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Kleine Mitteilungen

Ungleichungen fiir konvexe Rotationshalbkorper
bei Radien- und Winkelnebenbedingungen

Die nachfolgend mitgeteilten Ungleichungen beziehen sich auf das Volumen V, die
Oberfliche F und auf das Integral der mittleren Kriimmung M eines konvexen Rota-
tionshalbkorpers K des gewohnlichen dreidimensionalen Raumes. Ein solcher Halb-
korper K weist eine zur Rotationsachse orthogonale Stiitzebene auf, die einen Aquator-
kreis (Breitenkreis mit grosstem Radius) von K enthilt. K soll die unten folgenden Ne-
benbedingungen erfiillen: Es szien a, b, #, v vier vorgegebene reelle Zahlen, die den Ein-
schrinkungen ¢ > b » 0 und #/2 > # > v > 0 unterworfen sind, so soll K den Boden-
radius a, den Deckradius b, den Bodenstiitzwinkel # und den Deckstiitzwinkel v auf-
weisen; die Bedeutung der vier genannten Grossen ergibt sich aus Fig. 1.

Figur 1

Es gelten dann die Ungleichungen

I) a*M — 2sinua F + 3sin?u V< na® [P(u) + Q (u, v; bja)]
II) a*M —sinua F + sin?u V > n a® [P*(u, v) + Q*(u«, v, b/a)],

wobei die auf den rechten Seiten verwendeten Hilfsfunktionen der Tafel

P(u) =n — u — sinu (2 + cosu)

; 1
Q(u, v;t) = — (tgv — v) £ + 2 sinu (cosv

in2
1) + (14 5 tg

— 1) 12 — sin?u tgu 3

P*(u, v) = n—-v—sinu(
Cosv

. 1 sin?u tgv
* . _ _— — 1) - —__°"
O*(u, v; t) (tgv — v) ¢ + sinu (cosv )

zu entnehmen sind.
In I) gilt Gleichheit genau dann, wenn K ein abgestumpfter Kappenkoérper der Kugel-

halblinse L ist. Vgl. hierzu Fig. 2. In II) gilt dagegen Gleichheit genau dann, wenn u = v
und K ein Kegelstumpf S ist. Vgl. Fig. 3.

Figur 2 Figur 3
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Die beiden Koérper L und S sind in dem Sinne extremal, als sie die in I) bzw. II)
links stehenden Linearformen der drei fundamentalen Masszahlen M, F und V zu einem
Maximum bzw. zu einem Minimum machen.

Da sich ein beliebiger konvexer Rotationskérper durch einen Aquatorschnitt in zwei
Halbkoérper zerlegen lésst, ist es im Hinblick auf das noch nicht restlos geklirte Problem
des vollstindigen Ungleichungssystems fiir M, F und V (Hauptproblem) eine sich auf-
dringende taktische Massnahme, passende Extremaleigenschaften der Halbkorper zu
studieren. Unsere Ungleichungen liefern starke Indizien dafiir, dass sich jeder Extremal-
kérper des Hauptproblems aus hochstens drei Segmenten zusammensetzen ldsst, wobei
als zuldssige Segmente lediglich Zylinder Z und abgestumpfte Kappenkorper der Kugel-
halblinse L in Betracht fallen. Hierbei ist zu beachten, dass der Segmenttyp L zahlreiche
wichtige Sonderfille umfasst, namlich etwa Kugellinsenkappenkérper, Kugelschicht,
Kegel, Kegelstumpf, Linse usw., wobei immer nur die entsprechenden Halbkorperformen
gemeint sind. — Die vielen Einzelergebnisse der Untersuchungen von H. Bieri (Bern)
[vgl. insb. «Beitrag zu einem Extremalproblem iiber konvexe Rotationskoérper», Expe-
rientia 74, 1958, 113-116 und die dort zitierte Literatur] haben stets die Vorrangstellung
der oben genannten elementaren Koérpertypen erkennen lassen, und einzelne davon sind
bei Teillésungen zum Hauptproblem bereits gesichert.

Die hier nur kurz mitgeteilten Resultate I) und II) wurden im Rahmen einer kleinen
Spezialvorlesung iiber Elementarmathematik vom hoéheren Standpunkt aus im SS 1963
erortert. Diese werden in einer sich allgemeiner auf drei Minkowskische QQuermassinte-
grale n-dimensionaler konvexer Rotationskdrper beziehenden Note an anderer Stelle
eingehender begriindet werden. H. HADWIGER, Universitdit Bern

Higher Moments of Plane Convex Sets

It is well known that if every chord of a plane convex set bisects its area, then the set is
radially symmetric. In Theorem 2 this is generalized to the equality of #th moments where
n is even (the case » = 0 being the case quoted). However if % is odd, each chord through a
given point can cut the set into two sets of equal #»th moments around the chord even
though the set is not radially symmetric; this is Theorem 1. Theorem 3 states that the
center of gravity of a mirror-symmetric set corresponding to equality of higher moments
has at least four normals through it.

We will assume that the bounding curves of the convex sets under consideration have a
continuously turning tangent line. The proof of Theorem 3 goes through unchanged if we
relax this condition at the two points of the boundary on the line of symmetry.

Let K be a plane convex set and L a line in the plane and not intersecting the interior

of K. By the nth moment of K around L we shall mean / f(P) dA where f(P) is the nth
K

power of the distance from P to L. (We take f(P) to be nonnegative; hence the nth
moment of K around L is positive.)

Theorem 1. Let #» be an odd positive integer. There exists a plane convex set K, not
radially symmetric, and a point P* in K such that every chord of K that passes through P*
cuts K into two sets whose »th moments around the chord are equal.

Proof. Let f be a function of period 2 n such that the Fourier Series of [f(6)]"+2,

00
(ao/2) + ) aj cosj 6 + bjsinj 6, has aj = 0 = b; forj = 1, 2, ..., n. Furthermore, choose
i=t .
the remaining coefficients in such a way that the set K whose border has the equation
7 = f(6) is convex and not symmetric with respect to the pole, which is designated P*.
Consider a chord of K through P* and making an angle « with the polar axis, which
we also take to be an x axis.
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We wish to prove that

/(x cosa + ¥ sina)” a?A = B (1)
K

To establish (1) it suffices to show that

[a7ysdad =0 (2)
K
for each pair of nonnegative integers » and s such that » + s = ». Now
2:"1 1(6) 2_:1:
fx’ y dd = [ /1/"+lcos’0 sins§ dr df = [1/(n + 2)] [ [f(6)]"+2 cos” 6 sin* 6 do.
K 0 0 0

Since cos’” 0 sin® 0 is a linear combination of cost § and sinj 6 where 0 << 7, j < #, it follows
that (2) holds. The theorem is proved.

Theorem 2. Let K be a plane convex set, » a nonnegative even integer, and P* a point
in K such that every chord through P* cuts K into two sets of equal »th moments around
the chord. Then K is radially symmetric around P*.

Proof. Let the border of K have the equation » = f(6) relative to a fixed polar co-
ordinate system whose pole is at P*. Then for each « in [0, ] we have

a+n f(6) a+2n 16)
/ 7 sin ()——a]"rdrd()— /[rsm (6 — a)]®v dr db
a 0 a+n
hence
a+t+n a+2n
/ [f(6)]*t2sin"(0 — a) dO = / [f(6)]1**2sin*(0 — a) d6. (3)
a u-{i—n
Now
a+2n a+n
) [f(6)]*+2sin™*(0 — a) dO ———/ [f(0 + m)]"+2sin™(0 — a) dO.
a+n (i/
Thus if we let g(0) = [f(0)1"+2 — [f(0 + =)]"*?, (3) is equivalent to
a+n
[ &(0) sin" (6 — a) 46 = 0 (4)

a

for each a € [0, n]. Note that g(6 + n) = —g(6). From (4) we will show that g(6) = 0
for all 6; this will complete the proof.

Differentiation of (4) with respect to a shows that

a-+m

| &(6) sin"=1(6 — a) cos (6 — a) @6 = 0 (5)

a

and a similar differentiation of (5) shows that

/Jg(ﬂ) [(n — 1) sin"~2(0 — a) (— cos?(6 — a)) + sin™ (6 — a)] d6 = 0. (6)

From (4), (6), and the identity cos?(§ — a) = 1 — sin?(6 — a), it follows that

a+n
f g(6) sin"~2(6 — a) d6 = 0.

a
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Repeated application of these two steps shows that

a+n
[ e@yao=o

a

for all a. Thus g (@ + n) = g(a) for all a. Combining this with the identity g (a + #) =
— g(a) yields g(a) = 0 for all @ and the proof is done.

In the next theorem we shall refer to a ‘normal’ to a curve. By this we will mean a line
that is perpendicular to a support line of the curve and passes through a point of contact.
‘Normal’ to a surface, used in the corollary following, is defined similarly.

Theorem 3. Let K be a plane convex set symmetric with respect to the y axis and
furnished with the density |#|* where « is a nonnegative real number. Then through the
center of gravity of K pass at least four normals to the border of K.

Proof. Two such normals are parallel to the y axis. In view of the symmetry of K it

suffices to prove the existence of one more normal through the center of gravity.
Let the » axis be placed in such a way that the center of gravity is at the origin.

We have then
[1x*y da = o (7)
K

Exploiting the symmetry of K and using polar coordinates, we translate (7) into

nj2 (6)
/(70056)“rsin07drd0=0, (8)
~-7/2 0

where » = f(0), — n/2 < 6 < n/2, describes that part of K not to the left of the y axis.
Thus
nf2

[1£(6)12+* cos*0 sin6 d6 = 0. (9)
—nf2

Integration by parts, applied to (9), with u = [f(0)]**3, dv = cos*0 sin 6 40, implies

/2
/cos°‘+1 O[f(6)]%+2 £/(6) d6 = 0. (10)

—7[2

Since cos**+16[f(0)]**+2 > 0 for 6 € [— #/2, »/2], (10) implies that f’(6) = O for at least one
6 € (—n/2, =/2). This proves the theorem.

Corollary. Let S be a three dimensional convex solid of revolution furnished with a
density #A, B > 0 where » denotes the distance to the axis of revolution. Then through the
center of gravity of S pass an infinite set of normals (the two normals on the axis of
revolution and at least one ‘equator’ of normals).

Proof. Let S be obtained by rotating the mirror symmetric convex planar set K about
the y axis. Place the » axis in such a way that the center of gravity of S is at the origin
and K lies in the xy plane.

We have

fy MdV =0
S

or, equivalently,
fyxﬂ-andA = 0,
Kt

where Kt denotes the portion of K not to the left of the y axis. Theorem 3, witha = 1 + §,
yields the corollary.

Note that the corollary shows that a homogeneous convex ‘top’ balances not only at
its top and bottom. S. K. StEIN, University of California, Davis, USA
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