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78 W.-D. Klix: Netzprojektion eines Tetraeders

also die Berührpunkte von mc mit uc. Berührende Parallelkreisbilder sind aber leicht
zu finden, da die Tangenten an alle Kreise pe0 in ihren Schnittpunkten mit me0

dieselbe Richtung haben. Figur 3 zeigt nach dieser Methode die Umrisspunktkonstruktion

für den gegebenen Meridian m; die erwähnte Tangentenrichtung ist in
diesem Fall normal zu e. Man sucht also jenen Punkt Ve0 von me0 auf, dessen Tangente
normal zu e ist, unterwirft ihn der Kollineation 9t-1 und erhält den Umrisspunkt Vc

Josef P. Tschupik, Graz

Netzprojektion eines Tetraeders

Bei einer Netzprojektion des _P3 auf eine Bildebene werden als Abbildungsmittel
die oo2 Geraden eines Strahlnetzes benutzt. Durch spezielle Wahl der Leitgeraden
dieses abbildenden Netzes kann erreicht werden, dass die Bilder von Raumgeraden
entweder Kreise oder Parabeln mit fester Achsenrichtung sind; es handelt sich dann
um eine spezielle elliptische bzw. eine spezielle parabolische Netzprojektion. Die
bekannten - z.B. in [9] dargestellten - Beziehungen zwischen der elliptischen
Netzprojektion eines Tetraeders und der MiQUELschen Kreisfigur werden durch
Heranziehung einer speziellen parabolischen Netzprojektion zu Aussagen über gewisse
Parabelfiguren der Ebene erweitert. Dies erscheint aus zwei Gründen mitteilenswert:
Einmal wird ein weiteres Beispiel dafür gegeben, wie Aussagen über ebene Figuren
durch räumliche Betrachtungen gewonnen werden können. Zum anderen werden
durch das gleiche Prinzip, nämlich verschiedene Netzprojektionen, gleichberechtigt
nebeneinander stehende Sachverhalte in der Bildebene erhalten, die sich durch rein
planimetrische Überlegungen nicht ohne weiteres ineinander überführen zu lassen
scheinen. - In den ersten drei Abschnitten werden einige benötigte Eigenschaften der
Netzprojektion bereitgestellt.

1. Die Netzprojektion [1-4] ist eine auf J. Steiner zurückgehende Abbildung des

dreidimensionalen projektiven Raumes Pz auf eine Bildebene n, bei der als Abbildungsmittel

die Geraden eines Strahlnetzes 91, also einer linearen Strahlkongruenz verwendet
werden. Je nach der Art des abbildenden Netzes soll auch die Netzprojektion
hyperbolisch, elliptisch oder parabolisch heissen; die Bildebene n enthalte keine Leitgerade
von 91. Das Bild P' bzw. e' eines Punktes P bzw. einer Ebene e wird erklärt als der
Schnittpunkt von n mit der mit P bzw. e inzidierenden Netzgeraden np bzw. ne. Das
Bild g' einer Geraden g ist die Gesamtheit der Spurpunkte der die Gerade g treffenden
Netzgeraden. Da diese Netzgeraden einen Regulus 9lg bilden, ist g' i. allg. ein
Kegelschnitt durch die beiden Spurpunkte der Leitgeraden von 91 in n, die im parabolischen
Fall durch ein Linienelement zu ersetzen sind.

Satz 1. Jeder Punkt von n ist gleichzeitig Bildpunkt der oo1 auf der durch ihn gehenden

Netzgeraden liegenden Punkte und der oo1 durch diese Netzgerade gehenden Ebenen.

Jeder durch die Spurpunkte der Leitgeraden von 9t gehende Kegelschnitt von n ist Bild
der oQl-Geraden, die zu dem 91 angehörenden Regulus durch diesen Kegelschnitt konjugiert
sind.
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Die Spurkurve von 91^ zerfallt in zwei Geraden, wenn die in n liegende Netzgerade
nn diesem Regulus angehört

Daher gilt der

Satz 2. Jede Treffgerade h von nn geht bei Netzproyektion in eine Gerade h' von tz
uber Die zweite zum Netzbild gehörende Gerade ist nn

Aus den eben dargestellten Eigenschaften der Netzprojektion folgt fur zwei sich
schneidende Geraden der

Satz 3. a) Ist S der Schnittpunkt zweier Geraden a und b einer Ebene e, dann schneiden

sich die Bildkegelschmtte a' und b' ausser in den Spurpunkten Llt L2 der Leitgeraden

von 91 in zwei weiteren Punkten, von denen der eine der Bildpunkt S' von S und der
andere der Bildpunkt e' von e ist

b) Schneiden sich a und b nicht, dann sind die von Lx und L2 verschiedenen Schnittpunkte

der Bilder a' und b' die Spurpunkte der beiden Netzgeraden die sowohl a als auch b

treffen, es gibt genau zwei solche Netzgeraden, da b den Regulus 9la in zwei Punkten
schneidet und umgekehrt

2 Durch besondere Wahl des Netzes 91 kann bei reeller affiner Bildebene n erreicht
werden, dass die Bilder der Geraden des P3 nur gewisse Kegelschnitte smd Es treten
z B gleichseitige Hyperbeln, Kreise bzw Parabeln mit gemeinsamer Achsenrichtung
als Bildkegelschmtte auf, wenn die Geraden mittels einer geeigneten, im folgenden
speziell genannten hyperbolischen, elliptischen bzw parabolischen Netzprojektion
abgebildet werden Zu diesem Zweck wird die Bildebene n zunächst durch eme
uneigentliche Gerade u projektiv abgeschlossen Die Leitgeraden werden so gewählt,
dass ihre Spurpunkte m tz, durch die die Bildkegelschmtte der Geraden gehen,
uneigentliche Punkte von tz werden, u ist dann die in tz liegende Netzgerade nn Die
Bildpunkte von Punkten bzw Ebenen, deren abbildende Netzgerade nn ist, sind
unbestimmt Es hegt daher nahe, die Punkte von nn als den uneigentlichen Punkt von
tz zu definieren, d h die Bildebene tz nicht projektiv, sondern konform abzuschliessen.
Ob die Bildebene als projektiv oder konform abgeschlossen aufzufassen ist, wird im
folgenden der jeweiligen Problemstellung angepasst

Fasst man die uneigentlichen Spurpunkte der Leitgeraden von 91 in n als die
Fundamentalpunkte einer Metrik in der Bildebene bei den jeweiligen speziellen Netz-
projektionen auf, dann hegt m tz eme pseudoeuklidische, euklidische bzw isotrope Metrik
vor [7, 8] Da die Bilder der Geraden Kegelschnitte durch diese Fundamentalpunkte
smd, lasst sich zusammenfassend der folgende Satz aussprechen

Satz 4. Liegt eine spezielle Netzpro]ekhon vor, d h ist die in n liegende Netzgerade

nn die uneigentliche Gerade u von tz, dann gehen die Geraden des P3 in die «Kreise» der
Bildebene uber, wenn die Spurpunkte der Leitgeraden von 91 als Fundamentalpunkte
einer Metrik in tz angesehen werden

Eine spezielle hyperbolische Netzprojektion hegt somit vor, wenn die Spurpunkte
der Leitgeraden von 91 bez der absoluten Kreispunkte von tz harmonisch liegen,
die Bilder der Geraden sind gleichseitige Hyperbeln bzw die pseudoeuklidischen Kreise
dieser Bildebene mit pseudoeukhdischer Metnk Bei spezieller elliptischer Netz-
projektion werden die absoluten Kreispunkte von tz als die Spurpunkte der
Leitgeraden von 91 gewählt, so dass 91 em (Rechts- oder Links-) Drehnetz ist Die Metrik
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m tz ist dann euklidisch, die Bilder der Geraden smd daher gewöhnliche euklidische
Kreise Eine spezielle parabolische Netzprojektion bildet die Geraden des P3 auf die
Parabeln mit der Achsenrichtung U ab, wobei der uneigentliche Punkt U der
Spurpunkt der Leitgeraden des abbildenden parabolischen Netzes ist Durch das Limen-
element (U, u) wird in tz eme isotrope Metrik bestimmt, und die Parabeln durch U
werden daher als die isotropen Kreise in tz bezeichnet

3 Im folgenden sollen die Grundzuge einer parabolischen Netzprojektion dargestellt

werden, da wegen des Zusammenfallens der Leitgeraden einige Besonderheiten
auftreten [3] Em parabolisches Strahlnetz 91^ mit der doppelt zu zahlenden
Leitgeraden / ergibt sich, wenn zwischen der Punktreihe / und dem Ebenenbuschel / eme
Korrelation 5 erklart wird, die Netzgeraden gehören dann solchen Geradenbuscheln

an, deren Tragerpunkt und Tragerebene durch $ einander entsprechen Die in tz

liegende Netzgerade nn ist die Schnittgerade der dem Spurpunkt L von / bei g
entsprechenden Ebene mit n Punkte bzw Ebenen, die weder mit / noch mit nn mzidieren,
heissen allgemeine Punkte bzw Ebenen, Geraden, die weder / noch nn treffen, heissen

allgemeine Geraden Die mit dem allgemeinen Punkt P mzidierende Netzgerade np
ist die Verbindungsgerade von P mit dem der Ebene P / durch gf entsprechenden
Punkt von / Dual dazu ist die mit der allgemeinen Ebene e mzidierende Netzgerade
ne die Schnittgerade von e mit der dem Punkt e l durch gf zugeordneten Ebene
durch l Das Bild g' einer allgemeinen Geraden g ist im hyperbolischen Fall em
Kegelschnitt durch die Spurpunkte Lx und L% der Leitgeraden des hyperbolischen Netzes 9lÄ.

Da 3lp als Grenzfall von 9lÄ aufgefasst werden kann, wobei die getrennten Spurpunkte
Lx, L2 der Leitgeraden von 9lA m den Spurpunkt L der Leitgeraden / von 9lp zusammengeruckt

smd und dort das Linienelement (L, nn) bilden, gilt der

Satz 5. Die Bilder g' aller allgemeinen Geraden g sind bei parabolischer Netzpro-
fekhon Kegelschnitte mit dem gemeinsamen Linienelement (L, nn)

Die oben erwähnte spezielle parabolische Netzprojektion ergibt sich z B wenn
eine Ferngerade des P3 als Leitgerade / von 91^ gewählt und deren Spurpunkt L U
m tz durch gf die Fernebene des P3 zugeordnet wird Dann ist die Ferngerade u von tz

die m tz hegende Netzgerade nn, und es gilt daher der

Satz 6. Die Bilder g' aller allgemeinen Geraden g sind bei spezieller parabolischer
Netzpro]ektion Parabeln mit der gemeinsamen Achsenrichtung U

Bemerkung Eine weitere mögliche spezielle parabolische Netzprojektion, die
hier nicht verwendet wird, ergibt sich, wenn die Leitgerade l des Netzes zu tz parallel
ist und die Korrelation gf dem Fernpunkt U von l die durch / gehende Parallelebene
von n zuordnet

4 Die hier aufgezeigten Zusammenhange zwischen spezieller elliptischer bzw
spezieller parabolischer Netzprojektion und der euklidischen bzw isotropen Metrik der
Bildebene sollen an anderer Stelle ausfuhrlicher behandelt werden Hier sollen diese

beiden Projektionen nur benutzt werden, um die Punkte, Geraden und Ebenen von
Tetraedern des P8 m tz abzubilden Die bereits bekannten Beziehungen zwischen der
Netzprofektton eines Tetraeders mittels eines Drehnetzes und der MiQVEhschen Kreis-
figur ([9]) werden hier nochmals zusammengestellt und gleichzeitig durch die
Heranziehung der speziellen parabolischen Netzprojektion auf die isotrope Ebene

übertragen, bzw es werden neue Satze uber gewisse Parabelfiguren der euklidischen Ebene
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ausgesprochen. Dazu ist es vorteilhaft, sowohl die euklidischen Kreise als auch die
Parabeln mit einer gemeinsamen Achsenrichtung (in den Bildern lotrecht angenommen),

die als isotrope Kreise aufgefasst werden können, als «Kreise» zu bezeichnen.

- Um im folgenden unwesentliche Fallunterscheidungen im parabolischen Fall zu
vermeiden, wird vorausgesetzt, dass die Kanten des abzubildenden Tetraeders die

Leitgerade / von 91 nicht treffen. Wenn man ein räumliches kartesisches Koordinatensystem

so annimmt, dass tz dessen ^y-Ebene und die uneigentliche Leitgerade / die

Ferngerade der yz-Ebene sind, bedeutet das, dass keine Tetraederkante parallel zur
yz-Ebene verläuft. Ein solches Tetraeder soll allgemein heissen. Das Bild eines
allgemeinen Tetraeders X des P3 ist eine Figur %' in tz, die den 4 Ecken, 6 Kanten und 4

Ebenen von X entsprechend aus 6 «Kreisen» und 8 Punkten besteht. Da jede Kante
von X mit zwei Ebenen und zwei Eckpunkten inzidiert, wird jeder «Kreis» von X'
genau 4 Punkte enthalten und durch jeden Punkt von X' werden genau 3 «Kreise»
gehen, da mit jeder Ebene und mit jedem Eckpunkt vonX jeweils 3 Kanten inzidieren.
Diese Figur X' beschreibt der folgende

Satz 7. Wählt man auf einem «Kreis» k vier Punkte Pt(i 1, 4) und zeichnet

durch die Punkte Pt und P} einen «Kreis» ktJ (i] 12, 23, 34, 41), dann liegen die
vier von Pt verschiedenen Schnittpunkte Qt (i 1, 4) der «Kreise» klt undktJ auf
einem «Kreis» k (Figur 1).

Figur 1

Im euklidischen Fall ist diese Figur unter dem Namen MiQVELsche Kreisfigur in
der Literatur bekannt [9].

Die Bezeichnungen in den Sätzen 7 und 9 stimmen der übersichtlicheren Formulierung

wegen nicht mit den üblichen Bezeichnungen von X überein.
5. Aus den Eigenschaften der Netzprojektion, insbesondere aus Satz 1, folgt, dass

es oo1 verschiedene Tetraeder mit dem gleichen Bild X' in tz gibt. Es sind dies die cx?1

Tetraeder, die durch eine Kollineation des P3 mit den Leitgeraden von 91 als Achsen
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auseinander hervorgehen Ungeachtet dieser m diesem Zusammenhang unwesentlichen

Vieldeutigkeit gibt es Tetraeder, die bez tz spezielle Lage haben Auf diese

Sonderlagen von X und die sich daraus ergebenden Sonderfalle der MiQUELschen
«Kreis»-Figur X' soll naher eingegangen werden

Ist z B die Ebene d von X parallel zu tz, dann gehen die drei Kanten a, b, c von d

bei spezieller Netzprojektion nach Satz 2 m Geraden von tz uber Drei «Kreise» von X'
des allgemeinen Falles arten daher in Geraden aus, es ergibt sich also der

Satz 8. Wählt man auf den drei Seiten a', b', c' eines Dreiecks A'B'C bzw die

beliebigen Punkte et!, ß', y', dann schneiden sich die «Kreise» durch A', ß',y', B',y', oc'

und C', ol, ß' m einem Punkt D' (Figur 2)

Figur 2

Bemerkung Der Punkt df ist hier der Fernpunkt von tz, da die Ebene des

Dreiecks ABC zur Bildebene parallel ist, 6' gehört wegen des konformen Abschlusses

von tz allen drei Geraden des Dreiecks ABC zu
Aus den in Satz 8 gewählten Bezeichnungen geht der Zusammenhang zwischen

dem Tetraeder X und dessen Bild X' deutlich hervor

Da es möglich ist, dass nur eine Kante von X zur Bildebene parallel ist, kann in der
MiQUELschen «Kreis»-Figur em «Kreis» m eme Gerade ausarten Smd jedoch genau
zwei Kanten von X zu tz parallel, dann müssen diese in X einander gegenüberliegen,
d h zueinander windschief sein Die zugehonge « Kreis »-Figur X' ergibt sich daher aus

der des Satzes 7, wenn entweder k und k oder kn und kM oder k2Z und &41 m Geraden

entarten Das entstehende Bild X' lasst sich auch m dem Satz beschreiben

Satz 9. Auf dem «Kreis» k seien 4 Punkte Pt (i /, 4) festgelegt Zeichnet man
durch Pt und Pj einen «Kreis» ktJ (.; 12, 34) bzw die Gerade gtJ (if 23, 41), dann
schneiden die Geraden gH die «Kreise» ktj ausser m Pt in den Punkten Qt(t=1,
4) eines «Kreises» k (Figur 3)
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'_* *n

Figur 3

Wenn ein Punkt von X Fernpunkt wird, ergibt sich im allgemeinen Fall nichts
Neues, da das Netzbild eines Fernpunktes i. allg. ein endlicher Punkt von tx ist. Von
Interesse sind hier nur die Fälle, wo zu tz parallele Kanten auftreten, d.h. der
Fernpunkt von X auf u liegt. Dabei ist es möglich, dass keine oder nur eine Seite des im
Endlichen liegenden Tetraederdreiecks parallel tz ist; dass mindestens zwei Seiten
dieses Dreiecks parallel tz sind, kann nicht eintreten, da X in diesem Fall in eine zu n
parallele Ebene ausarten würde. Im ersten möglichen Fall besteht X' aus drei« Kreisen »,

drei Geraden und 8 Punkten. Die entstehende Figur ist die gleiche wie in Satz 8, nur
sind hier die Bedeutungen der Punkte als Bilder von Punkten bzw. Ebenen des

Tetraeders vertauscht. Der zweite mögliche Fall ist ein Sonderfall des ersten, da ein
weiterer «Kreis» in eine Gerade ausartet. Das entstehende Bild X' lässt sich in Form
des elementargeometrisch sehr leicht zu beweisenden Satzes aussprechen:

Satz 10. Legt man durch die Schnittpunkte zweier «Kreise» je eine Gerade und
schneidet diese mit den beiden «Kreisen», dann ist die Verbindungsgerade der entstehenden

Schnittpunkte auf dem einen «Kreis» zu der der entsprechenden Punkte aufdem anderen
«Kreis» parallel (Figur 4).

Figur 4
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6 Bei gewisser Lage des Tetraeders X im Raum gilt fur sein Netzbild %' der

Satz 11. Liegen die Bildpunkte der 4 Eckpunkte von X auf einem «Kreis», dann auch
die Bildpunkte der 4 Ebenen von X und umgekehrt Es ergibt sich somit fur X' eine
Konfiguration von 8 Punkten und 8 «Kreisen », wobei mit jedem «Kreis » 4 Punkte und mit jedem
Punkt 4 «Kreise» mzidieren

Beweis (vgl auch [9]) Wenn die 4 Bildpunkte der Eckpunkte von X auf einem
«Kreis» liegen, dann haben die sie abbildenden Netzgeraden hyperboloidische Lage,
d h sie gehören der gleichen Regelschar an Nach einem auf M Chasles
zurückgehenden, in [5] und [6] bewiesenen Satz gilt, dass mit den Verbindungsgeraden ent¬

Figur 5

sprechender Punkte zweier Tetraeder stets auch die Schnittgeraden entsprechender
Ebenen dieser Tetraeder hyperboloidische Lage haben Da die Verbindungsgeraden der
Eckpunkte zweier Tetraeder mit dem gleichen Bild X' aber die diese Eckpunkte
abbildenden Netzgeraden smd, gilt bei hyperboloidischer Lage dieser Netzgeraden, dass

dann auch die die Ebenen abbildenden Netzgeraden hyperboloidische Lage haben,
d h deren Spurpunkte liegen auf einem «Kreis» - Die Umkehrung des Satzes folgt
analog

Als Sonderfall dieses Satzes ergibt sich aus Satz 8 Wenn die Punkte a', ß' und y'
auf einer Geraden liegen (der vierte Punkt d' ist dann uneigenthcher Punkt), dann
hegen die Punkte A', B', C und D' auf einem «Kreis» D h es gilt der

Satz 12. Die vier Um-«Kreise» der möglichen Teildreiecke eines vollständigen
Vierseits schneiden sich in einem Punkt (Figur 5)

W -D Klix, Dresden
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On the Coloring of Signed Graphs1)

A graph G consists of a finite set of points V(G) together with a prescribed subset
of the collection of all lines, i.e unordered pairs of distinct points. A signed graph S

is obtained from a graph G when each line of G is designated either positive or negative.
An n-coloring ofG is a partition of the point set V(G) into n subsets (called color sets)
such that every two points joined by a line are in different color sets. An n-coloring ofS
is a partition of V(S) into n subsets such that (1) every two points joined by a negative
line are in different color sets and (2) every two points joined by a positive line are
in the same color set. We say that S has a coloring, or is colorable, if it has an n-coloring
for some n. It follows immediately from these definitions that if a signed graph 5 has

only negative lines, the problem of coloring 5 is the same as that of coloring a graph.
If, however, S has some positive lines, it may not be colorable. We characterize
colorable signed graphs, and relate them to complete colorings of graphs.

Colorability
Let S+ be the spanning subgraph obtained by removing all negative lines from S.

By a component of a graph we mean a maximal connected subgraph. The positive
components of S are the components of S+. It follows from this definition that two
distinct points of 5 are in the same positive component if and only if they are joined
by a path consisting entirely of positive lines (called an all-positive path). Clearly, the
positive components of S partition V(S) into subsets such that each positive line
joins two points in the same subset, and S has exactly one such partitioning.

We now present two equivalent conditions for a signed graph to be colorable. The

equivalence of Statements (1) and (3) of the theorem is given in [2].
Theorem 1. The following Statements are equivalent for any signed graph 5.

(1) S has a coloring.
(2) S has no negative line joining two points in the same positive component.
(3) S has no cycle with exactly one negative line.

x) Work reported here was supported by Grant MH 10834 from the National Institute of Mental Health.
We wish to thank Dr. Gary Chartrand for the formulation of Theorem 4.
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