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On the Coloring of Signed Graphs’)

A graph G consists of a finite set of points V(G) together with a prescribed subset
of the collection of all lines, i.e., unordered pairs of distinct points. A signed graph S
is obtained from a graph G when each line of G is designated either positive or negative.
An n-coloring of G is a partition of the point set V(G) into # subsets (called color sets)
such that every two points joined by a line are in different color sets. An n-coloring of S
is a partition of V(S) into # subsets such that (1) every two points joined by a negative
line are in different color sets and (2) every two points joined by a positive line are
in the same color set. We say that S has a coloring, or is colorable, if it has an n-coloring
for some #. It follows immediately from these definitions that if a signed graph S has
only negative lines, the problem of coloring S is the same as that of coloring a graph.
If, however, S has some positive lines, it may not be colorable. We characterize
colorable signed graphs, and relate them to complete colorings of graphs.

Colorability

Let S+ be the spanning subgraph obtained by removing all negative lines from S.
By a component of a graph we mean a maximal connected subgraph. The positive
components of S are the components of S+. It follows from this definition that two
distinct points of S are in the same positive component if and only if they are joined
by a path consisting entirely of positive lines (called an all-positive path). Clearly, the
positive components of S partition V(S) into subsets such that each positive line
joins two points in the same subset, and S has exactly one such partitioning.

We now present two equivalent conditions for a signed graph to be colorable. The
equivalence of statements (1) and (3) of the theorem is given in [2].

Theorem 1. The following statements are equivalent for any signed graph S.

(1) S has a coloring.
(2) S has no negative line joining two points in the same positive component.
(3) S has no cycle with exactly one negative line.

1) Work reported here was supported by Grant MH 10834 from the National Institute of Mental Health.
We wish to thank Dr. GARY CHARTRAND for the formulation of Theorem 4.
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Equivalence of (1) and (2). If S has a coloring, any two points in the same positive
component are in the same color set, for they are joined by an all-positive path.
Since no two points of the same color set are joined by a negative line, none in the
same positive component are. Now, if S has no negative line joining two points of the
same positive component, the partition of V(S) by the positive components of S
satisfies the definition of a coloring.

Equivalence of (2) and (3). By definition, a cycle with exactly one negative line
consists of an all-positive path joining two points v; and v; together with a negative
line v; v;. The equivalence of (2) and (3) follows immediately from the observation
that two points are joined by an all-positive path if and only if they are in the same
positive component.

This theorem is illustrated in Figure 1 which shows a colorable signed graph S
(in which negative lines are represented by dashes). Its three positive components are
evident in S+, and its point set V(S) can be partitioned into the color sets {v,, v,},
{vs}, {v4, v5}. Clearly, S has no negative line joining two points of the same positive
component nor does it have a cycle with exactly one negative line.
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Figure 1

As an interesting and immediate special case, we have a criterion for colorability
of a complete signed graph.

Corollary Ta. A complete signed graph S has a coloring if and only if S has no
3-cycle with exactly one negative line.

The condensation of S by its positive components, denoted S*, is the signed graph
whose points are the subsets P, B, ..., P, determined by the positive components
of S and whose lines are determined as follows: there is a line joining points P; and P,
of the new graph if and only if there is at least one line joining a point of P, and a
point of B;. The construction of S* from S is illustrated in Figure 1. It is understood
that S* may contain loops. Specifically, a point P, of S* will have a loop if and only
if there are in S two points of P, joined by a negative line. It follows immediately
from Theorem 1 that S is colorable if and only if S* contains no loops.

From the construction of S* it is clear that it has only negative lines. Hence,
all results on coloring a graph G apply to coloring S*, provided, of course, that S* has
no loops.

Balanced Signed Graphs

~ In an attempt to formalize a psychological theory proposed by HEIDER [5], we
defined a signed graph S as balanced if every cycle has an even number of negative
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lines [1, 4]. We then showed that S is balanced if and only if V(S) can be partitioned
into two subsets ¥, and V, such that every positive line joins two points in the same
subset and every negative line joins a point of ¥} with one of V,. Clearly, in terms of
our present terminology V; and Vj, are color sets. Thus, S is balanced if and only if
it has a 2-coloring (is bicolorable). Now it is readily apparent from the definition of
balance that S is balanced if and only if S* has no odd cycles. Since the problem of
coloring S* is the same as that of coloring an ordinary graph G, our theorem turns out
to be the same as the characterization of bicolorable graphs, first advanced by
KonNi1G [6]:

G 1s bicolorable if and only if 1t has no odd cycles.

To compare bicolorable graphs with 3-colorable graphs, we note that a bicolorable
graph can have cycles only of even lengths while a 3-colorable graph may have cycles
of any length #» > 3. It remains a fiendish unsolved problem to characterize n-colorable
graphs for n > 2; even the case # = 3 does not appear to be easy.

Complete Colorings and Unique Colorings

The chromatic number »(G) of a graph G is the smallest » for which G has an #n-
coloring. The chromatic number %(S) of a colorable signed graph S is defined similarly.
By the definition of coloring S and the construction of S* it follows that »(S) = »(S*).
Since all results on coloring a graph G apply to coloring S*, theorems about »(G) are
applicable to x(S). In a complete coloring of G or S, for any two colors, there is a line
joining a pair of points with these colors. It is easy to see that every x(G)-coloring,
and hence every x%(S)-coloring, is complete. The following theorem for graphs, given
in [3], also holds for signed graphs.

Theorem 2. 1f G has a complete #n-coloring and »(G) << ¢ << #, then G also has a
complete ¢-coloring.

We say that S has a unique coloring if there is only one partition of V(S) into
color sets. The next theorem gives a criterion for a signed graph to have a unique
coloring.

Theorem 3. Let S be a signed graph with a coloring. This coloring is unique if and
only if S* is complete.

Proof of necessity. By hypothesis, S has a unique coloring. If in S$* two points are
not joined by a negative line, then in S no two points from two corresponding positive
components are joined by a negative line. Thus, the two point sets determined by
these components can be assigned to the same color set. But these two point sets can
also be assigned to different color sets since there is no positive line joining two points
in different positive components. The assumption that S has a unique coloring is thus
contradicted.

Proof of sufficiency. Consider a coloring of S in which each set of points determined
by a positive component is assigned to a distinct color set. Clearly, there can be no
other coloring in which two points from the same positive component are assigned to
different color sets. The only remaining coloring is one in which the point sets of two
positive components are assigned to the same color set. But since S* is complete, for
every two positive components in S there is a negative line joining a point from each.
Hence, this coloring is impossible, and the given coloring is unique.
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Figure 1 illustrates this theorem. It can be readily seen that S has a unique
3-coloring. And in keeping with the theorem, S* is a complete signed graph with three
points.

Theorem 3 may be rephrased in terms of color sets. A colorable signed graph S
has a unique coloring if and only if the points in each color set induce a positive
component and the points in any two color sets induce a connected subgraph.

Corollary 3a. Among all signed graphs with p points and a unique coloring into »
color sets, the minimum number of positive lines is p — #, and the minimum number

of negative lines is

Proof. For S to have a minimum number of positive lines, each positive component
P, must be a tree. Let p; be the number of points in P, so that the tree P, has p; — 1
lines. On summing from § = 1 to #, we find that the number of positive lines in S is
2p—1)=p—mn

On the other hand, S has a minimum number of negative lines when every two
positive components P, and P, are joined by exactly one negative line so that there

are 5 negative lines in all.

Clearly, the sum of these two expressions gives the smallest possible number of
lines among all signed graphs with 4 points and a unique #-coloring, namely
p+n(n—3)2

We turn now to the concept of a uniquely colorable graph G. It is convenient to
distinguish between complete and noncomplete graphs. If G = K,, the complete
graph with $ points, then »(G) = p and G has only one partition into color sets. If G is
not complete, then it always has a unique partition into # color sets, one point in each.
Hence we say that a graph G has a unique coloring if (1) G is complete or (2) G is not
complete and there exists a unique partition of V(G) into # color sets, where # << .
Note that unigue coloring has been defined differently for graphs and for signed graphs.
While there is no characterization of uniquely colorable graphs, a necessary condition
is known which resembles Theorem 3 for signed graphs.

Theorem 4. 1f G has a unique coloring into » color sets, then the subgraph induced
by the union of any two color sets is connected.

Proof. 1t is given that G has a unique coloring into » color sets. Assume that the
subgraph induced by the union of two of these, V; and V,, is not connected, and
consider a component G’ of this subgraph whose point set is denoted V’. Now every
line joining a point v;in ¥; N V' and a point v; in V; 0 V" must lie in G'. Thus, we may
assign all points of V;0 V' to V¥, and all points of V;0 V' to V, to obtain another
n-coloring of G, which is a contradiction.

By Theorem 4, every unique coloring of G is complete. That the converse of
Theorem 4 is not true is shown by the 3-colorable graph in Figure 2. One coloring of
this graph has as color sets:

Vi={v, v}, Va={va, v}, V= {v5, ve}.
It is readily seen that the subgraph induced by any two of these color sets is connected.
But there is another coloring with color sets:

Vi={vi,ve}, Vo= {vs,ve}, V3= {v3, v5}.
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Corollary 4a. If G has a unique coloring into # color sets, then # = %(G).

Proof. By hypothesis, G has a unique coloring into # color sets. Assume that
#(G) < m. Then there exists a partition of V(G) into #(G) color sets. However, this
partition has more than one refinement into % color sets, contrary to the hypothesis.

We conclude with a corollary of Theorem 4 that is analogous to Corollary 3a.

Corollary 4b. Among all graphs with  points and a unique coloring into # color
n
2

Proof. Among all graphs with p points and a unique coloring into » color sets,
a graph G has a minimum number ¢ of lines if every pair of color sets induces a tree T;.
Let p; be the number of points in 7;. Since the number of lines in 7; is p;, — 1,

1

g = 2 (p; — 1). It can readily be seen that }’ p, = p (» — 1). Since there are (Z)

trees induced by pairs of color sets,

q=1>(n—1)~—(">= Bp_mb o,

sets, the minimum number of lines is p (n — 1) —

2 2

To show that such a graph exists, we construct one with # — 1 color sets, each
containing a single point, and another color set containing » — # + 1 points. We join

: w e L}
each pair of points from different singleton color sets, obtaining (n " lines. We then

join each point of every singleton color set to every point of the remaining color set
and obtain (p — n + 1) (n — 1) lines. The total number of lines in the graph is
therefore

(n—1)(n—2)

S fp-ntl) (-1 =22z E=1)

2
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