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Eine Schnittrekursion fiir die Eulersche Charakteristik
cuklidischer Polyeder
mit Anwendungen innerhalb der kombinatorischen Geometrie

1. Additive Polyederfunktionale

Es sei R der k-dimensionale euklidische Raum, und | bezeichne die Klasse der
kompakten Polyeder 4 C R, die auch das leere Polyeder ¢ enthalten soll. Die Klasse
8 ist dann beztiglich Vereinigung und Schnitt geschlossen, d. h., es gilt

A, BeR =AyB, AN BeR. (1.1)

Eine iiber R eindeutig und reellwertig definierte Funktion ¢ nennen wir additiv,
wenn sie der angezeigten Geschlossenheit beziiglich der Verkniipfungen 0 und ¢,
durch die ! zu einem distributiven Verband wird, insofern angepasst ist, als das
Additionstheorem

¢ (4u B) + ¢ (40 B) = g(d) + ¢(B) (1.2)

uneingeschrankt gilt. Es sei § der lineare Raum aller additiven Funktionale ¢
iiber !. Bedeutet V(4) den elementaren Inhalt von 4, so gilt V € &, wenn noch
V(é) = 0 festgesetzt wird.

2. Existenzsatz fiir die Charakteristik

Wir formulieren nun eine Aussage, die sich auf die Existenz eines besonders
ausgezeichneten Funktionals y € § bezieht; es handelt sich um die Charakteristik
von Euler-Poincaré, die iiblicherweise in einem wesentlich weiter greifenden Gel-
tungsbereich im Rahmen der Topologie begriindet wird. Mit Beschrankung auf den
hier in Betracht gezogenen Sonderfall kompakter euklidischer Polyeder kann diese
auf unabhingige und elementare Weise sichergestellt werden. Zusammen mit dem
Existenznachweis wird auch die additive Eigenschaft der Charakteristik gewonnen.
Wir zeigen:

Es existiert genau ein additives Funktional y € §, das die drei Forderungen

x(#) =0; (2.1)
¥(P)=1, P +¢, Pkonvex, PeRS; (2.2)
2 (AU B)+ 1 (A0B)=y(A) + x(B), A4,BeR (2.3)

erfiillt.
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3. Einfache Folgerungen

Bevor wir an die Begriindung unserer Behauptung herantreten, sollen einige
einfache Folgerungen gezogen werden, die sich direkt aus den drei Postulaten
ergeben.

Zunichst erinnern wir daran, dass ein Polyeder innerhalb der direkten Mengen-
geometrie als Vereinigungsmenge endlich vieler kompakter und konvexer Polyeder
(Eipolyeder) definiert werden kann. Ein Eipolyeder lisst sich als abgeschlossene
konvexe Hiille endlich vieler Punkte erkliren. Nachfolgend soll P stets ein Eipoly-
eder bezeichnen. Durch iterierte Anwendung des Additionstheorems (2.3) gelangt
man zu der erweiterten additiven Formel

2(d) =21 x(P) =22y (B,OP)+ 2%y (B,OP,0P) —; (3.1)

die sich auf das Polyeder 4 = U7 P, bezieht, das die Vereinigungsmenge der Eipoly-
eder P, (v =1, ..., n) ist. Hierbei bedeutet 2% die Summation iiber alle Kombina-
tionen der Indizes 1, ..., # zur i-ten Klasse. Ein Nachweis durch vollstindige Induk-
tion liegt auf der Hand.

Beachten wir, dass die in (3.1) auftretenden Durchschnitte entweder leer oder
nichtleere Eipolyeder sind, so ergibt sich im Hinblick auf (2.1) und (2.2) die Folge-
rung

x(A) ganzzahlig. (3.2)

Weiter schliesst man mit (3.1), dass sich der Wert fiir die Charakteristik y fiir
ein individuell vorgegebenes Polyeder 4 € & eindeutig aus den drei Postulaten ergibt,
so dass es hochstens eine Losung geben kann, die alle drei Forderungen erfiillt. Wenn
wir durch eine besondere Konstruktion zeigen, dass es andererseits wenigstens eine
Losung gibt, so ist die Begriindung der Eulerschen Charakteristik y insofern voll-
stindig, als auch erwiesen ist, dass diese wichtige ganzwertige Funktion {iber der
Polyederklasse | durch die Eigenschaften (2.1) bis (2.3) eindeutig gekennzeichnet ist.

Evidenterweise ist ferner die Bewegungsinvarianz

x(d)=x(B); 4x~B (3.3)

gesichert; hier bezeichnet ~ die Kongruenz im Sinne der Elementargeometrie.

4. Beweis des Existenzsatzes

Wir geben nun einen nach der Dimension 2 des Raumes R fortschreitenden
Induktionsbeweis fiir die Existenz einer Losung y € &, welche die Forderungen (2.1)
bis (2.3) erfiilit.

Es sei zundchst 2= 1, und I C R bezeichne ein kompaktes Intervall, I # ¢.
Ein lineares Polyeder 4 € R ist hier die Vereinigungsmenge endlich vieler kompakter,
nichtleerer und paarweise disjunkter Intervalle. Mit dem Ansatz

xd)=n; A=UrL, LOL=¢ (v+up) (4.1)

wird {iber R in eindeutiger Weise ein nichtnegatives ganzzahliges Funktional erklirt,
wenn noch erginzend y(¢) = 0 hinzugefiigt wird. Mit der Bemerkung, dass I ein
lineares Eipolyeder ist, verifiziert man die hier trivialen Zeilen (2.1) und (2.2). Es
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ist eine einfache kombinatorische Aufgabe, sich ferner von der Giiltigkeit des Ad-
ditionstheorems (2.3) zu tiiberzeugen [es handelt sich um ein einfaches Korollar
zu dem in Studie Nr. 1 des Anhangs nachgewiesenen Lemma].

Es sei nun 2 > 1, und wir treffen die induktive Annahme, dass die Existenz von
x und demnach auch die oben angefiihrten Folgerungen fiir alle Dimensionen kleiner
als % sichergestellt sei. Nachfolgend bedeute E C R eine (2 — 1)-dimensionale Ebene
und G C R eine (¢ — 2)-dimensionale Gerade (die unterschiedliche Bezeichnung fiir
diese linearen Unterrdume soll lediglich die Anschaulichkeit etwas heben).

Nun bezeichne {E[a]; 0 << & < 7} ein Ebenenbiischel mit der Achse G; « sei der

Winkelparameter des Biischels. Es sei nun 4 € & und nach der Induktionsannahme
existieren

gd) =y (4 NG (4.2)
WA, 0) = g (A OV E[e]), 0<a<nx. (4.3)

Die Hilfsfunktion % ist beziiglich « stiickweise konstant und weist nur endlich viele

Sprungstellen auf (Stufenfunktion). Dies ergibt sich wie folgt: Ist 4 = Uy P,, so
folgt aus (3.1), dass #(4, «) = A(4, B) sein muss, sofern

2 (B,0P,0...0P, 0 E[a]) = x (B,0 P,0... 0 E[])

fiir alle 2* Kombinationen v, u, ..., 4 der Indizes 1, 2, ..., » aller Klassen gilt. Ande-
rungen (Spriinge) von A koénnen nur bei Winkeln auftreten, die zu Stiitzebenen
nichtleerer Durchschnittspolyeder gehoren, die sich bei den erwdhnten 2" Indizes-
kombinationen ergeben.

Mit der ndmlichen Bemerkung folgt, dass der rechtsseitige Grenzwert
MA,a+0) =1limh(4,p), O0<a<f<m, o=Ilm§p (4.4)

existiert und dass weiter die Differenz A(4, «) — #(4, « + 0) lediglich fiir endlich

viele Winkel des Intervalls 0 < o« < &z von Null verschieden ausfallen kann. Mit
dem Ansatz

2(4) = g(4) + 3] [WA, &) — (4, o + 0)] (4.5)

wird tiber der Polyederklasse K eindeutig ein ganzzahliges Funktional definiert;
die Summation erstreckt sich iiber alle Winkel des Intervalls 0 < a < 7, wobei
die Summanden aber nur fiir endlich viele Winkel nicht verschwinden, so dass es
sich rechts um eine endliche Summe handelt.

Es ist nun nachzuweisen, dass das mit (4.5) dargestellte Funktional die Forde-
rungen (2.1) bis (2.3) erfiillt. In der Tat ist zunéichst (2.1) trivial richtig. Wir wenden
uns der zweiten Forderung zu. 1. Fall: Es sei PN G = ¢ und demnach g(P) = 0.
Durch passende Wahl des Nullpunktes fiir den Winkelparameter « des Ebenen-
biischels ldsst sich erreichen, dass E[g] und E[o] die beiden Stiitzebenen des Biischels
an das Eipolyeder P sind, wobei 0 <p < o <z gilt. Es ist dann A(P, o) =1 fiir
« € [p, ] und A(P, «) = O fiir a ¢ [p, ], und es resultiert A(P,a) — A(P,a+0) =1
bzw. 0 fiir « = ¢ bzw. a # 0, so dass y(P) = 1 wird. 2. Fall: Essei PNG # ¢ und
demnach g(P) = 1. Hier ist nun A(P, «) = 1 identisch fiir alle Winkel, so dass erneut
%(P) = 1 folgt. In beiden Fillen hat sich also (2.2) bestétigt. Um die dritte Forde-
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rung zu verifizieren, gehen wir von der Bemerkung aus, dass im Hinblick auf die
induktive Voraussetzung sowohl g(4) als auch #(4, «) und somit auch A(4, « + 0)
additive Funktionale iiber & sind, also das Additionstheorem (1.2) erfiillen. Dies
muss offenbar auch fiir das durch Addition derartiger Funktionale gemiss Ansatz
(4.5) erzeugte Funktional y gelten, womit auch (2.3) bestitigt ist. Der Existenz-
nachweis ist damit beendet.

5. Schnittrekursion

Die fiir den von uns erbrachten Existenznachweis der Eulerschen Charakteristik
x wesentlich gewesene Darstellung (4.5) kann nach Konsultation der vorgingig
getroffenen Festsetzungen (4.2) bis (4.4) als eine Rekursionsformel interpretiert
werden, die nach steigender Dimension fortschreitet. Sie kann durch

2(A) =2 (A06) + 3]y (40 E[«)) — x (4 0 E[o + 0])] (5.1)

wiedergegeben werden, wobei G eine beliebige (k£ — 2)-dimensionale Gerade und
E[a] die durch den Winkelparameter « gekennzeichnete Ebene des Biischels der
durch G hindurchgehenden (& — 1)-dimensionalen Ebenen bezeichnen; hierbei ist
k > 2 vorausgesetzt.

Unsere Schnittrekursion ist fiir mannigfaltige Anwendungen dienlich, wie dies
in den nachfolgenden Abschnitten an einigen Beispielen erldutert wird.

Die bereits frither vom Verfasser gewonnene analoge Formel?)

2(4) =[x (A 0 E[a]) — x (4 0 E[x+ 0))], (5.2)

die sich auf eine Schar paralleler Ebenen E[x] mit dem Translationsparameter «
bezieht, kann als Grenzfall von (5.1) betrachtet werden, wo G im Unendlichen liegt.

6. Eine Additionsformel

Als erste Anwendung der Schnittrekursion geben wir die Begriindung einer addi-
tiven Beziehung bei Polyedervereinigung.

Essei A = Uy 4, die Vereinigung von # beliebigen Polyedern A, CR (v=1,..., %),
und es bezeichne A: C 4 (=1, ..., n) dasjenige Teilpolyeder, dessen Punkte we-
nigstens ¢ verschiedenen Uberdeckungspolyedern 4, angehéren. Es gilt dann die
Additionsformel

I y(4,) = Zp y(4?), (6.1)

die gelegentlich Verwendung findet. Fiir 2 = 1 muss die Richtigkeit der entspre-
chenden einfachen geometrisch kombinatorischen Aussage i{iber Intervallmengen
direkt verifiziert werden [vgl. Studie Nr.1 des Anhangs].

Der Beweis fiir (6.1) kann nun mit Hilfe der Schnittrekursion (5.1) durch das
Verfahren der vollstindigen Induktion nach wachsender Dimension auf sehr nahe-
liegende Weise gefithrt werden. Die vorausgesetzte Richtigkeit der Additionsformel

1) Diese in [1] gegebene Begriindung der Charakteristik bezieht sich auf Koérper des Konvexrings,
der die Polyederklasse umfasst. Eine elementare Einfithrung fiir dreidimensionale Polyeder nach diesem
Verfahren wurde von H. LENz [2] gegeben.
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fiir die in der Rekursionsformel auftretenden (£ — 1)-dimensionalen Schnitte zieht
unmittelbar ihre Richtigkeit im A-dimensionalen Fall nach sich; die Annahme
A NG = ¢ ergibt eine kleine Vereinfachung.

7. Charakteristik polyedrischer Sphéiren

Unter einer (konvexen) polyedrischen Sphire S*~1 wollen wir hier die geschlos-
sene (k¢ — 1)-dimensionale Randfliche eines k-dimensionalen eigentlichen Eipolyeders
P C R verstehen.

Mit Hilfe unserer Schnittrekursion ldsst sich die Eulersche Charakteristik der
genannten flichenhaften Polyeder miihelos ermitteln. Es ergibt sich

(S =1— (1%, (7.1)

also die bekannte klassische Formel.
In der Tat: Im Falle 2 = 1 besteht S° aus zwei Punkten, so dass nach (2.1) bis (2.3)

2(59) =2 (7.2)

resultiert. Wenn & = 2 ist, kann man mit (3.1) auf das fiir eine konvexe Polygon-
linie S? giiltige Resultat

2(SY =0 (7.3)

schliessen. Mit (7.2) und (7.3) bestédtigt sich unsere Behauptung (7.1) fiir die beiden
ersten Dimensionen. Fiir £ > 3 ergibt sich ihre Richtigkeit nach der Schnittrekur-
sion (5.1) rekursiv. In der Tat wird der Riickgriff y(S*~!) = (S*~®) direkt ablesbar,
wenn man davon ausgeht, dass G durch einen inneren Punkt des von S*~! beran-

deten Eipolyeders P gelegt werden kann und vermerkt, dass S*~! NG eine Sphire
SE=3 jst,

8. Eulers Formel fiir konvexe Polyeder; Dehn-Sommervillesche Relationen

Es sei > 2, und P bezeichne ein eigentliches k-dimensionales Eipolyeder. Die
Randfliache von P ist dann eine (k¢ — 1)-dimensionale konvexe polyedrische Sphire,
wie sie im vorstehenden Abschnitt betrachtet wurde. Es soll nun #; (+ =0, ..., &)
die Anzahl der i-dimensionalen Kanten von P bezeichnen, wo aus formal zweck-
dienlichen Griinden noch %, = 1 angefiigt sei. P selbst tritt dann als seine k-dimen-
sionale Kante in Erscheinung.

Weiter soll K, (¢ =0, ..., k) das i-te Kantengeriist von P, d. h. die Vereinigungs-
menge aller s-dimensionalen Kanten bedeuten. Insbesondere ist dann K, _; die Rand-
fliche von P und K, das Eipolyeder P selbst.

Als eine Anwendung unserer Schnittrekursion skizzieren wir einen Beweis des
folgenden bekannten Relationensystems

Zi(=Whi=ypg (=0..4, (8.1)

wonach die ¢-te Charakteristik, d. h. die Eulersche Charakteristik y;, = y(K;) des
i-ten Kantengeriistes von P als alternierende Summe von Kantenzahlen dargestellt
wird. Unser System (8.1) enthilt in den Sonderfillen ¢ = £ — 1 und ¢ = %, die gleich-



126 H. Hapwicer: Eine Schnittrekursion fiir die Eulersche Charakteristik euklidischer Polyeder

wertig ausfallen, die klassische Eulersche Formel, die im Hinblick auf unser Resul-
tat (7.1) als
2yt (=1 hi=1— (=1} (8.2)
oder formal gerundeter als
Zo(—1n=1 (8.3)
geschrieben werden kann.

Bewers: Fur k = 2 ist unsere Behauptung (8.1) trivial richtig. In der Tat ergibt
sich die erforderliche Verifikation mit den Bemerkungen, dass 4, = 4,, A, = 1 und
Xo = g, 21 =0, x3 = 1 ist. Es sei nun £ > 2, und die Richtigkeit von (8.1) sei bereits
fiir alle Dimensionen, die kleiner als % sind, sichergestellt. Wir wéhlen nun eine
(k — 2)-dimensionale Gerade G, die P nicht trifft, so dass G 0 P = ¢ ist, derart, dass
keine Biischelebene des durch G als Achse bestimmten Ebenenbiischels E[«]
(0 < « < x) mehr als einen Eckpunkt von P enthilt. Die A, = n Eckpunkte p,
(v=1,...,n) von P lassen sich nun so numerieren, dass fiir die Winkelparameter
«, der durch sie hindurchgehenden Biischelebenen 0 < o, < ... < a, < 7 gilt; durch
passende Festsetzung des Nullpunktes fiir die Winkelmessung ist dies jedenfalls zu
erreichen.

Nun sei K;_j[a] = K;0 E[a] (¢ =1, ..., k) gesetzt. Wenn wir bedenken, dass
fiir # > O keine ¢-dimensionale Kante von K, in einer Biischelebene liegen kann,
kénnen wir K;_;[e] als das (s — 1)-te Kantengeriist des (& — 1)-dimensionalen
Schnitteipolyeders P'[«] = P 0 E[«] erkennen, das fiir «; < a < a, in seiner Triger-
ebene wieder eigentlich ist. Weiter bezeichne %;[«] (7 =0, ..., # — 1) die Anzahl der
j—dimensionalen Kanten von P’[a]. Nach Schnittrekursion (5.1) gilt zunichst

Z'{x o) — y(Bi_Ja+ 0D} (i=1,..., k).

Nach Einsatz der Induktionsannahme lisst sich

1K) = Z5 (- 1) B

1

anschreiben, wenn zur Abkiirzung die Hilfszahlen
H =Y {Ko]—-kKa+0} (G=0..k—1
«

zur Verfiigung gestellt werden. Nun hat man sich zu iiberlegen, dass
hife] — B [0 +0]=0 (x#a, v=1,...,n) bzw.

=—N,jla=0a; j#0) bzw. =—-Ny+1l(a=a,; j=0)
ist, wobei N,; die Anzahl der (j + 1)-dimensionalen Kanten von P bezeichnet, die
im Eckpunkt p, zusammenstossen, und die ganz auf der positiven Seite der Bii-
schelebene E[a,] liegen, derart also, dass diese Kanten fiir alle hinreichend kleinen
¢ > 0 von den Ebenen E[u«, — €] nicht getroffen werden. Offensichtlich gilt die

Zihlungsformel
2N =hy (=0,..,k-1),

da ja jede (7 + 1)-dimensionale Kante von P genau einmal einen Eckpunkt in der
zugehoérenden Biischelebene aufweist und zudem auf ihrer positiven Seite liegt,
wenn das gesamte Winkelintervall 0 < a < z durchspielt wird. So ergibt sich denn

H=—hy (1<{<k=1) baw. =—h+h (j=0).
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Zusammengefasst resultiert jetzt
x(K) = ho — 23_.1 (— 1)j hj-l-l = Zé (— 1)7- k;‘

fir 1 =1, ..., &; fiir ¢ = 0 ist dies trivial richtig. Damit ist der Induktionsbeweis
beendet.

Im nachfolgenden zweiten Teil gewinnen wir eine Inversion zu (8.1), indem wir
umgekehrt die Kantenanzahlen durch die Charakteristiken der Kantengeriiste dar-
stellen. Jedoch ist dies nur dann méglich, wenn wir uns auf «allgemeine» eigentliche
konvexe Polytope beschranken, d. h., wir setzen iiber P voraus, dass jede ¢-dimen-
z _ ;) verschiedenen j-dimensionalen Kanten gehért, wo
0 <7 <j <k sein soll. Es treten also in der P berandenden polyedrischen Sphire
keine singuldren Inzidenzerscheinungen auf.

Wir greifen nun auf die additive Formel (6.1) zuriick und identifizieren die dort
auftretenden 4, mit den j-dimensionalen Kanten von P. Es ergibt sich unmittelbar

[k —1 ER—i1—1
— ] —_— L | —
% [(’%7’) (k—i >} w0 b .

Binomialkoeffizienten, die im engeren Sinn nicht existieren, sind hierbei Null zu
setzen. Zur Begriindung ist lediglich zu bedenken, dass die Menge 4™ der vom System
der j-dimensionalen Kanten m-fach tiberdeckten Punkte mit K, zusammenfillt,

sofern m dem Intervall
kR—1— 1‘\, » k—1
angehort.

Der nachfolgende letzte Teil, den wir dem speziellen Thema «zur kombinatori-
schen Geometrie der polyedrischen Sphéiren» widmen wollen, soll uns zu einem Rela-
tionensystem fithren, das die Eulersche Formel umfasst. Neben der bekannten klas-
sischen linearen Beziehung zwischen den Kantenanzahlen treten noch andere solche
auf, die insgesamt ein abgerundetes System ergeben. Dieses kann als eine Erweite-
rung des Eulerschen Gesetzes angesehen werden, wobei allerdings wohl beachtet
werden muss, dass lediglich allgemeine konvexe Polyeder zugelassen sind.

Die angekiindigten Relationen ergeben sich dadurch, dass wir die beiden oben
hergeleiteten Systeme (8.1) und (8.4) konfrontieren und die Ausdriicke fiir die
Charakteristiken des erstgenannten Systems im zweiten substituieren. Nach einfacher
Rechnung resultiert

sionale Kante zu genau (

. (k—i .
hi=25(~1y(k_7_)n,.; j=0,...,k, (8.5)

also ein System von formal % + 1 linearen homogenen Beziehungen fiir die 2 + 1
Kantenzahlen 4, (2 =0, ..., k).

Von wesentlicher Bedeutung fiir die Diskussion des Relationensystems (8.5) ist
die dort in Erscheinung tretende Matrix

A:[(-—l)"(’;:;)}; 5,7=0,..., k. (8.6)
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Bezeichnet E die Einheitsmatrix, so zeigt sich, dass der Rang » von 4 — E lediglich
[(# + 1)/2] ist [vgl. Studie Nr. 2 des Anhangs).
(8.5) impliziert demnach nur # = [(k + 1)/2] unabhingige lineare Relationen.?)
Die unten folgende Tafel zeigt fiir die ersten Dimensionen %k = 2, 3, 4, 5 die
r =1, 2, 2, 3 unabhingigen Relationen, wie sie sich in natiirlicher Weise aus (8.5)
dadurch ergeben, dass man die jeweils neu auftretenden von den vorangehenden
abhingigen ausstreicht.

k Relationen
2 ho— —0
3 3h,—2h, —0
ho— hy+ hy— 2y —0
4 2ha— Iy —0
5 5hy— 21y —0
10 by — 6 by + 3 hy — 2 hy -0

9. Kennzeichnung der Konvexitiit durch eine Schnitteigenschaft

Wir beweisen die folgende Aussage:

Es sei k> 2, A C R ein kompaktes Polyeder und m eine ganze Zahl. Gilt fiir
jede (k — 1)-dimensionale Ebene E CR, fiir die ANE # ¢ ausfillt, stets
%(ANE)=m, soist m=1 und 4 konvex.

Fiir £ =1 ist der Satz falsch; besteht 4 aus zwei disjunkten kompakten und
nichtleeren Intervallen, so ist die Voraussetzung fiir m = 1 erfiillt, die Aussage jedoch

unzutreffend. Beweis der Aussage: Es sei zunichst 2 = 2 und A die konvexe Hiille
von A und p ein Eckpunkt von A. Durch p lisst sich eine Stiitzgerade E’ von A

so legen, dass ANE = p ist. Nun gehort p auch zu 4, und ebenso gilt A N E' = p,
so dass mit y(4 O E’) = y(p) = 1 vorerst m = 1 resultiert. So folgt, dass fiir jede
Gerade E, fir die ANE # ¢ ist, y(ANE) =1, also A N E eine Strecke sein muss.
Damit ist unsere Behauptung fiir £ = 2 als richtig erkannt. Es sei nun 2 > 2, und
unser Satz sei bereits fiir alle Dimensionen bewiesen, die kleiner als % sind. Ist G
eine (kK — 2)-dimensionale Gerade, fiir die 4 NG # ¢ gilt, so folgt mit der Schnitt-
rekursion (5.1) zundchst y(4) = (4 NG) = m*. Es sei nun 4A'=ANE # ¢. Fir
alle GCE, A'0G # ¢, muss y(4’0G) = m* sein. Nach der Induktionsannahme
schliesst man, dass m* = 1 und 4’ konvex sein muss. Dies ist nur dann fiir beliebige

%) Es handelt sich um ein Gleichungssystem, das vollstindig im k-dimensionalen Fall erstmals von
D. M. Y. SoMmMERVILLE [3] im Jahre 1927 aufgestellt wurde, und zwar in einer gleichwertigen Form, die
sich auf die den allgemeinen Polyedern dual entsprechenden simplizialen Polyeder bezieht (h; = hf_;_;;
hy = k% = 1). Diese bemerkenswerte Ergdnzung zur Eulerschen Polyederformel ist spiter offensichtlich
kaum beachtet worden, und sie war auch dem Verfasser bis nach Abschluss des Manuskriptes zu der vor-
liegenden Note unbekannt. Auch V. KLEE [4] hat 1963 die analogen Relationen mit allgemeinerer sich
auf simpliziale Mannigfaltigkeiten erstreckender Giiltigkeit erneut entdeckt. Die hier verwertete Informa-
tion konnte der Verfasser dem soeben erschienenen ausgezeichneten Buch von B. GRUNBAuM [5] {iber
konvexe Polytope entnehmen.
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Ebenen E moglich, wenn bereits 4 konvex ist; offenbar ist dann m = 1. Damit ist
der induktive Beweis beendet.3)

10. Paritédtsaussagen fiir Treffzahlen bei linearen Polyederschnitten

Als typische Anwendung der Schnittrekursion fiir die Eulersche Charakteristik
begriinden wir einige einfache Aussagen iiber die Paritit von Treffzahlen, die sich
bei Schnitten der Ebenen (Geraden) eines Biindels mit Polyedern machen lassen.
So gilt der folgende Satz:

Sei > 1 und K ein System von »# Eipolyedern P, CR (v=1, ..., n) des &-
dimensionalen Raumes R, von denen keines den fest gewihlten Ursprung Ze€ R
enthilt. Ist » ungerade, so gibt es eine durch Z hindurchgehende (% — 1)-dimen-
sionale Ebene E derart, dass die Zahl N(E) der Korper von K, die von E getroffen
werden, gerade ist.

Der nachfolgend noch formulierte Zusatz zeigt, dass unsere Aussage von vier
moglichen Varianten die einzige zutreffende ist. Es gilt ndmlich:

Von den vier Aussagen

I) n ungerade = JE:N(E) gerade
IT) n ungerade = JE:N(E) ungerade
III) n gerade = JE:N(E) gerade
IV) n gerade = 3JE:N(E) ungerade

sind I) richtig, II) bis IV) dagegen falsch!

Beweise: Zunichst begriinden wir den Satz. Es ist evident, dass es geniigt, den
Beweis fiir Systeme & paarweise disjunkter Eipolyeder zu fithren. Andernfalls ldsst
sich ein derartiges System aus dem Vorgegebenen dadurch gewinnen, dass passende
Eipolyeder von & von Z aus dilatiert werden, wobei aber die Treffzahlen N(E) fiir
alle Ebenen des durch Z gegebenen Biindels offensichtlich unverindert bleiben.
Fiir £ = 1 ist der Satz trivial richtig, da in diesem Fall E mit Z zu identifizieren ist.
Es seinun £ > 1, und der Satz sei bereits fiir alle Dimensionen kleiner als Z bewiesen.
Ferner postulieren wir die Gegenannahme, wonach ein System R so existiere, dass
sowohl # als auch alle Treffzahlen N(E) fiir Ebenen durch Z ungerade sind. Es
bezeichne E’ eine solche festgewihlte Ebene und K’ das System der nichtleeren
Schnitteipolyeder der Ebene E’ mit den Kérpern von 8; ihre Anzahl #’ ist also
ungerade. Nach der Induktionsannahme existiert eine in E’ liegende (& — 2)-dimen-
sionale Gerade G’ derart, dass N'(G’) gerade ausfillt. Es soll nun G’ die Achse eines
Ebenenbiischels E[«] sein. Aus der Schnittrekursion (5.1) kann abgelesen werden,
dass y(4) = x(4 N G’) (mod 2) sein muss, wo A die Vereinigungsmenge der Eipoly-
eder von & bezeichnet; man muss sich nur iiberlegen, dass die Paritit der Schnitt-
zahlen (4 N E[«]) innerhalb des Biischels fest bleibt. Da aber y(4 NG') = N'(G')
gerade ist, muss y(4) = n auch gerade sein! Mit diesem Widerspruch ist der Induk-
tionsbeweis beendet.

3) Die Frage, ob eine Kennzeichnung der Konvexitit lediglich auf Grund der Eulerschen Charakte-
ristik wenigstens in dem hier vorliegenden Spezialfall kompakter Polyeder moglich ist, stellte sich in der
im Anschluss an einen von K. Voss gehaltenen Vortrag [6] stattgehabten Diskussion. Die dort erwogene
Moglichkeit ist mit unserer Aussage bestitigt.
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Nun wenden wir uns dem Zusatz zu: Aussage I) ist mit dem soeben bewiesenen
Satz identisch. Aussage II) ist falsch, was wir durch ein Beispiel belegen. Hierbei
ist £ = 3 und » = 13. Die einzelnen Eipolyeder des speziellen Systems & sind Ele-
mente der Mantelfliche einer geraden quadratischen Pyramide, wobei die Mitte des
Basisquadrates Z sein soll; vgl. die GrundriBskizze Figur 1. Die 13 Elemente sind

M N

H /
B

A [ A
]

G K
f

Figur 1

die 4 Dreiecksbereiche A, B, C, D sowie die 6 Kanten E, F, G, H, I, K und die 3
Eckpunkte L, M, N. Man iiberpriift jetzt, dass die Treffzahlen N(E) lediglich die
Werte 4, 6, 8, 10, 12 annehmen. Ebenso ist Aussage III) falsch. Dies zeigen wir im
Falle & = 2, n = 4 mit einem System R, das aus zwei Quadratseiten 4, B und zwei

Figur 2

Eckpunkten gemiss Figur 2 besteht. Fiir jede durch den Quadratmittelpunkt Z
gehende Gerade E ist N(E) entweder 1 oder 3. Aussage IV) ist trivialerweise falsch,
was mit # = 0, d. h. & leer, und N(E) = 0 gezeigt ist.

11. Eine Aussage fiir Polyederdurchstiche mit Halbstrahlen

Abschliessend beweisen wir eine einfache Aussage fiir Fille, wo die Treffzahlen
fiir alle Halbstrahlen, die von einem festen Punkt ausgehen und ein Polyeder durch-
stechen, konstant ausfallen. Es gilt: ‘

Sei 2> 1 und A4 ein kompaktes Polyeder des k-dimensionalen Raumes R, das
den Ursprung Z nicht enthilt. Besteht der Durchschnitt 4 0 H von A mit jeder
von Z ausgehenden Halbgeraden H aus m getrennten Intervallen, so ist y(4) = 2 m,
falls & ungerade, jedoch y(A4) = 0, falls £ gerade ist.
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Dieser Satz gestattet, die Eulersche Charakteristik eines Polyeders in besonderen
Féllen direkt abzulesen. Die betreffende giinstige Sachlage stellt sich keineswegs
nur in dem in gewissem Sinn trivialen Fall ein, wo 4 aus m einander umschliessenden
polyedrischen Sphiren besteht. Figur 3 zeigt ein Beispiel im Falle # = 2 dieser Art,
wobei m = 2 ist.

L\

Figur 3

Beweis: Fiir k£ = 1 ist die Aussage trivial. Es sei £ > 1, und die Aussage sei bereits
fiir alle Dimensionen kleiner als % gesichert. Fiir irgend eine (k¢ — 1)-dimensionale
Ebene E durch Z bzw. eine (k — 2)-dimensionale Gerade G durch Z setzen wir
A'=ANE bzw. 4" = ANG. Die vorausgesetzte Halbstrahleigenschaft vererbt
sich von R auf E bzw. auf G. Nach der Induktionsannahme muss y(4') = 0 bzw.
x(4"") = 2 m sein, falls £ ungerade ist. Mit Konsultation der Schnittrekursion (5.1)
folgert man, dass y(4) = 2m sein muss. Analog bestitigt sich die Behauptung,

falls %2 gerade ist.
ANHANG

Studie Nr. 1

Es seien » und 7 (1 < 7 < #) natiirliche Zahlen, und & bezeichne eine Menge von
n abgeschlossenen, nicht notwendig disjunkten Strecken einer Geraden G. Die Menge
derjenigen Punkte von G, die wenigstens ¢ verschiedenen Strecken von K angehoren,
zerfillt in endlich viele paarweise disjunkte und abgeschlossene Strecken; ihre
Anzahl sei k; (0 << k; < ). Es gilt dann die additive Beziehung

n=2X2>rEk,.
In der Tat: G sei x-Achse, und x€G bezeichne einen Punkt und zugleich seine Koordi-
nate. Die Streckenmenge & sei {J;; j =1, ..., n} wobei ], abgeschlossene Intervalle
sind. Wir fithren die charakteristischen Funktionen f;(x) = 1(x € J;) bzw. =0 (x ¢ J)
und die Stufenfunktion F(x) = 27 f;(x) ein. Ferner sei g;(x) = 1 [F(x) > ¢] bzw. = 0
[F(x) < ¢]. Offenbar gilt dann auch F(x) = X} g;(). Endlich sei N =} [F(x) —

F (x + 0)], wobei sich die Summation iiber alle x von G erstreckt; hierbei ist zu be-
achten, dass der Summand nur an endlich vielen Sprungstellen der Stufenfunk-
tion F(x) nicht verschwindet, so dass es sich de facto um eine endliche Summe
ganzer Zahlen handelt [F (x + 0) ist wie iiblich der rechtsseitige Grenzwert lim F(y)
(* <y, x = limy)]. Nun hat man einerseits J [f;(x) — f;(x + 0)] = 1 und andererseits

auch 2 [g;(x) — g;(x + 0)] = k;, so dass N = n = XY k, resultiert, was zu beweisen
war. *
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Studie Nr. 2

Gegeben sei die quadratische Matrix

4= [(— 1)’(2:;)}; i,j=0,1,..., k.

Es ist zu zeigen, dass der Rang r der Matrix 4 — E, wobei E die Einheitsmatrix
bezeichnet, gleich » = [(k + 1)/2] ist. In der Tat: Bilden wir die Hilfspolynome
p:(x) (6=0,..., k), deren Koeffizienten durch die Elemente der i-ten Spalte von
A — E geliefert werden (7 sei der Zeilen- und ¢ der Spaltenindex von A), so ergibt
eine einfache Rechnung

px) = (—2)1+2""—2 (E=0,..,k.

Der gesuchte Rang ist gleich der Dimension des von den Polynomen p;(x) aufgespann-
ten linearen Polynomraums. Durch die nichtsinguldre lineare Transformation

n
g8 = 23 (z) px) (m=0,..., k)
bleibt diese Dimension unveriandert. Nun ist aber

u(®) = 1+ 2" — (1 + 2",

und die Dimension des durch die ¢,(x) aufgespannten linearen Polynomraums ist,
wie ersichtlich, [(# + 1)/2], was zu beweisen war. H. HADWIGER, Bern
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Kleine Mitteilungen

Eine Bemerkung zur Untersuchung unbestimmter Ausdriicke

Bei der Untersuchung sogenannter unbestimmter Ausdriicke beniitzt man iiblicher-
weise die Regeln von BerNouLrLi-L’HospiTaL. Im folgenden beweisen wir einen Satz,
der uns eine andere Methode zur Untersuchung solcher Ausdriicke liefert. Diese Methode
hat gegeniiber den genannten Regeln verschiedene Vorteile. Erstens: die Voraussetzun-
gen des Satzes sind recht einfach; zweitens: die Untersuchung kann oft wesentlich
abgekiirzt werden, und zwar vor allem dann, wenn zusammengesetzte Funktionen vor-
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