besteht und alle Relationen in F_P wie in F_{λ} (für alle λ) die Eigenschaft P besitzen. Damit wird jedes P-Produkt der Gruppen G_{λ} isomorph einer Faktorgruppe des freien Produktes dieser Gruppen.

G heisst P-Gruppen, falls G wenigstens ein Erzeugendensystem A hat, dessen Elemente nur durch Relationen der Eigenschaft P verbunden sind. Als Hauptergebnis wird hier gezeigt, dass jedes P-Produkt von P-Gruppen eine P-Gruppe ist.

Die Darstellung ist ausführlich und verständlich. Leider erschweren viele Druckfehler die Lesbarkeit.

W. Holenweg

Die Bewegungsgruppen der Kristallographie. Von J. J. Burckhardt. 2. Auflage. 203 Seiten mit 67 Figuren. Fr. 37.50. Birkhäuser Verlag, Basel 1966.

Die grösste Änderung in dieser Neubearbeitung (eine Besprechung der 1. Auflage erfolgte in El. Math. 3, 86 (1948)) hat die Darstellung der Bewegungsgruppen des triklinen, rhomboedrischen, hexagonalen und monoklinen Systems erfahren. Hier werden jetzt neben den bisher allein behandelten einfarbigen Gruppen (Fedorow-Schoenflies) auch die zweifarbigen hergeleitet. Ein Abschnitt über allgemeine Farbgruppen wurde am Schluss des Buches hinzugefügt.

E. Trost

Cyclotomy and Difference Sets. Von T. Storer. 134 Seiten. Lectures in Advanced Mathematics, No. 2. Markham Publishing Company, Chicago 1967.

Sind $d_0, d_1, \ldots, d_{k-1}$ Elemente einer additiven Gruppe G der Ordnung v und gibt es für jedes $g \neq 0$ aus G genau λ geordnete Indexpaare i, j mit $d_i - d_j = g$ ($0 < \lambda < k < v - 1$), so wird die Menge $D = \{d_0, d_1, \ldots, d_{k-1}\}$ «Differenzbasis» in G genannt. Es sind wichtige Anwendungen der Differenzbasen bekannt, speziell wenn G der Ring R_v der Restklassen mod v ist (endliche projektive Ebenen, Konstruktion von Codes, Entwurf von Experimenten). Die Theorie der Kreisteilung, deren Elemente am Anfang dieses Büchleins dargestellt werden, hat sich als kräftiges Hilfsmittel für die Konstruktion von Differenzbasen erwiesen. Zunächst wird ein Beweis des klassischen Resultats von SINGER ($G = R_v$, $\lambda = 1$, $k = p^a + 1$, $v = p^{2a} + p^a + 1$, p = Primzahl) gebracht. Hierauf folgt die Lehmersche Theorie der Differenzbasen in einem Galoisfeld. Der zweite Teil ist der Whitemanschen Theorie der Differenzbasen in Galoisbereichen (Direkte Summe von zwei Galoisfeldern) gewidmet.

Glückwunsch

Am 23. Dezember 1968 wird Herr Prof. Dr. Hugo Hadwiger (Universität Bern) 60 Jahre alt. Die Redaktion der Elemente der Mathematik entbietet dem Jubilar herzliche Glückwünsche und dankt ihm für die bisherige besonders wertvolle Mitarbeit und Verbundenheit.

E. Trost

Mitteilung der Redaktion

Leider lässt sich eine Erhöhung des Abonnementspreises nicht umgehen, da diese eine Vorbedingung für die weitere Unterstützung durch den Schweizerischen Nationalfonds war. Ab Januar 1969 beträgt der Abonnementspreis für das Inland Fr. 18.— und für das Ausland Fr. 22.—.