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Aufgaben

n
Aufgabe 556. Es sei)'a, = 0, a; (i = 1, 2, ..., n) eine p-te Einheitswurzel und p eine
i=1

Primzahl. Man zeige, dass jede p-te Einheitswurzel gleich oft als Summand in der obigen
Summe vorkommt. H. LONEBURG, Mainz

Lésung: Nach Voraussetzung ist jedes a; eine der p Zahlen exp(2 i k/p) = e (k =
9, ..., p — 1), sodass wir schreiben kénnen:

u p—1 p-1
():E’ajzznkek mit Enkzn, (*)
=1 k=0 k=0

wobei die #; ganzrationale nichtnegative Zahlen sind. Bekanntlich geniigt ¢, (sowie
ey, ..., 6p_4, falls p > 2) der iiber dem Integritdtsbereich I' der ganzrationalen Zahlen
irreduziblen Gleichung x#—1 4 --- + 1 = 0. Beachtet man ¢, = ¢k (k= 0,...,p — 1), so
geniigt ferner ¢, nach (*) der Gleichung #p_, ##=1 + -+ 4 5, = 0 und aus der Identitat

Mp_y X7 A b g — mp g (WP A e L) = (p g — M) XTI A e (g — Mp_y)
folgt, dass e, auch der Gleichung (ny_, — np_,) ¥~ 2+ -+ + (e — mp_,) = 0 geniigen

miisste, woraus mit Riicksicht auf den Grad der irreduziblen Gleichung fiir e, folgt:
Np_y = Np_y= """ = Ny bzw. p ny = n q.e.d. P. BunpscHUH, Freiburg-Littenweiler

Weitere Losungen sandten: A. Branpis (Universitit Heidelberg), D. Z. Djokovié

(University of Waterloo, Canada), J. FErnEr (Pécs/Ungarn), W. JANICHEN (Berlin-
Zehlendorf).

Aufgabe 557. a, b, » seien natiirliche Zahlen. Man zeige die Existenz einer absoluten
Konstanten C, mit folgender Eigenschaft: Ist n! (a! b!)~! eine ganze Zahl, so ist

a+b<n+ Cilogn.

Diese Aussage ist scharf in folgendem Sinn: Es gibt eine absolute Konstante C,, so dass
die Forderungen a + b > n + Cylogn, n! (a! b!)~! = ganze Zahl fiir unendlich viele »
erfiillbar sind. P. ErRDOs

Lisung des 1. Teils: Wir konnen ohne weiteres a oder b als > 2 voraussetzen. Wenden

A

wir dann die bekannte Formel m ! =Hpei>, wobei ¢, :E[m/pk] und 4, = [logm/logp]
p<m k=1
ist,auf #!, a! und b! an, so erhalten wir aus der Bedingung der Ganzheit vonn! (a!b!)—?

die Ungleichung

Ay, tq A
D)mp ] > lapil+ Y b7, (1)
k=1 i=1 j=1

die fiir alle Primzahlen p mit 2 < p < max(a, b) gelten muss. Aus (1) wird, wenn man
links vergrossert und rechts verkleinert

_ . . logabd
nzk'pk>a72';b‘+ b}z‘PJ—‘ logp (2)

Setzt man a + b = s und beachtet 4 a b < s?, so wird aus (2)

n(l—p M) >s—(aplat+bp h)—2 ?10;; (log s — log2)

und hieraus, giiltig fiir alle p mit 2 < p < max(a, b)

p—1 _
'n——1>s—2;b——2~«16§—{7 (log s — log2)



112 Aufgaben
und da dies jedenfalls fiir p = 2 gelten muss, folgt notwendig

n+1>s— logs . (3)

2
log2
Nun sei C eine feste Konstante > 2/log 2. Wir nehmen an, die Ungleichung s > # + Clogn
gilte fiir unendlich viele %. Fiir diese » folgt aus (3), dessen rechte Seite fiir s = 3 monoton

wachst,
2 logn 2
was fiir geniigend grosse » unmoglich ist. P. BunpscHUH, Freiburg-Littenweiler

Lésung des 2. Teils (nach Angaben des Aufgabenstellers): Wir zeigen folgendes schirfere
Resultat: Es existiert eine absolute Konstante C, so dass mit a = [C log#x] der Quotient
(2n)! [(n + a)! n!]~! fir «fast alle» » (d.h. mit Ausnahme einer Folge der Dichte Null)
ganz ist. Es gilt also fiir fast alle »

(Zn”) = 0(modA(n, a)), A(n, a) =g(n + ). (1)
Ist p eine Primzahl und

v, (n)
pr "

(o A IO

so ist (1) dquivalent mit
up(n) < vp(n) . (2)

Es sei x eine geniigend grosse Zahl. Beim Beweis von (2) fiir die # < » kénnen wir
(endlich viele) Teilfolgen weglassen, wenn die Gliederanzahl je o(x) ist.

1. p > (logx)?, also p > a. In A(n, a) kann hochstens ein Faktor ein Multiplum von p
sein. Aus uy(n) = 2 folgt also die Existenz eines ¢ (0 < ¢ < a) mit » = — ¢ (mod ?).
Die Anzahl der » < x, die in eine dieser a Restklassen mod 2 fallen, ist hochstens a[x/p?].
Die Summation iiber alle p > (logx)? ergibt

D alx/p?] < a x[(logx)? < C x[logx = o(#) .

Diese #» fallen also ausser Betracht. Somit kénnen wir uns beim Beweis von (2) auf den
Fall up(n) = 1 beschrinken. In der Darstellung
n=ay+ ap+ - +apk, 0=a;<p (3)
ist dann @y = p — 7 > p/2, weil
it =a< Clogx < 0,5 (logx)? < p/2.

Bekanntlich ist vp(n) gleich der Anzahl der a; > p/2 in (3). Aus up(n) = 1 folgt also
vp(n) = 1, w.z.b.w.

2. p < (logx)2 Es sei w = [10 log log#]. Wir zeigen nun, dass man die » < #, fiir die

es ein ¢ < a und eine Primzahl p < (logx)? mit » 4+ ¢ = 0 (mod p») gibt, weglassen kann.
In der Tat ist die Anzahl dieser #» hochstens gleich

A _ax , _ Cxllogn)® _
p <" [pw] < o (log#)® < S o(x) .
Wir betrachten jetzt die #, fiir die n + ¢ # 0 (modpw) fiir alle 4(1 <4 < a). Dann ist

a < pw. Aus der Formel fiir die Primzahlzerlegung der Fakultit ergibt sich

wi=Z{5 - [l s2: {5 + )
< ﬁT + 10loglogx < -%}_(—_)—gi{

4+ 10 log logx . (4)
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Zur Abschétzung von vp(n) bendtigen wir die Ungleichung

L

R 1 5\k+1
205 =0) ®
v 4

r=0
L= [_}%L] und k= [logx] (oder [ng -1

= [100logp ~ |logp logﬁ] )

der grosste Exponent in (3). Zum Beweis von (5) beachte man, dass L < (k + 1)/2. Also
gilt fiir geniigend grosses &

,f{;(kj,—l) < (k+ 1) (IHI:l) < (& + 1)_('13%)_11 <+ 1) (ﬁle)e)L

Hier ist

< (k+ 1) (100¢)%0tF+1) - (5/4)k+1)

Wir beweisen nun, dass fiir fast alle # < x und alle p < (logx)?

’()p(%) > Ebm@)_. (6)

vp(n) ist wieder gleich der Anzahl der a; > p/2 in (3). Wir zeigen, dass die =, fiir die

vp(n) = L ist fiir irgendein p < (logx)2, weggelassen werden kénnen. Es seien 1,, 1,, ..., %,
L

v = L, die Indices der a; > p/2 in (3). Diese Indices kann man offenbar auf (k_: 1)

r=0
Arten wiahlen. Fiir jede dieser Wahlen ist die Anzahl der fiir a; (0 < j < &) moglichen

Werte (p — 1)/2, wenn j =4, (s =1, 2,...,7) und (p + 1)/2 sonst. Die Anzahl der » < »
mit vp(n) < L ist also mit (5) nicht grosser als
((5/8) (b + )1 =p" 1 (15716)"+ 2 (7)

Wegen pk <x < pktlund p < (logx)?ist pk+1 < x (logx)2und £ + 1 > (logx)/(2log logx).
Die rechte Seite von (7) ist kleiner als

16 \¢ . _ 2log logx logx
o (3_5_) it b= log (16/15) ~ 2log logx ’
also o(x/(logx)?); da hochstens (log x)2 Werte p in Betracht kommen, ist unsere Behauptung
bewiesen.

Der Abschluss des Beweises ergibt sich sofort aus (4) und (6), denn fiir ein geniigend
kleines C und ein geniigend grosses x ist

C 10 log logx - 1
p—1 logx 100 logp °

Aufgabe 558. Es sei © die symmetrische Gruppe vom Grade # + 1 dargestellt auf der
Ziffernmenge {1, 2, ..., #n + 1}. Jedem S € & ordnen wir ein n-Tupel 2,(S), £,(S), ..., &a(S)
von nichtnegativen ganzen Zahlen zu, wobei %,(S) die Anzahlder Ziffernje{i+1,...,n 4 1}
ist, fiir die § S < ¢ S ist. Man zeige, dass dies eine umkehrbare Zuordnung von & auf die
Menge der »-Tupel &y, %y, ..., k, mit 0 £k, <n+ 1 —1 ist. Man leite daraus die
Polynomidentitit

n

n

(x — 1)n2xN(S) =H(xi+1 —1)

Se® =1

ab, wobei N(S) die Anzahl der Paare (3, j) mit s < jund § S < 7 S ist.
HEeiNnz LUNEBURG, Mainz
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Solution: Let G be the set of all sequences (&,, k,, ..., %,) satisfying 0 < %, <n+1—1
(1=1,2,...,n). We denote by f the given mapping of & into G.

(a) f is imjective. Let us imagine » 4+ 1 empty boxes numbered by 1, 2,...,n 4 1.
Let S, T € S and suppose that f(S) = f(T), i.e., that 2,(S) = k,(T) foralli =1, 2, ..., n
Since £,(S) =15 —1,%k(7) =1T — 1 we infer that 1 S = 1 T. Now we put a ball into
the box numbered by 1 S. It is easy to see that %,(S) is equal to the number of empty
boxes among the first 2.5 — 1 boxes, i.e., £y(S) = 2S — 1115 > 2S5, and £,(S) =25 — 2
if 1S < 2S. Similarly, £,(7T) is equal to the number of empty boxes among the first
2 T — 1 boxes. Since ky(S) = k,(T) we infer that also 2 S = 2 T. Now we put another ball
into the box numbered by 2 S. Continuing in this way we conclude that S = T.

(b) f @s surjective. This follows from (a) and the fact that & and G have the same
number of elements, namely (» + 1) !.

(c) Since f is a bijection and N(S) = k4(S) + &4(S) + -+ + %,(S) we find that

AN(S) = Zxkx(s) + Eo(S) + oo + £, (S) — gl t Ry
Se® Se® (Ry, e By ) €G
1 " 1
:2 ..Zxk1+"'+kn: (2 ) ( 2 xn—l) (2;/%)
k=0 k,—1-0 k=0 iy =0 Fio0
n
=142 (Q1+x4+2...Q1+xr+ - +2a7)=(x—1) nllxt"“l—l

1=

D. Z. Dyokovi¢, University of Waterloo, Ont., Canada
Eine weitere Losung sandte K. ZacHAR1AS (Berlin).

Aufgabe 559. Es sei
@ (¥, g, oov, Xk 2x,+2x xi, t,7€{l1,2, k}.
i<j
Man beschreibe die Losung des Gleichungssystems
QX s Xp_ 1 Xp s X)) =ap (p=1,2,...,m).

D. VoicuLescu, Bukarest
Solution: Put

n n n
2
Pzgi\’j, g = 2 Xj Xk, A=§aj, Bzga,-.

i=1 1<j<k<n i=1 i=1

Then it follows from

@ (x5, s s Xj 12 Kj 1 ens ,xn) =a (1=12,...,m) (*)
that

a4+ p xj= Xjxp=p—q.
1<i<k<n
Summing over j gives
A+pr=n(p®—9q), A=m—-1)p*—ngqg.
Moreover
B=J (0~ q—px)=n@pt—q°— 2 (p*— g + p* (#* — 29)
- — (- NP - 2nprgt g,
nB=nn—-1)pt—2np?((n—1)p2—A]+ [(n — 1) p2 — 4]?
=—(n—1)pt+24p*+ A%,
m—1)pt —2A4Ap*—A*+nB=0. (**)

so that
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Hence to solve the system (*) we determine p by means of (**), then ¢ is obtained from
nq = (n — 1) p* — A. Finally the »; are given by

naj+npxi=np?—nqg=p:+ 4. [%**)

To verify that (*) is indeed satisfied, we have first from (***)

nA+np2xj=n(P2+A), Z%‘:P
Also = =
nszx ——2;1)2+A — naj)?

=n(p*+ A2 —2n(p*+A)A+n*B=np*—nA®+ 0B,
so that by means of (**) and (***)

2npt 3 xf""z"szZx’) _éx;}

1<j<k<n

—npt— (Pt — A2+ B =(m—1)pt+ A2 —nB=(n—1)pt+ (n — 1) pt — 2 4 p?

=2t - 1) Al =2ptng, Q. Hm=4.  Y mm=pi-g.
1<j<k<n 1<j<k<n
L. CarLitz, Duke University, USA
Fir ay=a,=---=a,=a ist n B = A% und zwei Losungen von (**) sind Null. In
diesem Fall kann man x4, x4, ..., ¥, beliebig wéahlen und », und x, aus den Gleichungen
p =0 und ¢ = — a bestimmen. Aus (***) folgt umgekehrt, dass p = 0 nur fir a;, = a
(¢ =1, 2,..., n) moglich ist.

Weitere Lésungen sandten L. BERNSTEIN (Syracuse, USA), C. BINDSCHEDLER (Kiis-

nacht), D. Z. Djokovié (University of Waterloo, Canada), D. VELJAN (Zagreb), K. ZAcHA-
R1AS (Berlin).

Neue Aufgaben

Aufgabe 581. Man beweise: Eine natiirliche Zahl p > 1 ist genau dann Primzahl,
wenn (Z) = 1 (mod ) fiir alle natiirlichen Zahlen » mit p < » < 2 p.
E. TEurreL, Korntal/Stuttgart

Aufgabe 582. Man bestimme die Orthogonaltrajektorien der Kreise mit Radius R
und mit dem Mittelpunkt auf einer festen Geraden. T. KOETSIER, Delft

__Aufgabe 583. Man beweise: Der Rauminhalt eines Tetraeders betrégt nicht mehr als
V/2/12 der Quadratwurzel aus dem Produkt seiner Kanten. D. VoicurEescu, Bukarest

Aufgabe 584. Man beweise: Fiir einen beliebigen Punkt eines sphérischen Dreiecks
(auf der Einheitskugel) mit Seiten < 7/2 ist die Summe der (sphdrischen) Eckenabstinde
hochstens gleich der Summe der beiden grosseren Dreiecksseiten. G. WEGNER, Gottingen
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