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Aufgaben
«

Aufgabe 556. Es se_J^at 0, at (i 1, 2, n) eme p-te Emheitswurzel und p eme
i

Primzahl. Man zeige, dass jede p-te Emheitswurzel gleich oft als Summand in der obigen
Summe vorkommt. H. Lüneburg, Mainz

Losung' Nach Voraussetzung ist jedes a3 eme der p Zahlen exp(2 nik/p) — e^ (k
0, ,p — 1), sodass wir schreiben können:

u p-1 p 1

0 =2jaj =2Jnk ek mit Unk n ' (*)
;=1 k-0 k-0

wobei die nk ganzrationale nichtnegative Zahlen smd. Bekanntlich genügt ex (sowie
#2> •- > eP-i> fstHs p > 2) der uber dem Integntatsbereich P der ganzrationalen Zahlen
irreduziblen Gleichung xP~x -f ••• + 1 0. Beachtet man ek e\ (k — 0, ,p — 1), so
genügt ferner ex nach (*) der Gleichung np_1xP~1 -f ••• + n0 0 und aus der Identität

w/,_1^-1+ ••• + n0 - w^_! (a^-1 + h 1) (np_2 - np_1) xP~2 + h (n0 - np_l)

folgt, dass ex auch der Gleichung (np_2 — np_1) xP~2 -\- • • • -f (w0 — w^_2) 0 genügen
musste, woraus mit Rucksicht auf den Grad der irreduziblen Gleichung fur et folgt.
np_1 np_2= ••• nQ bzw. p n0 n q.e.d. P. Bundschuh, Freiburg-Littenweiler

Weitere Losungen sandten: A. Brandis (Universität Heidelberg), D. Z. Djokovic*
(University of Waterloo, Canada), J. Feher (Pecs/Ungarn), W. Janichen (Berlm-
Zehlendorf).

Aufgabe 557. a, b, n seien natürliche Zahlen. Man zeige die Existenz einer absoluten
Konstanten Cx mit folgender Eigenschaft: Ist n ' (a ' b ')_1 eme ganze Zahl, so ist

a -h b < n -f Ct logn
Diese Aussage ist scharf in folgendem Sinn. Es gibt eme absolute Konstante C2, so dass
die Forderungen a + b > n -J- C2 logn, n ' (a b ')_1 ganze Zahl fur unendlich viele n
erfüllbar smd. P. Erdos

Losung des 1. Teils Wir können ohne weiteres a oder b als > 2 voraussetzen. Wenden

wir dann die bekannte Formel m ' =TTpeP, wobei fy ^[m/pk] und Am [logm/log p]
p <t» ä i

ist, auf w ', a ' und & ' an, so erhalten wir aus der Bedingung der Ganzheit von n ' (a ' 6 ')_1
die Ungleichung

^n ^a h
2J[n p~k] >£ [a />-«] + £[b p~J] (1)
Ä_=l t l ; 1

die fur alle Primzahlen p mit 2 < £ < max(a, fe) gelten muss. Aus (1) wird, wenn man
links vergrössert und rechts verkleinert

«2>-* > «2>- + *2>. - -^6 • (2)

Setzt man a + b s und beachtet 4 a fe < s2, so wird aus (2)

n(l -p~xn) > s- (ap~Ka+ bp-h) - 2-^^- (logs-log2)

und hieraus, gültig fur alle p mit 2 < p < max (a, fe)

w_l>s__2£-2 -^r- (log s - log 2)
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und da dies jedenfalls fur p — 2 gelten muss, folgt notwendig

2
n + 1 > s - -j—- logs (3)

Nun sei C eine feste Konstante > 2/log2 Wir nehmen an, die Ungleichung s > n + C logw
gälte fur unendlich viele n. Fur diese n folgt aus (3), dessen rechte Seite fur s ^> 3 monoton
wachst,

¦ + wM" + cJ2P)>(c-t4W"-
was fur genügend grosse n unmöglich ist. P. Bundschuh, Freiburg-Littenweiler

Losung des 2. Teils (nach Angaben des Aufgabenstellers) Wir zeigen folgendes schärfere
Resultat. Es existiert eme absolute Konstante C, so dass mit a [C logn] der Quotient
(2 n) f [(n + a) ' n !]~1 fur «fast alle» n (d.h. mit Ausnahme einer Folge der Dichte Null)
ganz ist. Es gilt also fur fast alle n

*J 0 (modA(n, a)) A(n, a) =]j[(n + i) (1)

i l
Ist p eme Primzahl und

pop[n) \(2n\y p«p(n) \\A(n,a)r II \ n ] r " v

so ist (1) äquivalent mit
up(n) ^ vp(n) (2)

Es sei x eme genügend grosse Zahl Beim Beweis von (2) fur die n <^ x können wir
(endlich viele) Teilfolgen weglassen, wenn die Ghederanzahl je o(x) ist

1. p > (logx)2, also p > a. In A(n, a) kann höchstens em Faktor ein Multiplum von p
sein. Aus up(n) ^ 2 folgt also die Existenz eines i (0 < i <L a) mit w — i (modp2)
Die Anzahl der n ^ x, die m eme dieser a Restklassen mod/?2 fallen, ist höchstens a\_x/p2]
Die Summation uber alle p > (log*)2 ergibt

yja[x/p2] < a x/(logx)2 < C */log* o(x)

Diese w fallen also ausser Betracht. Somit können wir uns beim Beweis von (2) auf den
Fall up(n) — 1 beschranken. In der Darstellung

n a0 + ax p -f • • • + ak pk 0 ^ at < p (3)

ist dann a0 p — i > p/2, weil

i <L a < C log* < 0,5 (log*)2 < p/2

Bekanntlich ist vp(n) gleich der Anzahl der at > p/2 m (3). Aus up(n) 1 folgt also
vp(n) ^ 1, w.z.b.w.

2. p <£ (Logx)2. Es sei w [10 log log*] Wir zeigen nun, dass man die n ^ x, fur die
es em i <£ # und eme Primzahl £ ^ (log*)2 mit n + i 0 (modpw) gibt, weglassen kann.
In der Tat ist die Anzahl dieser n höchstens gleich

rr * 1 #* „ ,o C*(log*)3
a < _^_ (log*)2 < * & ; o(x)

P^dogx)' lp">l 2" K 5 ' 2" v '

Wir betrachten jetzt die n, fur die n -f- t # 0 (mod/*"') fur alle t(l ^ i ___ a). Dann ist
a < pw. Aus der Formel fur die Primzahlzerlegung der Fakultät ergibt sich

-<»-zim-w*Mü+)
< -r^r + 10 log log* < C. log* + 10 log log* (4)

P — 1 p — 1
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Zur Abschätzung von vp(n) benotigen wir die Ungleichung

£(*:¦)< (ir
Hier ist

L-häkp] - *-[_£](«-[_§]-')
der grosste Exponent m (3). Zum Beweis von (5) beachte man, dass L < (k -f l)/2 Also
gilt fur genügend grosses k

t(kV) <(* + D ft1) < (* + D-^Jr^ < <*+ D (^^
< (* + 1) (100e)°'01<* + 1> < (5/4)<* + 1>

Wir beweisen nun, dass für fast alle n 5j x und alle p < (log*)2

°'W>Töfe- (6)

vp(n) ist wieder gleich der Anzahl der a% > />/2 in (3) Wir zeigen, dass die n, fur die
vp(n) < L ist fur irgendein p < (log*)2, weggelassen werden können Es seien i1,i2, ,ir,

r ^ L, die Indices der at > p/2 m (3) Diese Indices kann man offenbar auf 5^1
f-0 ^ r '

Arten wählen Fur jede dieser Wahlen ist die Anzahl der fur o, (0 ^7 ^ Ä) möglichen
Werte (p — l)/2, wenn 7 — ^ (s 1, 2, r) und (p 4- l)/2 sonst Die Anzahl der n <S *
mit fy(w) ^ L ist also mit (5) nicht grosser als

((5/8) (p+ l))k + 1 ^pk+1 (15/16)* + 1. (7)

Wegen />* ^ * < £* + 1 und £ ^ (log*)2 ist £* + 1 < * (log*)2 und k + 1 > (log*)/(2 log log*).
Die rechte Seite von (7) ist kiemer als

•(£)¦16 V ,2 log log* log*1 mit /
log (16/15) 2 log log* '

also o(*/(log*)2), da höchstens (log*)2 Werte p in Betracht kommen, ist unsere Behauptung
bewiesen

Der Abschluss des Beweises ergibt sich sofort aus (4) und (6), denn fur em genügend
kleines C und em genügend grosses * ist

C 10 log log* 1

log* 100 logp

Aufgabe 558. Es sei (£> die symmetrische Gruppe vom Grade n -f 1 dargestellt auf der
Ziffernmenge {1, 2, ,n+ 1} Jedem S e S ordnen wir em n-Tupel kx(S), k2(S),... kn(S)
von nichtnegativen ganzen Zahlen zu, wobei kt(S) die Anzahl der Ziffern; e {1 + 1,.. ,n+ 1}
ist, fur die ] S < 1 S ist. Man zeige, dass dies eme umkehrbare Zuordnung von S auf die
Menge der w-Tupel k1,k2, ,kn mit 0<Lkl^n+l — 1 ist. Man leite daraus die
Polynomidentitat

n

(* - l)n2J%N{S) =]J(xl + 1 - 1)
Se© t l

ab, wobei N(S) die Anzahl der Paare (1,;) mit 1 < ; und j S < 1 S ist.
Heinz Lüneburg, Mainz
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Solution Let G be the set of all sequences (klfk2,..., kn) satisfymg 0 <£t < n -J- 1 — 7

(t 1, 2, n). We denote by / the given mappmg of S into G.

(a) / is mjective. Let us imagine n+l empty boxes numbered by 1, 2, n + 1.

Let S, T e S and suppose that f(S) f(T), i.e., that kt(S) kt(T) for all 1, 2, n.
Smce kt(S) — 1 S — 1, kx(T) 1 T — 1 we mfer that 1 5 1 T. Now we put a ball mto
the box numbered by 1 S. It is easy to see that k2(S) is equal to the number of empty
boxes among the first 2 5—1 boxes, i.e., k2(S) 2S — 1 if 1 5 > 2 S, and k2(S) 2 S — 2

if 1 S < 2 5. Similarly, k2(T) is equal to the number of empty boxes among the first
2 T — 1 boxes. Smce k2(S) — k2(T) we mfer that also 2 S 2 T. Now we put another ball
mto the box numbered by 2 5. Contmumg in this way we conclude that S T.

(b) / is surjective. This follows from (a) and the fact that (5 and G have the same
number of elements, namely (n -f 1) '.

(c) Smce / is a bijection and N(S) — kx(S) 4- k2(S) 4- • • * 4- kn(S) we find that

yxN{s)= Y%hl(s) + k2(s)+ +kn(S)= y xk+ +kn
Se© Se© {kx, ,kn)eG

12 n / 1 \ / 2 \/w-27 z -z*+- yi-[Z*)[ 2" **-o- 2>
*»*°*n-l"0 Äi 0 Uw 0 / \*n 1 0 / \ä_ 0

n

(1 4-*) (14- *4-*2) (1 4- *4- ••?4- xn) (*- l)-nJ^J(xt + 1- 1)

l-l
D. Z. Djokovic, University of Waterloo, Ont., Canada

Eme weitere Losung sandte K. Zacharias (Berlin).

Aufgabe 559. Es sei
k

<p(xltx2, ,xk)=£x\+£xtxj, i, ;e{l, 2, k).
% 1 *<;

Man beschreibe die Losung des Gleichungssystems

(p(xlt ,xp_v,xp + 1, ,xn) ap (p= 1,2, ,n)
D. Voiculescu, Bukarest

Solution: Put
n n n

P =2Jxj > q= £ xJ*k, a =£aJ' B ^Utf •

1 l</<Ä<n ; 1 ;=1

Then it follows from

<?(*_, ,*,___,#/ + _, ,xn) aj (;= 1, 2, n) (*)
that

aj -\- pXj= 2J Xj xk p2 - q.
l<1<k<n

Summing over ; gives
A 4- p2 n (p2 - q) A (n - 1) p2 - n q

Moreover

* =2>2 - 9 - £*i)2 * (P* - ?)2 - 2 £2 (£2 - q) 4- />¦ (£2 - 2

?!_i

so that
nB ^n(n- l)p* - 2np2[(n- l)p2~- A] + [(n - 1) p2 - _4]2

- (« - 1) £* 4- 2 A p2 4- ^42,

(n~l)p* ~- 2Ap2- A2+ nB ^0 (**)
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Hence to solve the System (*) we determine p by means of (**), then q is obtained from
n q (n — 1) p2 — A Finally the x3 are given by

naj + npxj=np2 — nq p2+A (***)
To venfy that (*) is indeed satisfied, we have first from (***)

n n

nA + n p£xj n(p2-\- A), J^x3 p

Also

n2p2£x*=2J(P2 + A-naj)2
1 1 7 1

n(p2 + A)2 - 2n(p2+ A) A + n2 B np* -nA2+ n2 B,
so that by means of (**) and (***)

2np* £ Xjxk np* |( JT*, - jjA
!<1<k<n l \7 1 / ; 1

n p* - (p* - A2 + n B) (n - 1) p* 4- A2 - n B (n - 1) p* + (n - 1) p* - 2 A p2

2p2[(n- l)p2-A] 2p2nq, 2J XjXk q, £ Xj xk p2 - q
1 <i<k<n Kj<k<n

L Carlitz, Duke University, USA

Fur ax a2 an a ist n B A2 und zwei Losungen von (**) smd Null In
diesem Fall kann man *3, *4, xn beliebig wählen und xx und *2 aus den Gleichungen
p 0 und q — a bestimmen Aus (***) folgt umgekehrt, dass p 0 nur fur at a
(i 1, 2, w) möglich ist

Weitere Losungen sandten L Bernstein (Syracuse, USA), C Bindschedler
(Kusnacht), D Z Djokovic (University of Waterloo, Canada), D Veljan (Zagreb), K Zacharias

(Berlin)

Neue Aufgaben
Aufgabe 581. Man beweise Eme natürliche Zahl p > 1 ist genau dann Primzahl,

wenn l*J) 1 (mod£) fur alle natürlichen Zahlen n mit p < n < 2 p

E Teuffel, Korntal/Stuttgart

Aufgabe 582. Man bestimme die Orthogonaltrajektorien der Kreise mit Radius R
und mit dem Mittelpunkt auf einer festen Geraden T Koetsier, Delft

Aufgabe 583. Man beweise Der Rauminhalt eines Tetraeders betragt nicht mehr als
j/2/12 der Quadratwurzel aus dem Produkt seiner Kanten D Voiculescu, Bukarest

Aufgabe 584. Man beweise Fur einen beliebigen Punkt eines sphärischen Dreiecks
(auf der Emheitskugel) mit Seiten < n/2 ist die Summe der (sphärischen) Eckenabstande
höchstens gleich der Summe der beiden grosseren Dreiecksseiten G Wegner, Gottingen
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