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90 Ungeloste Probleme

Ungeloste Probleme

Nr.50. Drei kongruente zentralsymmetrische Eilinien der Ebene, die sich in kon-
zentrischer Lage befinden, haben im allgemeinen keinen Punkt gemeinsam. Man ver-
gleiche hierzu das mit der Figur angedeutete Beispiel.

Es erhebt sich hier die naheliegende Frage, was sich beziiglich der analogen Sach-
lage fiir Eiflichen im Raum sagen ldsst. Merkwiirdigerweise scheint die Abklirung
schwieriger zu sein, als man zunidchst anzunehmen geneigt ist. Man wird zwar eher
vermuten, dass drei Eiflichen unter den entsprechenden gleichlautenden Bedingun-
gen sich nicht zu meiden vermégen und also stets gemeinsame Punkte aufweisen. Je-
doch ist unseres Wissens ein allgemeiner Nachweis hierfiir noch nicht aufgestellt wor-
den und andererseits ist auch kein Gegenbeispiel bekannt?!). Das hier nun vorgelegte
ungeldste Problem lautet also:

Ist es richtig, dass drei kongruente und zentralsymmetrische Eiflichen im gewohnlichen
Raum, die sich in Ronzentrischer Lage befinden, stets gemeinsame Punkte aufweisen
miissen, oder gibt es solche Eifldchen mit leerem Durchschnitt?

Wir geben nachfolgend noch einen Beweis dafiir, dass die angedeutete Vermutung
jedenfalls dann richtig ist, wenn noch zusitzlich verlangt wird, dass die Eiflichen
rotationssymmetrisch sind.

Esseiz € R ein fester Ursprung im Raume R, der Mittelpunkt der zentralsymme-
trischen Rotationseifliche C ist. Mit S soll die Einheitskugelfliche um z bezeichnet
werden. Wenn wir Punkte im R und ihre Ortsvektoren beziiglich z als Angriffsstelle
mit den ndmlichen Symbolen ausdriicken, so wird x € S auch einen Einheitsvektor
und damit auch eine Raumrichtung kennzeichnen. Bedeutet » = 7(C, x) den Punkt
von C, der auf dem von z auslaufenden Halbstrahl der Richtung x € S liegt, so kann
mit einer passenden in —1 < ¢ < 1 definierten Funktion f[f] wegen der Rotations-
symmetrie von C offenbar 7(C, x) = f[(a, x)] geschrieben werden, wenn a € S die Rich-
tung der Rotationsachse bezeichnet und (a, x) das Skalarprodukt anzeigt. Sind nun g
und ¢ zwei kongruente Abbildungen von R auf sich, die z festlassen, so gibt es ein
w € S derart, dass (a, w) = (¢ a, w) = (0 a, w) ausfillt. Es resultiert nun miihelos, dass
r(C,w) =7 (0 C, w) =7 (¢ C, w) wird, womit erwiesen ist, dass die drei kongruenten
Eiflichen C, p C, 0 C einen Punkt gemeinsam haben. Bei aufmerksamer Riickschau
auf den vorgebrachten Beweis gewahrt man, dass weder die Konvexitdt noch die
Zentralsymmetrie eine wesentliche Rolle spielt, was aber fiir die Formulierung des
oben vorgetragenen allgemeinen Problems keineswegs gesagt werden kann.

H.HADWIGER

1) Die Frage wurde u.a. im Rahmen eines Kolloquiums {iber ungeldste Probleme der anschaulichen
Geometrie im SS 1967 im Mathematischen Institut der Universitit Bern erortert.
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