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Einfacher Beweis des Wilsonschen Satzes

Die Wilsonsche Kongruenz (p — 1)! = — 1 (mod p), wobei p Primzahl ist, gestattet
einen Beweis, der nur die einfachsten Tatsachen iiber Kongruenzen benutzt und ohne
weitere Hilfssitze, wie etwa den Fermatschen Satz, auskommt.

Es sei p eine Primzahl und a; = (p — 1)!/i, 1 <4 < p — 1. Die g, sind nicht durch
p teilbar und paarweise inkongruent mod p, da aus a, = a, (mod p) durch Division
x =y (mod p) folgen wiirde. Aber auch die p — 1 Zahlen a,, a, — a,, a, — a3, .
a; — ap_, sind nicht durch p teilbar, denn aus a, — a, = 0 (mod p) wiirde sich 4, = a,
(mod p) ergeben. Auch diese Zahlen sind paarweise inkongruent mod p, denn aus
a, = a, — a, (mod p) wiirde a, = 0 (mod p) und aus a, — a, = a, — a, (mod p) wiirde
a, = ay (mod p) folgen. )

Das Produkt von p — 1 paarweise inkongruenten Zahlen, die nicht durch p teilbar
sind, ist = (p — 1)! (mod p). Somit folgt aus

ay (@, —ay) (@ay—ag) ... (@ —a, ) =a10,(2—1)az;(3—1) ..., ,(p—1— 1)
, = (@1 0203 ... Qy_y) By,
sofort (p— 1! =(p—1)!a,, (modp)
oder (p—2)!=a,, =1(modp)

(p—1!=—1(modp).
F. ST6wENER, Weinheim DBR

Aufgaben

Aufgabe 560. Von den vier Schnittpunkten zweier Kegelschnitte %,, &, in einer Ebene
seien zwei reell (U, V). Durch einen beliebigen Punkt P der Ebene geht ein Kegelschnitt &
des Biischels A &, + u k, hindurch. Die Geraden UP = a und V P = b schneiden £, in
A,, By und &, in 4,, B,.

Man beweise: Der Schnittpunkt T der Geraden 4,B, und 4,B, ist ein Punkt der
Tangente ¢ im Punkt f an den Kegelschnitt &. T liegt auf einem zerfallenden Kegelschnitt
des Biischels 4 &; + u &,. H. GONTHER, Dresden

7st Solution : Since two of the points of intersection of k, and %, are conjugate complex
points, we may take these as absolute points of a Euclidean plane, and then %,, %k, and &
are circles. It is now easy to show by using the usual angle properties of a circle that
A,B,, A,B, and the tangent to & at P are parallel. This is equivalent, in the Euclidean

plane, to the two projective results required.
E. J. F. PriMRrosE, University of Leicester, England

2. Lésung: Die Gleichungen der Geraden UV, PU, PV, A,B,, A,B, seien (in gleicher
Reihenfolge): s = 0, u = 0, v = 0, g, = 0, g, = 0. Die Gleichungen von %, und %, sind (bei
geeigneter Normierung von g, und g,) sg, +#v=0 und sg,+ #wv=0. Dann ist
uv(l+ A+ s(g,+4gy) = 0 bei unbestimmtem A die Biischelgleichung. Fiir 4= 4,
stelle sie £ dar. Dann ist g, + 4, g3 = 0 die Gleichung von ¢. Der Schnittpunkt von 4,5,
und 4,B, (d.h. g, = 0, g, = 0) liegt also auch auf ¢, sowie auf dem zerfallenden Kegel-
schnitt s (g, — g;) = 0 des Biischels. C. BINDSCHEDLER, Kiisnacht

3. Losung (des Aufgabenstellers): Durch die Kegelschnitte des Biischels 4 2, + u &,
werden die Punkte der Geraden a den Punkten der Geraden b perspektiv zugeordnet (z. B.
A,-> B,, A3 > B, ..., der Kegelschnitt % des Biischels, welcher durch P hindurchgeht,
ordnet diesem Punkt denselben Punkt P zu). Das Zentrum der Perspektivitit ist der
Schnittpunkt T der Geraden 4,B, und 4,B,. Das Punktepaar, in welchem die Gerade T P
den Kegelschnitt % schneidet, ist im Punkt P zusammengeriickt, d.h. TP ist Tangente
an k. Jener zerfallende Kegelschnitt des Biischels 4 £, + u k,, welcher die Gerade UV als
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Teil enthdlt, schneidet a und b auch in zugeordneten Punkten A ;» B, deren Verbindungs-

gerade also durch T hindurchgeht und zusammen mit UV einen zerfallenden Kegelschnitt
des Biischels bildet.

Weitere Losungen sandten J. FEHER (Pecs, Ungarn), G. GEisg (Dresden), K. GRUN
(Linz), L. KiEFFER (Luxemburg).

Aufgabe 561. N, = 1 << N, << N; < ... seien die der Grosse nach geordneten natiir-
lichen Zahlen N, die durch den Quotienten

(#2—6xy+9%): (#* - 102y + ¥?

mit ganzen, nicht gleichzeitig verschwindenden #, y dargestellt werden (vgl. Aufgabe 513,
El. Math. 27, 136-137 (1966)). Man zeige, dass jedes N; durch die eigentlich primitive
quadratische Form

(14,20,7) =14 42+ 20 x y + 7 y?

darstellbar ist, wobei #2 = 2N; _; — 1und > =3 N,_, — 2.
W. JANICHEN, Berlin-Zehlendorf

Solution: The equation
2 —6xy+9y2=N(x*—10xy + »?

N—1)a2—-25N—-3)xy+ (N—-1)9»2=0
has non-trivial integral solutions if and only if

3N—-33—(N—-12=4(3N—-2) (2N —1) .

or
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is a perfect square. Since
3N—22N—-1)=(3N-22N—-1,N—-1)=1,

it is necessary that
2N—-1=a%3N—2=102 (a,b) = 1.
Hence a, b must satisfy
3a2 —2b2=1. *)
Let (a;, b;) denote the (positive) solutions of (*) and put N, = (af + 1)/2, so that
N; < N;,,;. We shall show that
14af + 20a,;b,+ 7b} =N, ., = (ai+1+ 1)/2. (**)

By the theory of the Pell equation as applied to (*) we have
34,01+ b1 V6=(3a;+b,V6) (5+ 2V6),
Aip1=35a;+ 4b;. (***)
Substituting from (***) in (**) we get 3a? — 205} = 1.

L. Carritz, Duke University, USA

Weitere Losungen sandten G. BacH (Braunschweig), I. PaascHe (Miinchen), R. WHi-
TEHEAD (Hayle, England), G. WuLczyN (Lewisburg, USA).

so that

Aufgabe 562. Show that

m

2= (0= X (j!k!(m””_fj_k)!f.

7,5+0 i+EEm
L. Carrirz, Duke University, Durham, N.C., USA

Solution by the Proposer: We show first that

”m

,Zm:,(__ Hm (’:’) (:) (’l;) T m =) (m ——1:)1! G+ E—m)!" (1)
M amisFer 06 6)

Then

Savsinwr-Ficu=(7) 5 () () 2

 fiR=0

=3 = 0= () (W () = [+ 1) (14 9) —1Jm= (- y - 29)7

y=0
m !
= xrys(xy)m-—r—s
Z — oy — )1
thSmr!s!(m r—s)!
m |

za= Fm—sym—r
ls! —_y — |
H_ssmr.s.(m r—s)!

—— 2 e m | = x]yk
A DT = RTGT )]

and (1) follows at once.
Replacing §, £ by m — §, m — k, respectively, (1) becomes

f("l)m—'(T) (m:j) (mik)z j!k!(mm—!j——k)!‘ (2)

r=0
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Note that (2) holds for all 7, #such that 0 <7 <m, 0 <k < m.
It follows from (2) that
m! n!

itk < 1 R n =T =BT TR (=7 — B

m

=,,s2———:0 (— 1)ymtntrts (T) (?)121 (my_ 7-) (n i 7‘); (m : k) (n _i k) ,
Since

12.'(1%17') (n—y) 4:(:) (n—m+t) - (r-:;:j m)’
we get

m ! n!
Lkl (m—7—R)! jlRl(n—7—Fk)!

j+k$min(m,n)7
m

- S (L)

?,5=0

In particular, when m = =,

m ! 2
(j!k!(m——j—k)!) o
Aufgabe 563. Man zeige, dass fiir alle ganzen Zahlen » = 3 gilt

P HIRENELE

Losung : Die linke Seite der zu beweisenden Identitit ist der Koeffizient von »"~1 in
der Potenzreihenentwicklung von

m

2o () (9 05

r,s=0

i+k<m

G. Bach, Braunschweig

0

9= 04 VT 2 ) s e 508 G) (1) - e
mi 2 =k§ (:) (kf’Z) .

Vergleicht man damit die Entwicklung von

flx) = (1 — Vl-}—x Za x", wobei a, —-Zn'(—- 1)k (Z) (k1/’2),

E=0
so erkennt man (weil die Terme mit geradem & fiir » > k/2 verschwinden), dass @, = — a,
fiir alle » > #/2. Anderseits folgt aus f(¥) f(*) = (— #)" und a, + 0, dass Gy = @, = ... =

a,_, = 0. Also ist auch a, = 0, falls n/2 < » < n. Das ist fiir » = » — 1 die Behauptung
der Aufgabe. C. BINDSCHEDLER, Kiisnacht

Diese Erweiterung der Aufgabe fand auch W. JANICHEN (Berlin-Zehlendorf). L. CARLITZ
gibt die Werte der Koeffizienten a, auch fiir 1 < < n/2 an (vgl. Aufgabe 586, dieses Heft,
S. 140).

Eine weitere Losung sandte I. PaascHE (Miinchen).

Aufgabe 552 (El. Math. 23, 91 (1968 ). Zweite Losung: Es gilt folgende allgemeinere
Aussage: Es sei A;4,44... A, ein Sxmplex im R, k;; die Kante 4,4; und F;; der
gegeniiberliegende (n — 2) dlmensmnale Raum. Es sei welter Q eine Quadrlk zweiter
Klasse. Durch F;; gehen zwei Q beriihrende (» — 1)-dimensionale Rdume, die %, in den
Punkten Bj; und Bjj schneiden. Dann liegen simtliche Punkte B auf einer Quadrik Q’
zweiter Ordnung
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Zerfdllt Q in zwei Punkte, so erhdlt man die Aussage der Aufgabe.

Beweis: Wir wihlen das Simplex als Koordinatensimplex. x;, #,, ..., 4, sind
Punktkoordinaten und u,, u,, ..., u,,, die dualen R,_;-Koordinaten. Q habe die
Gleichung X a;j u; u; = 0. Fiir jeden R, _, durch z.B. 4,4, gilt uy=u,=...=u, =0
und daher fiir die zwei Beriihrungs-R,_, an Q auch noch

2 —
A1y U3+ 2 By Uy Up + Ggp uf = 0.

Der R,_, mit den Koordinaten «, schneidet die Kante %,, im Punkt (4,, — #%,, 0,0, ..., 0).
Fiir die Koordinaten der Punkte Bj, und Bj; gilt also

A1y ¥3 — 215 %3 %y + Ay 2] = O
oder
2@y — 2 8y Xy X[y Qg + X303y =0, Hg=x;=...=%,,,=0,
und allgemein fiir die Punkte Bj; und B
wila;; — 2a,; %, %jla;;a;; + x,g/ajj =0, 7,=0Gk=+1ik=+7).

Die Punkte B liegen also auf der Quadrik mit der Gleichung X af; #; »; = 0, wobei
a;;=1/a;; und a;j = — a,;;/a;; a;; (i + j). Wir haben a,; + 0 vorausgesetzt, d.h. Q be-
rithrt keine Seite des Simplexes. Auch im andern Fall kann man den Satz einfach be-
weisen. Die Zuordnung von Q’ zu ( hat ein gewisses Interesse. So fillt Q’ mit Q zusammen,

wenn das Simplex ein Polarsimplex von Q ist.
O. BortEMA, Technische Hogeschool, Delft

Neue Aufgaben

Aufgabe 585. Die Eckpunkte 4, (i = 1, 2, 3) eines gegebenen Dreiecks sind die Mittel-
punkte von drei Kreisen, die durch einen Punkt P gehen. B, sei der zweite Schnittpunkt
der Kreise um 4; 4, A;, 5 (A= A,, Ay = A,).

1. Konstruiere die Punkte P, fiir die das Dreieck B,B,B, gleichseitig ist.

2. Fiir welche Punkte P liegen B,, B,, B, auf einer Geraden ?

3. Beweise, dass die Umkreise der Dreiecke 4,B;  B; , (i = 1, 2, 3) sich in einem Punkt
schneiden. J. BREJCHA, Brno, CSSR

Aufgabe 586. Show that

”

PN R e ES T

L. Carrirz, Duke University, USA

Aufgabe 587. Prove that either of the following properties characterize the exponential
function:

Property 1. f(2) non-zero, entire and there exists a simple analytic arc 4 which divides
the plane into two unbounded simply connected domains S; and S, with

F(Sy) < {w: |w] < 1} and £(S,) < {w: |w| > 1}.

Property 2. f(z2) entire and the image of the left and right half planes are contained in
{w: |w| < 1} and {w: |w| > 1} respectively.
W. J. SCHNEIDER, Syracuse University, USA

Aufgabe 588. Ist » eine natiirliche Zahl und p eine Primzahl, so gilt

(pn—1)1[(n—1)1]"2nl=2 % 0 (mod p) <> n = pF.
E. Trost, Ziirich
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