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Kleine Mitteilungen

Ungleichungen für konvexe Rotationshalbkörper
bei Radien- und Winkelnebenbedingungen

Die nachfolgend mitgeteilten Ungleichungen beziehen sich auf das Volumen V, die
Oberflache F und auf das Integral der mittleren Krümmung M eines konvexen Rota-
tionshalbkorpers K des gewöhnlichen dreidimensionalen Raumes Em solcher Halb-
korper K weist eine zur Rotationsachse orthogonale Stutzebene auf, die einen Äquatorkreis

(Breitenkreis mit grosstem Radius) von K enthalt. K soll die unten folgenden
Nebenbedingungen erfüllen Es seien a, b, u, v vier vorgegebene reelle Zahlen, die den
Einschränkungen a > b > 0 und n/2 > u > v > 0 unterworfen smd, so soll K den Bodenradius

a, den Deckradius b, den Bodenstutzwmkel u und den Deckstutzwmkel v
aufweisen, die Bedeutung der vier genannten Grossen ergibt sich aus Fig. 1.

Figur 1

Es gelten dann die Ungleichungen

I) a2 M - 2 smu a F + 3 sm2u F< n az [P(u) + Q (u, v, b/a)]

II) a2 M - smu a F -f sm2w V > n az [P*(u, v) + Q*(u, v, b/a)]

wobei die auf den rechten Seiten verwendeten Hilfsfunktionen der Tafel

P(u) n — u — smw (2 + cosw)

Q(u, v,t) - (tgv - v) t + 2 sin« l\ t2 - sm2w tgt; t*

(1 \ / sm2u \

-^- + IJ + \1 + - j—j tgv

(1 \ sm2.. tö'u

cosü / 3

zu entnehmen smd.
In I) gilt Gleichheit genau dann, wenn K em abgestumpfter Kappenkorper der Kugel-

halbhnse L ist. Vgl. hierzu Fig 2. In II) gilt dagegen Gleichheit genau dann, wenn u v

und K ein Kegelstumpf S ist. Vgl. Fig. 3.

Figur 2 Figur 3
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Die beiden Korper L und S smd in dem Sinne extremal, als sie die m I) bzw II)
links stehenden Lmearformen der drei fundamentalen Masszahlen M, F und V zu einem
Maximum bzw zu einem Mmimum machen

Da sich em beliebiger konvexer Rotationskörper durch einen Äquatorschnitt in zwei
Halbkorper zerlegen lasst, ist es im Hinblick auf das noch nicht restlos geklarte Problem
des vollständigen Ungleichungssystems fur M, F und V (Hauptproblem) eme sich
aufdrangende taktische Massnahme, passende Extremaleigenschaften der Halbkorper zu
studieren. Unsere Ungleichungen liefern starke Indizien dafür, dass sich jeder Extremalkorper

des Hauptproblems aus höchstens drei Segmenten zusammensetzen lasst, wobei
als zulassige Segmente lediglich Zylinder Z und abgestumpfte Kappenkorper der Kugel-
halbhnse L m Betracht fallen. Hierbei ist zu beachten, dass der Segmenttyp L zahlreiche
wichtige Sonderfalle umfasst, namhch etwa Kugellmsenkappenkorper, Kugelschicht,
Kegel, Kegelstumpf, Linse usw wobei immer nur die entsprechenden Halbkorperformen
gemeint sind. - Die vielen Einzelergebnisse der Untersuchungen von H. Bieri (Bern)
[vgl msb «Beitrag zu einem Extremalproblem uber konvexe Rotationskörper», Expe-
nentia 14, 1958, 113-116 und die dort zitierte Literatur] haben stets die Vorrangstellung
der oben genannten elementaren Korpertypen erkennen lassen, und einzelne davon sind
bei Teillösungen zum Hauptproblem bereits gesichert.

Die hier nur kurz mitgeteilten Resultate I) und II) wurden im Rahmen einer kleinen
Spezialvorlesung uber Elementarmathematik vom höheren Standpunkt aus im SS 1963
erörtert. Diese werden m einer sich allgemeiner auf drei Minkowskische Quermassmte-
grale w-dimensionaler konvexer Rotationskörper beziehenden Note an anderer Stelle
eingehender begründet werden H Hadwiger, Universität Bern

Higher Moments of Plane Convex Sets

It is well known that if every chord of a plane convex set bisects its area, then the set is
radially Symmetrie. In Theorem 2 this is generahzed to the equality of nth moments where
n is even (the case n 0 bemg the case quoted). However if n is odd, each chord through a
given pomt can eut the set mto two sets of equal wth moments around the chord even
though the set is not radially Symmetrie, this is Theorem 1. Theorem 3 states that the
center of gravity of a mirror-symmetric set correspondmg to equality of higher moments
has at least four normals through it.

We will assume that the boundmg curves of the convex sets under consideration have a
contmuously turnmg tangent lme. The proof of Theorem 3 goes through unchanged if we
relax this condition at the two points of the boundary on the lme of symmetry.

Let K be a plane convex set and L a lme in the plane and not mtersectmg the mtenor
of K. By the nth moment of K around L we shall mean j f(P) dA where f(P) is the nth

K
power of the distance from P to L. (We take f(P) to be nonnegative, hence the nth
moment of K around L is positive.)

Theorem 1. Let n be an odd positive integer. There exists a plane convex set K, not
radially Symmetrie, and a pomt P* m K such that every chord of K that passes through P*
cuts K mto two sets whose nth moments around the chord are equal

Proof. Let / be a function of period 2 n such that the Fourier Series of [f(6)]n + 2,

oo

(a0/2) + 2* aJ cos? ^ + fy sm7 0» nas aj 0 bj for; 1, 2, n Furthermore, choose
;_**

the remainmg coefficients in such a way that the set K whose border has the equation
r — f(B) is convex and not Symmetrie with respect to the pole, which is designated P*.

Consider a chord of K through P* and makmg an angle a with the polar axis, which
we also take to be an x axis.
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We wish to prove that
/ (x cos ol -f y sm a)n dA 0 (1)

K

To establish (1) it suffices to show that

fxr ys dA 0 (2)

for each pair of nonnegative integers r and 5 such that r + s n. Now

2-r f(6) In
f xrys dA j f rn + 1 cosrdsms6 drdß [l/(n + 2)] / [/(0)]n + 2 cosr0 sin*6 dB.

K 0 0 0

Smce cosr 0 sm5 0 is a linear combmation of cost 0 and smy 0 where 0 < i, j < n, it follows
that (2) holds The theorem is proved.

Theorem 2. Let K be a plane convex set, « a nonnegative even integer, and P* a pomt
in K such that every chord through P* cuts _F_T mto two sets of equal nth moments around
the chord. Then K is radially Symmetrie around P*

Proof. Let the border of K have the equation r f(6) relative to a fixed polar
coordmate System whose pole is at P*. Then for each a m [0, tz] we have

a + n f(0) a + 2n f(d)

I I [r sm (0 - a)]nr drdß f I [r sm (0 - a)]n r dr dd
a 0 a + n Q

hence

Now

a -{- n

f [f(d)]n + 2smn(d~a)dd= f [f(6)]n + 2 smn (6 ~ a)d6. (3)
a -f- 7i

a + 2tt a + n

f [f(6)]n + 2 smn(6-a) dB f [f (B -\- Tz)]n + 2 smn (B - a) dB.
j

l -f TT

Thus if we let g(B) [/(0)]" + 2 - [/(0 + ^)]n + 2, (3) is equivalent to

a + n

j g(B)smn(B~a)dB= 0 (4)
a

for each a e [0, jr]. Note that g(B + tz) —g(6). From (4) we will show that g(B) 0

for all 0, this will complete the proof.
Differentiation of (4) with respect to a shows that

a + n

f g(B) sm""1(0 - a) cos(0 - a) dB 0 (5)

a

and a similar differentiation of (5) shows that
a -*- 7i

f g(0) [(« - 1) sin"-2(0 - a) (- cos2(0 - a)) + sm»(0 - a)] dB 0 (6)

a

From (4), (6), and the identity cos2(0 - a) 1 - sm2(0 - a), it follows that

a -f n

J g(B)smn~2(B~ a) dB ^ 0.
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Repeated application of these two steps shows that

/ g(B) dß=0

for all a. Thus g (a + n) g(a) for all a Combmmg this with the identity g (a + tz)

— g(a) yields g(a) 0 for all a and the proof is done
In the next theorem we shall refer to a 'normal' to a curve. By this we will mean a lme

that is perpendicular to a support lme of the curve and passes through a pomt of contact.
'Normal' to a surface, used m the corollary following, is defined similarly.

Theorem 3. Let K be a plane convex set Symmetrie with respect to the y axis and
furmshed with the density \x\a where aisa nonnegative real number Then through the
center of gravity of K pass at least four normals to the border of K

Proof. Two such normals are parallel to the y axis In view of the symmetry of K it
suffices to prove the existence of one more normal through the center of gravity

Let the x axis be placed m such a way that the center of gravity is at the ongm.
We have then

[\x\*ydA 0 (7)

K

Exploitmg the symmetry of K and usmg polar coordinates, we translate (7) mto

n\2 f(0)

f f(rcosB)«rsmBrdrdß=0, (8)

-n/2 0

where r f(B), — tz/2 < 0 < n/2, desenbes that part of K not to the left of the y axis.
Thus

tt/2

f [f(ß)]«+* cos*B smB dB o (9)

-n/2

Integration by parts, applied to (9), with u [/(0)]a+3, dv — cosa0 sm0 dB, implies

n/2

f cosa+1 0[/(0)]a+2 f'(B) dB=0. (10)
-71/2

Smce cosa+10[/(0)]a+2 > 0 for 0e [-n/2, n/2], (10) implies that f'(ß) 0 for at least one
0 g (— n/2, n/2). This proves the theorem.

Corollary. Let 5 be a three dimensional convex solid of revolution furmshed with a
density rß, ß > 0 where r denotes the distance to the axis of revolution. Then through the
center of gravity of S pass an infinite set of normals (the two normals on the axis of
revolution and at least one 'equator' of normals).

Proof. Let S be obtained by rotating the mirror Symmetrie convex planar set K about
the y axis. Place the x axis m such a way that the center of gravity of S is at the ongm
and K lies m the xy plane.

We have
fyrßdV 0

s
or, equivalently,

fy xß-2nx dA 0,
K +

where K+ denotes the portion of K not to the left of the y axis. Theorem 3, with a 1 + ß,

yields the corollary.
Note that the corollary shows that a homogeneous convex 'top* balances not only at

its top and bottom. S. K. Stein, University of California, Davis, USA
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