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132 Kleine Mitteilungen

Studie Nr. 2

Gegeben sei die quadratische Matrix

4= [(— 1)’(2:;)}; i,j=0,1,..., k.

Es ist zu zeigen, dass der Rang r der Matrix 4 — E, wobei E die Einheitsmatrix
bezeichnet, gleich » = [(k + 1)/2] ist. In der Tat: Bilden wir die Hilfspolynome
p:(x) (6=0,..., k), deren Koeffizienten durch die Elemente der i-ten Spalte von
A — E geliefert werden (7 sei der Zeilen- und ¢ der Spaltenindex von A), so ergibt
eine einfache Rechnung

px) = (—2)1+2""—2 (E=0,..,k.

Der gesuchte Rang ist gleich der Dimension des von den Polynomen p;(x) aufgespann-
ten linearen Polynomraums. Durch die nichtsinguldre lineare Transformation

n
g8 = 23 (z) px) (m=0,..., k)
bleibt diese Dimension unveriandert. Nun ist aber

u(®) = 1+ 2" — (1 + 2",

und die Dimension des durch die ¢,(x) aufgespannten linearen Polynomraums ist,
wie ersichtlich, [(# + 1)/2], was zu beweisen war. H. HADWIGER, Bern
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Kleine Mitteilungen

Eine Bemerkung zur Untersuchung unbestimmter Ausdriicke

Bei der Untersuchung sogenannter unbestimmter Ausdriicke beniitzt man iiblicher-
weise die Regeln von BerNouLrLi-L’HospiTaL. Im folgenden beweisen wir einen Satz,
der uns eine andere Methode zur Untersuchung solcher Ausdriicke liefert. Diese Methode
hat gegeniiber den genannten Regeln verschiedene Vorteile. Erstens: die Voraussetzun-
gen des Satzes sind recht einfach; zweitens: die Untersuchung kann oft wesentlich
abgekiirzt werden, und zwar vor allem dann, wenn zusammengesetzte Funktionen vor-
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kommen; drittens: das rein schematische Vorgehen fillt weg, das heisst, es ist in jedem
einzelnen Fall durchsichtig, warum sich der betreffende Ausdruck so oder so verhilt,
anders ausgedriickt, man «sieht», was «passiert».

Wir beweisen zuerst den folgenden

Hilfssatz.

Voraussetzung: Die Funktion h ist diffevenzierbar in einer Umgebung U des Punkies
Xg, und es gilt

7) h(xy) = 0,
2) (%) = (x — x)" #(x) in U, wobei n eine natiivliche Zahl ist und die Funktion v stetig

in xy mit v(xy) = 0.

Behauptung: Es gilt in U

h(x) = (# — )"+ s(x) ,

wobei die Funktion s stetig ist in xy mit s(xy) = 0.

Beweis: Nach dem Mittelwertsatz der Differentialrechnung gibt es zu jedem x e U
ein &, das im allgemeinen von x abhidngt, mit |x, — &| <|x, — #| derart, dass

h(x) — h(xo) = (¥ — %) 4'(&) .

Nach 1) und 2) der Voraussetzung bedeutet dies

h(x) = (¥ — ) (& — )" 7(§) .
Wird deshalb

s(x) = (_5‘}%

0 fiir x = x,

)n v(§) fur x + x,

definiert, so gilt zunichst sicher die behauptete Darstellung. Es ist aber auch wegen
| ¥ — &| < | #y — # | und der Voraussetzung iiber » tatsichlich
Lim s(x) = s(x,) -

x—>x,

Der eingangs erwdhnte Satz lautet nun folgendermassen.

Satz.

Voraussetzung: Die Funktion f ist in x, n-mal differenzierbay
Behauptung: In einer Umgebung von x, gilt

e f(k) (xo) k
f(x) =k20 T (= 2 (= w0 ()
wobei die Funktion v stetig ist in xy, mit v(x,) = O.
Beweis: Dieser Satz ist enthalten in der Taylorschen Formel mit Restglied, doch

wird dort vorausgesetzt, dass f in einer ganzen Umgebung von #, (» + 1)-mal stetig dif-
ferenzierbar ist.

Wir fiihren den Beweis durch Induktion nach #. Fiir » = 1 lautet die Behauptung
f#) = f(xo) + f'(%) (¥ — %0) + (¥ — #o) 7(%) ,

wobei 7 stetig ist in x, mit 7(x,) = 0. Dies bedeutet nichts anderes als die Differenzier-
barkeit von f in x, und ist deshalb richtig. Der Satz sei jetzt fiir » bewiesen (das heisst:
fiir alle in x, n-mal differenzierbaren Funktionen), und f sei (» + 1)-mal differenzierbar
in x,. Wir betrachten die Hilfsfunktion

n+1 {5 (x,)
I (#— )"

gl¥) = f(») —
Es ist g(»,) = 0 und zudem
" 1®) (%)

g =1 = ) T (5 — wt (1)
=1
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Nach Induktionsvoraussetzung ist aber

p = 3T gt r - (),
k=0 )

wobei 7, stetig ist in x, mit »,(x,) = 0. Dies in (1) eingesetzt liefert

. g’(’.‘) = (¥ — x%y)" r,(%) , . .
also mit g(x,) = 0 zusammen gerade die Voraussetzungen unseres Hilfssatzes. Es gilt deshalb

g(x) = (¥ — )"+ 7(x) ,

wobei 7 stetig ist in x, mit 7(¥,) = 0. Nach Definition von g ergibt sich daraus unmittelbar
die Behauptung. q.e. d.
Ein paar typische Beispiele mogen jetzt die eingangs gemachten Bemerkungen illu- -

strieren.
cos (ve*) — 1

1) lmSS@I -1, .
)T tgres o +9)

Nach unserem Satz ist cosy — 1 = — %2 (}/, + #(y)), wobei lim #(y) = 0. Daraus folgt
y—0
cos (ve*) — 1 = — (xe*)2 (Y/, + s(x)), wobei lim s(x) = lim »(xe*) = 0.
x—>0 x—>0

Analog ergibt sich aus tgy = ¥ (1 + #(y)) die Relation tg a # = a x (1 + u(x)), wobei
lim u(x) = 0.
z—0

Setzen wir die beiden gewonnenen Darstellungen im zu untersuchenden Ausdruck ein,
so erhalten wir nacheinander

_cos(wer) —1 . —xtert (Y4 s(x)) . —e¥(Yy+s(x) 1

O fgiar T am @A+ uE) e @ +u@) 2@
2) lim Sin Wlog#) _

x}0. +Ve"—1

Aus unserem Satz folgt einerseits sin y = y (1 + 7(y)), sin (¥ log #) = x log x (1 + s(x)),
wobei lim s(¥) = lim » (v log #) = 0 wegen lim x% log # = 0 fiir A > 0, und andrerseits

)0 x}0 z}o
e* — 1 = x (1 + ¢{(»)), wobei lim ¢(x¥) = 0. Deshalb ist
z—0
. sin (v log ») . xlogx (14 s(x)) . 14 s(¥)
lim —————=-% = lim = lim % log ¥ +—— -7 = 0
1o Yer—1  zpo AR+ @ LT S T i)

”
3) lim (sin x)tg ¥~ ? (n:ganze Zahl).
r—>n/2

Aus log s%n x¥= =1, (x — (n/2))* (1 + »(x)), wobei lim 7(x) = O und _

x—>n(2
ctg ¥ = — (¥ — (7/2)) (1 + s(»)), wobei lin} s(») = 0 folgt
x—>n[2
0, ng 1
1
. logsi =y, mn=2
lim —830F% _J_ o , m=>3 und gerade

+ 00, =# >3, ungerade und x|=n/2
— o0, n>3, ungerade und x{n/2
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und daraus wegen (sin x)tg” % _ (logsinz)/ctg”x

1, n< 1
. to” x e12 n=2
lim (sinx)® *={o , n>3 und gerade

r—>7f2

+ o0, n>3, ungerade und x|=n/2
0, #n > 3, ungerade und x4 x/2

Frangois FrICKER, Basel

Sur le Probléme de ZARANKIEWICZ

Le probléme de ZArRaNKIEWICZ, exposé dans [1] par W. SIERPINSKI, consiste en la
résolution en entiers positifs x, y, z de I’équation:

2+ 12— 13 (1)
dans laquelle #, désigne le nombre triangulaire (1/2) u (» + 1). Comme x + ¥, on peut
supposer ¥ < ¥ < 2. Rappelons qu’on ne connait que la solution x = 132, y = 143,
z = 164 et qu’on ignore si le nombre de solutions est fini.

Dans cette note, nous montrons que (1) est impossible si deux au moins des trois
nombres x, ¥, z sont consécutifs.

A) Si y = x + 1, compte tenu de la relation #§_, + § = ¢, (1) devient:
ty' = tg- (2)

Or W. LJjUNGGREN [2] puis J. W. S. CasseLs [3] ont montré que ¢, = 0 (= #3),
ty=1(=1}) et t; = 36 (= #}) sont les seuls nombres triangulaires qui sont les carrés
de nombres triangulaires. Comme y2 > 4, (2) implique y% = 8, ce qui est faux.

Remarquons que le cas 2|y posséde une solution élémentaire: avec ¥y = 2p on a

£,\2
(ﬁ):8ﬁ+252umdﬂ,

ce qui est faux.

B) Si 2=y + 1, compte tenu de la relation #,, — & = (y + 1)3, (1) s’écrit:

, _ fh=0+1)?°
d’oul on tire successivement:
be=a®, xx+1)=2ad,
x+~1«+i—u3 x+—1——i—233vec = 41 u >0 v>0
2 T T 2 2 “? B= = ’
soit finalement 1I’équation:
(eu)P+ 2(—ev)d=1. (3)

Or T. NAGELL [4] (voir aussi [5], Vol. II, p. 112) a établi que I'équation #% + dy? = 1
admet au plus une solution en entiers non nuls #, y. Donc (3) n’admet pour » > 0, v > 0
que la solution # = v = —e =1 qui est A écarter car elle conduit & y = 0.

Nous remercions A. MakowsKI de sa remarque concernant la partie 4 qui, initiale-
ment, traitait élémentairement le cas 2|y et n’utilisait le résultat de LyUNGGREN-CASSELS
que dans le cas 2+ty. M. BranpraiN, Lille
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Einfacher Beweis des Wilsonschen Satzes

Die Wilsonsche Kongruenz (p — 1)! = — 1 (mod p), wobei p Primzahl ist, gestattet
einen Beweis, der nur die einfachsten Tatsachen iiber Kongruenzen benutzt und ohne
weitere Hilfssitze, wie etwa den Fermatschen Satz, auskommt.

Es sei p eine Primzahl und a; = (p — 1)!/i, 1 <4 < p — 1. Die g, sind nicht durch
p teilbar und paarweise inkongruent mod p, da aus a, = a, (mod p) durch Division
x =y (mod p) folgen wiirde. Aber auch die p — 1 Zahlen a,, a, — a,, a, — a3, .
a; — ap_, sind nicht durch p teilbar, denn aus a, — a, = 0 (mod p) wiirde sich 4, = a,
(mod p) ergeben. Auch diese Zahlen sind paarweise inkongruent mod p, denn aus
a, = a, — a, (mod p) wiirde a, = 0 (mod p) und aus a, — a, = a, — a, (mod p) wiirde
a, = ay (mod p) folgen. )

Das Produkt von p — 1 paarweise inkongruenten Zahlen, die nicht durch p teilbar
sind, ist = (p — 1)! (mod p). Somit folgt aus

ay (@, —ay) (@ay—ag) ... (@ —a, ) =a10,(2—1)az;(3—1) ..., ,(p—1— 1)
, = (@1 0203 ... Qy_y) By,
sofort (p— 1! =(p—1)!a,, (modp)
oder (p—2)!=a,, =1(modp)

(p—1!=—1(modp).
F. ST6wENER, Weinheim DBR

Aufgaben

Aufgabe 560. Von den vier Schnittpunkten zweier Kegelschnitte %,, &, in einer Ebene
seien zwei reell (U, V). Durch einen beliebigen Punkt P der Ebene geht ein Kegelschnitt &
des Biischels A &, + u k, hindurch. Die Geraden UP = a und V P = b schneiden £, in
A,, By und &, in 4,, B,.

Man beweise: Der Schnittpunkt T der Geraden 4,B, und 4,B, ist ein Punkt der
Tangente ¢ im Punkt f an den Kegelschnitt &. T liegt auf einem zerfallenden Kegelschnitt
des Biischels 4 &; + u &,. H. GONTHER, Dresden

7st Solution : Since two of the points of intersection of k, and %, are conjugate complex
points, we may take these as absolute points of a Euclidean plane, and then %,, %k, and &
are circles. It is now easy to show by using the usual angle properties of a circle that
A,B,, A,B, and the tangent to & at P are parallel. This is equivalent, in the Euclidean

plane, to the two projective results required.
E. J. F. PriMRrosE, University of Leicester, England

2. Lésung: Die Gleichungen der Geraden UV, PU, PV, A,B,, A,B, seien (in gleicher
Reihenfolge): s = 0, u = 0, v = 0, g, = 0, g, = 0. Die Gleichungen von %, und %, sind (bei
geeigneter Normierung von g, und g,) sg, +#v=0 und sg,+ #wv=0. Dann ist
uv(l+ A+ s(g,+4gy) = 0 bei unbestimmtem A die Biischelgleichung. Fiir 4= 4,
stelle sie £ dar. Dann ist g, + 4, g3 = 0 die Gleichung von ¢. Der Schnittpunkt von 4,5,
und 4,B, (d.h. g, = 0, g, = 0) liegt also auch auf ¢, sowie auf dem zerfallenden Kegel-
schnitt s (g, — g;) = 0 des Biischels. C. BINDSCHEDLER, Kiisnacht

3. Losung (des Aufgabenstellers): Durch die Kegelschnitte des Biischels 4 2, + u &,
werden die Punkte der Geraden a den Punkten der Geraden b perspektiv zugeordnet (z. B.
A,-> B,, A3 > B, ..., der Kegelschnitt % des Biischels, welcher durch P hindurchgeht,
ordnet diesem Punkt denselben Punkt P zu). Das Zentrum der Perspektivitit ist der
Schnittpunkt T der Geraden 4,B, und 4,B,. Das Punktepaar, in welchem die Gerade T P
den Kegelschnitt % schneidet, ist im Punkt P zusammengeriickt, d.h. TP ist Tangente
an k. Jener zerfallende Kegelschnitt des Biischels 4 £, + u k,, welcher die Gerade UV als
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