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Eine Schnittrekursion für die Eulersche Charakteristik
euklidischer Polyeder

mit Anwendungen innerhalb der kombinatorischen Geometrie

1. Additive Polyederfunktionale
Es sei R der ^-dimensionale euklidische Raum, und R bezeichne die Klasse der

kompakten Polyeder A C R, die auch das leere Polyeder <p enthalten soll Die Klasse
51 ist dann bezüglich Vereinigung und Schnitt geschlossen, d h es gilt

A, BeR=>AuB, AnBeR (11)

Eme uber 51 eindeutig und reellwertig definierte Funktion <p nennen wir additiv,
wenn sie der angezeigten Geschlossenheit bezüglich der Verknüpfungen O und y,
durch die 51 zu einem distributiven Verband wird, insofern angepasst ist, als das
Additionstheorem

(p(AuB)+(P(AnB)=- <p(A) + <p(B) (1 2)

uneingeschränkt gilt Es sei g der lineare Raum aller additiven Funktionale <p

uber 51 Bedeutet V(A) den elementaren Inhalt von A, so gilt Feg, wenn noch
V(<j)) 0 festgesetzt wird

2. Existenzsatz fur die Charakteristik
Wir formulieren nun eme Aussage, die sich auf die Existenz eines besonders

ausgezeichneten Funktionais % e g bezieht, es handelt sich um die Charakteristik
von Euler-Pomcar6, die üblicherweise in einem wesentlich weiter greifenden
Geltungsbereich im Rahmen der Topologie begründet wird Mit Beschrankung auf den
hier in Betracht gezogenen Sonderfall kompakter euklidischer Polyeder kann diese

auf unabhängige und elementare Weise sichergestellt werden Zusammen mit dem
Existenznachweis wird auch die additive Eigenschaft der Charakteristik gewonnen.
Wir zeigen*

Es existiert genau em additives Funktional xe<5> das dle drel Forderungen

%W 0, (2.1)

%(P) l, P=M, Pkonvex, PeR, (2.2)

X(AuB) + x(AnB)~ X(A) + X(B), A, BeÄ (2.3)

erfüllt
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3. Einfache Folgerungen

Bevor wir an die Begründung unserer Behauptung herantreten, sollen einige
einfache Folgerungen gezogen werden, die sich direkt aus den drei Postulaten
ergeben.

Zunächst erinnern wir daran, dass ein Polyeder innerhalb der direkten
Mengengeometrie als Vereinigungsmenge endlich vieler kompakter und konvexer Polyeder
(Eipolyeder) definiert werden kann. Ein Eipolyeder lässt sich als abgeschlossene
konvexe Hülle endlich vieler Punkte erklären. Nachfolgend soll P stets ein Eipolyeder

bezeichnen. Durch iterierte Anwendung des Additionstheorems (2.3) gelangt
man zu der erweiterten additiven Formel

X(A) _;i X(P,) -Z*x (P„ n PJ + Zsx(PynP/inpx)-...; (3.1)

die sich auf das Polyeder A U* Pv bezieht, das die Vereinigungsmenge der Eipolyeder

Pv (v 1, n) ist. Hierbei bedeutet El die Summation über alle Kombinationen

der Indizes 1, n zur *-ten Klasse. Ein Nachweis durch vollständige Induktion

liegt auf der Hand.
Beachten wir, dass die in (3.1) auftretenden Durchschnitte entweder leer oder

nichtleere Eipolyeder sind, so ergibt sich im Hinblick auf (2.1) und (2.2) die Folgerung

X(A) ganzzahlig. (3.2)

Weiter schliesst man mit (3.1), dass sich der Wert für die Charakteristik x für
ein individuell vorgegebenes Polyeder A e R eindeutig aus den drei Postulaten ergibt,
so dass es höchstens eine Lösung geben kann, die alle drei Forderungen erfüllt. Wenn
wir durch eine besondere Konstruktion zeigen, dass es andererseits wenigstens eine

Lösung gibt, so ist die Begründung der Eulerschen Charakteristik x insofern
vollständig, als auch erwiesen ist, dass diese wichtige ganzwertige Funktion über der
Polyederklasse 51 durch die Eigenschaften (2.1) bis (2.3) eindeutig gekennzeichnet ist.

Evidenterweise ist ferner die Bewegungsinvarianz

z(A) z(B): A~B (3.3)

gesichert; hier bezeichnet ~ die Kongruenz im Sinne der Elementargeometrie.

4. Beweis des Existenzsatzes

Wir geben nun einen nach der Dimension k des Raumes R fortschreitenden
Induktionsbeweis für die Existenz einer Lösung x & %> welche die Forderungen (2.1)
bis (2.3) erfüllt.

Es sei zunächst k 1, und I C R bezeichne ein kompaktes Intervall, i" ^ <f>.

Ein lineares Polyeder A e R ist hier die Vereinigungsmenge endlich vieler kompakter,
nichtleerer und paarweise disjunkter Intervalle. Mit dem Ansatz

X(A) n; _t Ur/„ 2,ni__-^ („*,,) (4.1)

wird über R in eindeutiger Weise ein nichtnegatives ganzzahliges Funktional erklärt,
wenn noch ergänzend x($) 0 hinzugefügt wird. Mit der Bemerkung, dass I ein
lineares Eipolyeder ist, verifiziert man die hier trivialen Zeilen (2.1) und (2.2). Es
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ist eine einfache kombinatorische Aufgabe, sich ferner von der Gültigkeit des
Additionstheorems (2.3) zu überzeugen [es handelt sich um ein einfaches Korollar
zu dem in Studie Nr. 1 des Anhangs nachgewiesenen Lemma].

Es sei nun k > 1, und wir treffen die induktive Annahme, dass die Existenz von
X und demnach auch die oben angeführten Folgerungen für alle Dimensionen kleiner
als k sichergestellt sei. Nachfolgend bedeute E C R eine (k — 1)-dimensionale Ebene
und G CR eine (k — 2)-dimensionale Gerade (die unterschiedliche Bezeichnung für
diese linearen Unterräume soll lediglich die Anschaulichkeit etwas heben).

Nun bezeichne {E[ol] ; 0 < a < n] ein Ebenenbüschel mit der Achse G; a sei der
Winkelparameter des Büschels. Es sei nun A e R und nach der Induktionsannahme
existieren

g(A) x(AnG) (4.2)

h(At<x) x(AnEl*\)> 0<a<7r. (4.3)

Die Hilfsfunktion h ist bezüglich a stückweise konstant und weist nur endlich viele

Sprungstellen auf (Stufenfunktion). Dies ergibt sich wie folgt: Ist A U? P„, so

folgt aus (3.1), dass h(A, a) h(A, ß) sein muss, sofern

x(Pl>npßn...npAn E[*\) xiP^P.n ...n E[ß])

für alle 2n Kombinationen v, (i, ...,X der Indizes 1,2, n aller Klassen gilt.
Änderungen (Sprünge) von h können nur bei Winkeln auftreten, die zu Stützebenen
nichtleerer Durchschnittspolyeder gehören, die sich bei den erwähnten 2n

Indizeskombinationen ergeben.
Mit der nämlichen Bemerkung folgt, dass der rechtsseitige Grenzwert

h(A,oi + 0) =limh(A,ß), 0< oc < ß <n, ol lim ß (4.4)

existiert und dass weiter die Differenz h(A, ol) — h(A, ol + 0) lediglich für endlich
viele Winkel des Intervalls 0 < a < n von Null verschieden ausfallen kann. Mit
dem Ansatz

X(A) g(A) +£[h(A, oc) - h(A, ol + 0)] (4.5)
OL

wird über der Polyederklasse 51 eindeutig ein ganzzahliges Funktional definiert;
die Summation erstreckt sich über alle Winkel des Intervalls 0 < a < n, wobei
die Summanden aber nur für endlich viele Winkel nicht verschwinden, so dass es

sich rechts um eine endliche Summe handelt.
Es ist nun nachzuweisen, dass das mit (4.5) dargestellte Funktional die

Forderungen (2.1) bis (2.3) erfüllt. In der Tat ist zunächst (2.1) trivial richtig. Wir wenden

uns der zweiten Forderung zu. 1. Fall: Es sei POG <f> und demnach g(P) 0.

Durch passende Wahl des Nullpunktes für den Winkelparameter a des
Ebenenbüschels lässt sich erreichen, dass E[q] und E[a] die beiden Stützebenen des Büschels

an das Eipolyeder P sind, wobei 0 < q < a < n gilt. Es ist dann h(P, oc) 1 für
a e [q, a] und h(P, a) 0 für a <fc [q, g], und es resultiert h(P, ol) — h(P, oc + 0) 1

bzw. 0 für a a bzw. ol ^ a, so dass #(P) 1 wird. 2. Fall: Es sei P O G # (f> und
demnach g(P) 1. Hier ist nun h(P, a) 1 identisch für alle Winkel, so dass erneut
X(P) 1 folgt. In beiden Fällen hat sich also (2.2) bestätigt. Um die dritte Forde-
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rung zu verifizieren, gehen wir von der Bemerkung aus, dass im Hinblick auf die
induktive Voraussetzung sowohl g(A) als auch h(A, ol) und somit auch h(A, a + 0)
additive Funktionale über 51 sind, also das Additionstheorem (1.2) erfüllen. Dies
muss offenbar auch für das durch Addition derartiger Funktionale gemäss Ansatz
(4.5) erzeugte Funktional x gelten, womit auch (2.3) bestätigt ist. Der Existenznachweis

ist damit beendet.

5. Schnittrekursion

Die für den von uns erbrachten Existenznachweis der Eulerschen Charakteristik
X wesentlich gewesene Darstellung (4.5) kann nach Konsultation der vorgängig
getroffenen Festsetzungen (4.2) bis (4.4) als eine Rekursionsformel interpretiert
werden, die nach steigender Dimension fortschreitet. Sie kann durch

X(A) x{A^G)+^[%{AC^ _?[„]) - x (A n £[« + 0])] (5.1)
a

wiedergegeben werden, wobei G eine beliebige (k — 2)-dimensionale Gerade und
E[ol] die durch den Winkelparameter a gekennzeichnete Ebene des Büschels der
durch G hindurchgehenden (k — 1)-dimensionalen Ebenen bezeichnen; hierbei ist
k > 2 vorausgesetzt.

Unsere Schnittrekursion ist für mannigfaltige Anwendungen dienlich, wie dies
in den nachfolgenden Abschnitten an einigen Beispielen erläutert wird.

Die bereits früher vom Verfasser gewonnene analoge Formel1)

X(A) Z \X (A n £M) - X (A n £[« + 0])]. (5-2)
a

die sich auf eine Schar paralleler Ebenen E[ol] mit dem Translationsparameter a
bezieht, kann als Grenzfall von (5.1) betrachtet werden, wo G im Unendlichen liegt.

6. Eine Additionsformel

Als erste Anwendung der Schnittrekursion geben wir die Begründung einer
additiven Beziehung bei Polyedervereinigung.

Es sei A U? Av die Vereinigung von n beliebigen Polyedern Av C R (v 1,..., n),
und es bezeichne Al CA (i 1, n) dasjenige Teilpolyeder, dessen Punkte
wenigstens i verschiedenen Überdeckungspolyedern Av angehören. Es gilt dann die
Additionsformel

£? xM X zV). (e.i)

die gelegentlich Verwendung findet. Für k 1 muss die Richtigkeit der
entsprechenden einfachen geometrisch kombinatorischen Aussage über Intervallmengen
direkt verifiziert werden [vgl. Studie Nr. 1 des Anhangs].

Der Beweis für (6.1) kann nun mit Hilfe der Schnittrekursion (5.1) durch das
Verfahren der vollständigen Induktion nach wachsender Dimension auf sehr
naheliegende Weise geführt werden. Die vorausgesetzte Richtigkeit der Additionsformel

*) Diese in [1] gegebene Begründung der Charakteristik bezieht sich auf Körper des Konvexrings,
der die Polyederklasse umfasst. Eine elementare Einführung für dreidimensionale Polyeder nach diesem
Verfahren wurde von H. Lenz [2] gegeben.
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für die in der Rekursionsformel auftretenden (k — 1)-dimensionalen Schnitte zieht
unmittelbar ihre Richtigkeit im ^-dimensionalen Fall nach sich, die Annahme
A HG <f> ergibt eme kleine Vereinfachung

7. Charakteristik polyedrischer Sphären

Unter einer (konvexen) polyednschen Sphäre S*-1 wollen wir hier die geschlossene

(k — 1)-dimensionale Randflache eines ^-dimensionalen eigentlichen Eipolyeders
PCR verstehen

Mit Hilfe unserer Schnittrekursion lasst sich die Eulersche Charakteristik der
genannten flachenhaften Polyeder muhelos ermitteln Es ergibt sich

x(S»-1) l- (-1)*, (71)

also die bekannte klassische Formel
In der Tat Im Falle k 1 besteht S° aus zwei Punkten, so dass nach (2 1) bis (2 3)

Z(S°) 2 (7 2)

resultiert Wenn k 2 ist, kann man mit (3 1) auf das fur eme konvexe Polygon-
hme S1 gültige Resultat

X(S1) 0 (7 3)

schhessen Mit (7 2) und (7 3) bestätigt sich unsere Behauptung (7 1) fur die beiden
ersten Dimensionen Fur k > 3 ergibt sich ihre Richtigkeit nach der Schnittrekur-
sion (5 1) rekursiv In der Tat wird der Ruckgriff #(S*-1) x(Sk~3) direkt ablesbar,
wenn man davon ausgeht, dass G durch einen inneren Punkt des von SÄ_1 beran-
deten Eipolyeders P gelegt werden kann und vermerkt, dass Sk~1C)G eme Sphäre
Sk~* ist

8. Eulers Formel fur konvexe Polyeder; Dehn-Sommervillesche Relationen

Es sei k > 2, und P bezeichne em eigentliches ^-dimensionales Eipolyeder Die
Randflache von P ist dann eme (k — 1)-dimensionale konvexe polyednsche Sphäre,
wie sie im vorstehenden Abschnitt betrachtet wurde Es soll nun ht (i 0, k)
die Anzahl der ^-dimensionalen Kanten von P bezeichnen, wo aus formal
zweckdienlichen Gründen noch hk 1 angefügt sei P selbst tritt dann als seine ^-dimensionale

Kante in Erscheinung
Weiter soll K% (i — 0, k) das ^-te Kantengerust von P, d h die Vereinigungsmenge

aller ^-dimensionalen Kanten bedeuten Insbesondere ist dann Kk_1 die Randflache

von P und Kk das Eipolyeder P selbst
Als eme Anwendung unserer Schnittrekursion skizzieren wir einen Beweis des

folgenden bekannten Relationensystems

2l(-lYh, Z. (* 0> .*)> (81)

wonach die *-te Charaktenstik, d h die Eulersche Charakteristik x% xfät) ^es
fc-ten Kantengerustes von P als alternierende Summe von Kantenzahlen dargestellt
wird Unser System (8 1) enthalt m den Sonderfallen i k — 1 und i k, die gleich-
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wertig ausfallen, die klassische Eulersche Formel, die im Hinblick auf unser Resultat

(7.1) als
2.*-1 (-1)^ 1 - (-1)* (8.2)

oder formal gerundeter als
_:* (-1)' *, 1 (8.3)

geschrieben werden kann.
Beweis: Für k 2 ist unsere Behauptung (8.1) trivial richtig. In der Tat ergibt

sich die erforderliche Verifikation mit den Bemerkungen, dass h0 hv A2 1 und
Xo K> Xi ^ Q> X2 1 ist- Es sei nun k > 2, und die Richtigkeit von (8.1) sei bereits
für alle Dimensionen, die kleiner als k sind, sichergestellt. Wir wählen nun eine

(k — 2)-dimensionale Gerade G, die P nicht trifft, so dass G O P $ ist, derart, dass

keine Büschelebene des durch G als Achse bestimmten Ebenenbüschels E[ol]
(0 < a < n) mehr als einen Eckpunkt von P enthält. Die h0 n Eckpunkte pv
(v 1, n) von P lassen sich nun so numerieren, dass für die Winkelparameter
oc„ der durch sie hindurchgehenden Büschelebenen 0 < olx < < olh < n gilt; durch
passende Festsetzung des Nullpunktes für die Winkelmessung ist dies jedenfalls zu
erreichen.

Nun sei i£f'_i[oc] K% O E[ol] (i 1, k) gesetzt. Wenn wir bedenken, dass

für i > 0 keine i-dimensionale Kante von Kt in einer Büschelebene liegen kann,
können wir iC-iM als das (i — l)-te Kantengerüst des (k — 1)-dimensionalen
Schnitteipolyeders P'[oc] P O E[ol] erkennen, das für ol1 < a < an in seiner Trägerebene

wieder eigentlich ist. Weiter bezeichne A7'[a] (j 0, k — 1) die Anzahl der
/-dimensionalen Kanten von P'[oc]. Nach Schnittrekursion (5.1) gilt zunächst

x(K) Z(zW-iM) - z(*.'-i[« + o])> (* 1 k) ¦

OL

Nach Einsatz der Induktionsannahme lässt sich

x(Kt) r»-1 (- 1)' H,

anschreiben, wenn zur Abkürzung die Hilfszahlen

h, 2>;m - a;[« + 0]} (/ 0, ...,*-1)
(X

zur Verfügung gestellt werden. Nun hat man sich zu überlegen, dass

*t W - *,' [a + 0] 0 (ot & a„, v 1, n) bzw.

-NVJ (a o,; y t6 0) bzw. - A^v0 + 1 (oc olv; j 0)

ist, wobei NVJ die Anzahl der (y + 1)-dimensionalen Kanten von P bezeichnet, die
im Eckpunkt pv zusammenstossen, und die ganz auf der positiven Seite der
Büschelebene E[olv] liegen, derart also, dass diese Kanten für alle hinreichend kleinen
e> 0 von den Ebenen E[oLp — e] nicht getroffen werden. Offensichtlich gilt die
Zählungsformel

¦£i"^ *,+i (7 0,...,*-1),
da ja jede (j 4- l)-dimensionale Kante von P genau einmal einen Eckpunkt in der
zugehörenden Büschelebene aufweist und zudem auf ihrer positiven Seite liegt,
wenn das gesamte Winkelintervall 0 < a < n durchspielt wird. So ergibt sich denn

% * -*fu (!</<*-!) bzw. -hx + Ä0 (j - 0).
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Zusammengefasst resultiert jetzt

x(Kt) h0 - 2;«-1 (-1)' h,+1 _:• (- iy *,

im i 1, k; für i 0 ist dies trivial richtig. Damit ist der Induktionsbeweis
beendet.

Im nachfolgenden zweiten Teil gewinnen wir eine Inversion zu (8.1), indem wir
umgekehrt die Kantenanzahlen durch die Charakteristiken der Kantengerüste
darstellen. Jedoch ist dies nur dann möglich, wenn wir uns auf «allgemeine» eigentliche
konvexe Polytope beschränken, d. h., wir setzen über P voraus, dass jede i-dimen-

sionale Kante zu genau I I verschiedenen y-dimensionalen Kanten gehört, wo
\k - i)

0 < i < j < k sein soll. Es treten also in der P berandenden polyedrischen Sphäre
keine singulären Inzidenzerscheinungen auf.

Wir greifen nun auf die additive Formel (6.1) zurück und identifizieren die dort
auftretenden Av mit den y-dimensionalen Kanten von P. Es ergibt sich unmittelbar

*, £„
k — i\ lk — i — 1

k-jj~[k- j „,; / <)....,*. (8.4)

Bmomialkoeffizienten, die im engeren Sinn nicht existieren, sind hierbei Null zu
setzen. Zur Begründung ist lediglich zu bedenken, dass die Menge Am der vom System
der /-dimensionalen Kanten w-fach überdeckten Punkte mit Kx zusammenfällt,
sofern m dem Intervall

fk- V-C:;.)~1
angehört.

Der nachfolgende letzte Teil, den wir dem speziellen Thema «zur kombinatorischen

Geometrie der polyedrischen Sphären» widmen wollen, soll uns zu einem
Relationensystem führen, das die Eulersche Formel umfasst. Neben der bekannten
klassischen linearen Beziehung zwischen den Kantenanzahlen treten noch andere solche
auf, die insgesamt ein abgerundetes System ergeben. Dieses kann als eine Erweiterung

des Eulerschen Gesetzes angesehen werden, wobei allerdings wohl beachtet
werden muss, dass lediglich allgemeine konvexe Polyeder zugelassen sind.

Die angekündigten Relationen ergeben sich dadurch, dass wir die beiden oben

hergeleiteten Systeme (8.1) und (8.4) konfrontieren und die Ausdrücke für die
Charakteristiken des erstgenannten Systems im zweiten substituieren. Nach einfacher
Rechnung resultiert

A. ^(-ir^^A,; 0,...,*, (8.5)

also ein System von formal k -f 1 linearen homogenen Beziehungen für die k + 1

Kantenzahlen ht (i 0,..., k).
Von wesentlicher Bedeutung für die Diskussion des Relationensystems (8.5) ist

die dort in Erscheinung tretende Matrix

_4 <-i»M*:; ; *,/ <>,...,*. (8.6)
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Bezeichnet E die Einheitsmatrix, so zeigt sich, dass der Rang r von A — E lediglich
[(* + l)/2] ist [vgl. Studie Nr. 2 des Anhangs].

(8.5) impliziert demnach nur r [(k -h l)/2] unabhängige lineare Relationen.2)
Die unten folgende Tafel zeigt für die ersten Dimensionen k 2,3,4, 5 die

r — 1, 2, 2, 3 unabhängigen Relationen, wie sie sich in natürlicher Weise aus (8.5)
dadurch ergeben, dass man die jeweils neu auftretenden von den vorangehenden
abhängigen ausstreicht.

k Relationen

2 A0- Aj 0

3 3 A0 — 2 Ai
A0 - Ai + Ag - 2 Aj

0
0

4 2 A0 - Ai
A0 - Ai + A2 - A3

0
0

5 5 A0 - 2 Ai
10 A0 - 6 hx + 3 A2 - 2 A8

A0 - Ai + A2 - A3 + A4- 2/*5

0
0
0

9. Kennzeichnung der Konvexität durch eine Schnitteigenschaft

Wir beweisen die folgende Aussage:
Es sei k > 2, A C R ein kompaktes Polyeder und m eine ganze Zahl. Gilt für

jede (k — l)-dimensionale Ebene E C R, für die _4 O E / <j> ausfällt, stets

X(A O E) m, so ist m 1 und A konvex.
Für k 1 ist der Satz falsch; besteht A aus zwei disj unkten kompakten und

nichtleeren Intervallen, so ist die Voraussetzung für m 1 erfüllt, die Aussage jedoch
unzutreffend. Beweis der Aussage: Es sei zunächst k 2 und A die konvexe Hülle

von A und p ein Eckpunkt von A. Durch p lässt sich eine Stützgerade E' von _4

so legen, dass ÄnE'=p ist. Nun gehört p auch zu A, und ebenso gilt i O £' ^,
so dass mit ^(in £') x(p) 1 vorerst m 1 resultiert. So folgt, dass für jede
Gerade E, für die A O E ^ (j> ist, x(A O is) 1, also _4 O £ eine Strecke sein muss.
Damit ist unsere Behauptung für k — 2 als richtig erkannt. Es sei nun A > 2, und
unser Satz sei bereits für alle Dimensionen bewiesen, die kleiner als k sind. Ist G

eine (k — 2)-dimensionale Gerade, für die A O G ^ ^ gilt, so folgt mit der
Schnittrekursion (5.1) zunächst x(A) #(_4 OG) m*. Es sei nun A' A n E ^ <f>. Für
alle G C E, i'OG # ^, muss ^(i'n(.) w* sein. Nach der Induktionsannahme
schliesst man, dass m* 1 und _4' konvex sein muss. Dies ist nur dann für beliebige

2) Es handelt sich um em Gleichungssystem, das vollständig im ^-dimensionalen Fall erstmals von
D. M. Y. Sommerville [3] im Jahre 1927 aufgestellt wurde, und zwar in eujer gleichwertigen Form, die
sich auf die den allgemeinen Polyedern dual entsprechenden simplizialen Polyeder bezieht [ht Aj£_ t __ t;
hk _= h% 1). Diese bemerkenswerte Ergänzung zur Eulerschen Polyederformel ist spater offensichtlich
kaum beachtet worden, und sie war auch dem Verfasser bis nach Abschluss des Manuskriptes zu der
vorhegenden Note unbekannt. Auch V. Klee [4] hat 1963 die analogen Relationen mit allgemeinerer sich
auf simphziale Mannigfaltigkeiten erstreckender Gültigkeit erneut entdeckt. Die hier verwertete Information

konnte der Verfasser dem soeben erschienenen ausgezeichneten Buch von B. Grünbaum [5] über
konvexe Polytope entnehmen.
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Ebenen E möglich, wenn bereits A konvex ist, offenbar ist dann m 1 Damit ist
der induktive Beweis beendet 3)

10. Paritätsaussagen fur Treffzahlen bei linearen Polyederschnitten

Als typische Anwendung der Schnittrekursion fur die Eulersche Charakteristik
begründen wir einige einfache Aussagen uber die Paritat von Treffzahlen, die sich
bei Schnitten der Ebenen (Geraden) eines Bundeis mit Polyedern machen lassen
So gilt der folgende Satz

Sei k > 1 und il em System von n Eipolyedern Pv C R (v 1, n) des k-
dimensionalen Raumes R, von denen keines den fest gewählten Ursprung Z e R
enthalt Ist n ungerade, so gibt es eme durch Z hindurchgehende (k — 1)-dimensionale

Ebene E derart, dass die Zahl N(E) der Korper von R, die von E getroffen
werden, gerade ist

Der nachfolgend noch formulierte Zusatz zeigt, dass unsere Aussage von vier
möglichen Varianten die einzige zutreffende ist Es gilt namhch

Von den vier Aussagen

I) n ungerade => IE N(E) gerade

II) n ungerade => IE N(E) ungerade

III) n gerade => IE N(E) gerade

IV) n gerade =>¦ IE N(E) ungerade

smd I) richtig, II) bis IV) dagegen falsch'
Beweise Zunächst begründen wir den Satz Es ist evident, dass es genügt, den

Beweis fur Systeme il paarweise disjunkter Eipolyeder zu fuhren Andernfalls lasst
sich em derartiges System aus dem Vorgegebenen dadurch gewinnen, dass passende
Eipolyeder von il von Z aus diktiert werden, wobei aber die Treffzahlen N(E) fur
alle Ebenen des durch Z gegebenen Bundeis offensichtlich unverändert bleiben
Fur k 1 ist der Satz trivial richtig, da m diesem Fall E mit Z zu identifizieren ist
Es sei nun k > 1, und der Satz sei bereits fur alle Dimensionen kleiner als k bewiesen
Ferner postulieren wir die Gegenannahme, wonach em System il so existiere, dass
sowohl n als auch alle Treffzahlen N(E) fur Ebenen durch Z ungerade sind Es
bezeichne E' eme solche festgewählte Ebene und il' das System der nichtleeren
Schnittelpolyeder der Ebene E' mit den Korpern von il, ihre Anzahl n' ist also

ungerade Nach der Induktionsannahme existiert eme m E' liegende (k — 2)-dimen-
sionale Gerade G' derart, dass N'(G') gerade ausfallt Es soll nun G' die Achse eines
Ebenenbuschels E[a] sein Aus der Schnittrekursion (5 1) kann abgelesen werden,
dass x{A) x(A HG') (mod 2) sein muss, wo A die Vereinigungsmenge der Eipolyeder

von il bezeichnet, man muss sich nur überlegen, dass die Paritat der Schnittzahlen

x(A nE[ol]) innerhalb des Buscheis fest bleibt Da aber x(A HG') 2V'(G')

gerade ist, muss x(A) n auch gerade sein' Mit diesem Widerspruch ist der
Induktionsbeweis beendet

8) Die Frage, ob eine Kennzeichnung der Konvexität lediglich auf Grund der Eulerschen Charakteristik

wenigstens in dem hier vorliegenden Spezialfall kompakter Polyeder möglich ist, stellte sich in der
im Anschluss an einen von K Voss gehaltenen Vortrag [6] stattgehabten Diskussion Die dort erwogene
Möglichkeit ist mit unserer Aussage bestätigt
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Nun wenden wir uns dem Zusatz zu: Aussage I) ist mit dem soeben bewiesenen
Satz identisch. Aussage II) ist falsch, was wir durch ein Beispiel belegen. Hierbei
ist k 3 und n 13. Die einzelnen Eipolyeder des speziellen Systems il sind
Elemente der Mantelfläche einer geraden quadratischen Pyramide, wobei die Mitte des

Basisquadrates Z sein soll; vgl. die Grundrißskizze Figur 1. Die 13 Elemente sind

tigur 1

die 4 Dreiecksbereiche A, B,C,D sowie die 6 Kanten E, F, G, H, I, K und die 3

Eckpunkte L, M, N. Man überprüft jetzt, dass die Treffzahlen N(E) lediglich die
Werte 4, 6, 8, 10, 12 annehmen. Ebenso ist Aussage III) falsch. Dies zeigen wir im
Falle k 2, n 4 mit einem System R, das aus zwei QuadratSeiten A, B und zwei

Figur 2

Eckpunkten gemäss Figur 2 besteht. Für jede durch den Quadratmittelpunkt Z
gehende Gerade E ist N(E) entweder 1 oder 3. Aussage IV) ist trivialerweise falsch,
was mit n 0, d. h. il leer, und N(E) 0 gezeigt ist.

11. Eine Aussage für Polyederdurchsuche mit Halbstrahlen

Abschliessend beweisen wir eine einfache Aussage für Fälle, wo die Treffzahlen
für alle Halbstrahlen, die von einem festen Punkt ausgehen und ein Polyeder
durchstechen, konstant ausfallen. Es gilt:

Sei k > 1 und A ein kompaktes Polyeder des A-dimensionalen Raumes R, das
den Ursprung Z nicht enthält. Besteht der Durchschnitt AnH von A mit jeder
von Z ausgehenden Halbgeraden H aus m getrennten Intervallen, so ist x(A) 2 m,
falls k ungerade, jedoch x(A) 0, falls k gerade ist.
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Dieser Satz gestattet, die Eulersche Charakteristik eines Polyeders in besonderen
Fällen direkt abzulesen. Die betreffende günstige Sachlage stellt sich keineswegs
nur in dem in gewissem Sinn trivialen Fall ein, wo A aus m einander umschliessenden
polyedrischen Sphären besteht. Figur 3 zeigt ein Beispiel im Falle k 2 dieser Art,
wobei m 2 ist.

Figur 3

Beweis: Für k 1 ist die Aussage trivial. Es sei k > 1, und die Aussage sei bereits
für alle Dimensionen kleiner als k gesichert. Für irgend eine (k — 1)-dimensionale
Ebene E durch Z bzw. eine (k — 2)-dimensionale Gerade G durch Z setzen wir
A' AHE bzw. _4" _4r>G. Die vorausgesetzte Halbstrahleigenschaft vererbt
sich von R auf E bzw. auf G. Nach der Induktionsannahme muss x(A') 0 bzw.
X(A") 2m sein, falls k ungerade ist. Mit Konsultation der Schnittrekursion (5.1)
folgert man, dass x(A) 2m sein muss. Analog bestätigt sich die Behauptung,
falls k gerade ist.

ANHANG

Studie Nr. 1

Es seien n und i (1 < i < n) natürliche Zahlen, und il bezeichne eine Menge von
n abgeschlossenen, nicht notwendig disjunkten Strecken einer Geraden G. Die Menge
derjenigen Punkte von G, die wenigstens i verschiedenen Strecken von il angehören,
zerfällt in endlich viele paarweise disjunkte und abgeschlossene Strecken; ihre
Anzahl sei kt (0 < kt < n). Es gilt dann die additive Beziehung

In der Tat: G sei x-Achse, und xeG bezeichne einen Punkt und zugleich seine Koordinate.

Die Streckenmenge il sei {JJf j 1, n} wobei ]3 abgeschlossene Intervalle
sind. Wir führen die charakteristischen Funktionen f3(x) 1 (x e Jj) bzw. 0 (x <fc J3)
und die Stufenfunktion F(x) £? fj(x) ein. Ferner sei gt(x) 1 [F(x) > i] bzw. 0

[F(x) < *]. Offenbar gilt dann auch F(x) £? gt(x). Endlich sei N E [PW -
X

F(x -f 0)], wobei sich die Summation über alle x von G erstreckt; hierbei ist zu
beachten, dass der Summand nur an endlich vielen Sprungstellen der Stufenfunktion

F(x) nicht verschwindet, so dass es sich de facto um eine endliche Summe

ganzer Zahlen handelt [F (x -f 0) ist wie üblich der rechtsseitige Grenzwert lim F(y)
(x < y, x limy)]. Nun hat man einerseits £ [f3(x) — fj (x + 0)] 1 und andererseits

X

auch 2J [gt(%) — gt(% + 0)] kt, so dass N n E* kt resultiert, was zu beweisen

war. *
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Studie Nr. 2

Gegeben sei die quadratische Matrix

fk-
{-l)%\*-1 ,7 0,1,

Es ist zu zeigen, dass der Rang r der Matrix A — E, wobei E die Einheitsmatrix
bezeichnet, gleich r [(k -f l)/2] ist In der Tat Bilden wir die Hilfspolynome
pt(x) (i 0, k), deren Koeffizienten durch die Elemente der i-ten Spalte von
A — E geliefert werden (] sei der Zeilen- und i der Spaltenmdex von A), so ergibt
eme einfache Rechnung

pt(x) (-xy (i + *)*-* -x% (i o, k)

Der gesuchte Rang ist gleich der Dimension des von den Polynomen pt(x) aufgespannten

linearen Polynomraums Durch die mchtsmgulare lineare Transformation

q„(x) _:» (*\ pt(x) (n 0, k)

bleibt diese Dimension unverändert Nun ist aber

qn(x) (l + x)k-»-(l + x)\
und die Dimension des durch die qn(x) aufgespannten linearen Polynomraums ist,
wie ersichtlich, [(k -f l)/2], was zu beweisen war H Hadwiger, Bern
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Kleine Mitteilungen

Eine Bemerkung zur Untersuchung unbestimmter Ausdrücke

Bei der Untersuchung sogenannter unbestimmter Ausdrucke benutzt man üblicherweise

die Regeln von Bernoulli-L*Hospital Im folgenden beweisen wir einen Satz,
der uns eine andere Methode zur Untersuchung solcher Ausdrucke liefert Diese Methode
hat gegenüber den genannten Regeln verschiedene Vorteile Erstens die Voraussetzungen

des Satzes smd recht einfach, zweitens die Untersuchung kann oft wesentlich
abgekürzt werden, und zwar vor allem dann, wenn zusammengesetzte Funktionen vor-
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