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78 W.-D. Krix: Netzprojektion eines Tetraeders

also die Beriihrpunkte von m° mit #°. Beriihrende Parallelkreisbilder sind aber leicht
zu finden, da die Tangenten an alle Kreise $¢° in ihren Schnittpunkten mit m®®
dieselbe Richtung haben. Figur 3 zeigt nach dieser Methode die Umrisspunkt-
konstruktion fiir den gegebenen Meridian m; die erwdhnte Tangentenrichtung ist in
diesem Fall normal zu e. Man sucht also jenen Punkt 74? von m¢% auf, dessen Tangente
normal zu e ist, unterwirft ihn der Kollineation R~! und erhilt den Umrisspunkt V*

von m°.
JoseF P. TscHUPIK, Graz

Netzprojektion eines Tetraeders

Bei einer Netzprojektion des Py auf eine Bildebene werden als Abbildungsmittel
die oo? Geraden eines Strahlnetzes benutzt. Durch spezielle Wahl der Leitgeraden
dieses abbildenden Netzes kann erreicht werden, dass die Bilder von Raumgeraden
entweder Kreise oder Parabeln mit fester Achsenrichtung sind; es handelt sich dann
um eine spezielle elliptische bzw. eine spezielle parabolische Netzprojektion. Die be-
kannten — z.B. in [9] dargestellten — Beziehungen zwischen der elliptischen Netz-
projektion eines Tetraeders und der MiQUELschen Kreisfigur werden durch Heran-
ziehung einer speziellen parabolischen Netzprojektion zu' Aussagen iiber gewisse
Parabelfiguren der Ebene erweitert. Dies erscheint aus zwei Griinden mitteilenswert :
Einmal wird ein weiteres Beispiel dafiir gegeben, wie Aussagen {iber ebene Figuren
durch rdumliche Betrachtungen gewonnen werden kénnen. Zum anderen werden
durch das gleiche Prinzip, namlich verschiedene Netzprojektionen, gleichberechtigt
nebeneinander stehende Sachverhalte in der Bildebene erhalten, die sich durch rein
planimetrische Uberlegungen nicht ohne weiteres ineinander iiberfithren zu lassen
scheinen. — In den ersten drei Abschnitten werden einige benétigte Eigenschaften der
Netzprojektion bereitgestellt.

1. Die Netzprojektion [1-4] ist eine auf J. STEINER zuriickgehende Abbildung des
dreidimensionalen projektiven Raumes P auf eine Bildebene 7, bei der als Abbildungs-
mittel die Geraden eines Strahlnetzes N, also einer linearen Strahlkongruenz verwendet
werden. Je nach der Art des abbildenden Netzes soll auch die Netzprojektion Ayper-
bolisch, elliptisch oder parabolisch heissen; die Bildebene 7z enthalte keine Leitgerade
von N. Das Bild P’ bzw. ¢’ eines Punktes P bzw. einer Ebene ¢ wird erklirt als der
Schnittpunkt von 7 mit der mit P bzw. ¢ inzidierenden Netzgeraden n, bzw. »,. Das
Bild g’ einer Geraden g ist die Gesamtheit der Spurpunkte der die Gerade g treffenden
Netzgeraden. Da diese Netzgeraden einen Regulus R, bilden, ist g’ i.allg. ein Kegel-
schnitt durch die beiden Spurpunkte der Leitgeraden von N in 7z, die im parabolischen
Fall durch ein Linienelement zu ersetzen sind.

Satz 1. Jeder Punkt von  ist gleichzeitig Bildpunkt der oo auf der durch thn gehen-
den Netzgeraden liegenden Punkte und der oo! durch diese Netzgerade gehenden Ebenen.
Jeder durch die Spurpunkte der Leitgeraden von N gehende Kegelschnitt von x ist Bild
der ool-Geraden, die zu dem N angehorenden Regulus durch diesen Kegelschnitt konjugiert
sind.
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Die Spurkurve von R, zerfillt in zwei Geraden, wenn die in 7 liegende Netzgerade
n, diesem Regulus angehort.
Daher gilt der

Satz 2. Jede Treffgerade h von n, geht bei Netzprojektion in eine Gerade h' von
tiber. Die zweite zum Netzbild gehorende Gerade ist n .

Aus den eben dargestellten Eigenschaften der Netzprojektion folgt fiir zwei sich
schneidende Geraden der

Satz 3. a) Ist S der Schnittpunkt zweier Geraden a und b einer Ebene ¢, dann schnei-
den sich die Bildkegelschnitte a’ und b’ ausser in den Spurpunkten L,, L, der Leitgera-
den von W in zwei weiteren Punkten, von denen der eine der Bildpunkt S’ von S und der
andere der Bildpunkt &' von e 1st.

b) Schneiden sich a und b nicht, dann sind die von L, und L, verschiedenen Schnitt-
punkte der Bilder a’ und b’ die Spurpunkte der beiden Netzgeraden, die sowohl a als auch b
treffen, es gibt genau zwei solche Netzgeraden, da b den Regulus R, in zwer Punkten
schneidet und umgekehrt.

2. Durch besondere Wahl des Netzes 9t kann bei reeller affiner Bildebene 7 erreicht
werden, dass die Bilder der Geraden des P, nur gewisse Kegelschnitte sind. Es treten
z.B. gleichseitige Hyperbeln, Kreise bzw. Parabeln mit gemeinsamer Achsenrichtung
als Bildkegelschnitte auf, wenn die Geraden mittels einer geeigneten, im folgenden
speziell genannten hyperbolischen, elliptischen bzw. parabolischen Netzprojektion
abgebildet werden. Zu diesem Zweck wird die Bildebene 7 zunichst durch eine
uneigentliche Gerade u projektiv abgeschlossen. Die Leitgeraden werden so gewihlt,
dass ihre Spurpunkte in 7z, durch die die Bildkegelschnitte der Geraden gehen, un-
eigentliche Punkte von & werden; # ist dann die in 7z liegende Netzgerade »,. Die
Bildpunkte von Punkten bzw. Ebenen, deren abbildende Netzgerade #, ist, sind
unbestimmt. Es liegt daher nahe, die Punkte von #,, als den uneigentlichen Punkt von
7 zu definieren, d. h. die Bildebene 7 nicht projektiv, sondern konform abzuschliessen.
Ob die Bildebene als projektiv oder konform abgeschlossen aufzufassen ist, wird im
folgenden der jeweiligen Problemstellung angepasst.

Fasst man die uneigentlichen Spurpunkte der Leitgeraden von % in =& als die
Fundamentalpunkte einer Metrik in der Bildebene bei den jeweiligen speziellen Netz-
projektionen auf, dann liegt in 7w eine pseudoenklidische, euklidische bzw. isotrope Metrik
vor [7, 8]. Da die Bilder der Geraden Kegelschnitte durch diese Fundamentalpunkte
sind, lasst sich zusammenfassend der folgende Satz aussprechen:

Satz 4. Liegt eine spezielle Netzprojektion vor, d.h. ist die in 7t liegende Netzgerade
n, die uneigentliche Gerade u von 7, dann gehen die Gevaden des Py in die «Kreise» der
Bildebene tiber, wenn die Spurpunkte der Leitgeraden von N als Fundamentalpunkie
ewner Metrik in mt angesehen werden.

Eine spezielle hyperbolische Netzprojektion liegt somit vor, wenn die Spurpunkte
der Leitgeraden von i bez. der absoluten Kreispunkte von sz harmonisch liegen;
die Bilder der Geraden sind gleichseitige Hyperbeln bzw. die pseudoeuklidischen Kreise
dieser Bildebene mit pseudoeuklidischer Metrik. Bei spezieller elliptischer Netz-
projektion werden die absoluten Kreispunkte von 7 als die Spurpunkte der Leit-
geraden von 9t gewihlt, so dass N ein (Rechts- oder Links-) Drehnetz ist. Die Metrik
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in 7 ist dann euklidisch, die Bilder der Geraden sind daher gewdhnliche euklidische
Kyeise. Eine spezielle parabolische Netzprojektion bildet die Geraden des P, auf die
Parabeln mit der Achsenrichtung U ab, wobei der uneigentliche Punkt U der Spur-
punkt der Leitgeraden des abbildenden parabolischen Netzes ist. Durch das Linien-
element (U, #) wird in & eine isotrope Metrik bestimmt, und die Parabeln durch U
werden daher als die #sofropen Kreise in 7 bezeichnet.

3. Im folgenden sollen die Grundziige einer parabolischen Netzprojektion darge-
stellt werden, da wegen des Zusammenfallens der Leitgeraden einige Besonderheiten
auftreten [3]. Ein parabolisches Strahlnetz 9, mit der doppelt zu zéhlenden Leit-
geraden / ergibt sich, wenn zwischen der Punktreihe / und dem Ebenenbiischel / eine
Korrelation § erklart wird; die Netzgeraden gehoéren dann solchen Geradenbiischeln
an, deren Trdgerpunkt und Trédgerebene durch § einander entsprechen. Die in &
liegende Netzgerade #,, ist die Schnittgerade der dem Spurpunkt L von / bei § ent-
sprechenden Ebene mit zz. Punkte bzw. Ebenen, die weder mit / noch mit #,, inzidieren,
heissen allgemeine Punkte bzw. Ebenen; Geraden, die weder / noch #,, treffen, heissen
allgemeine Geraden. Die mit dem allgemeinen Punkt P inzidierende Netzgerade #np
ist die Verbindungsgerade von P mit dem der Ebene P I durch § entsprechenden
Punkt von /. Dual dazu ist die mit der allgemeinen Ebene ¢ inzidierende Netzgerade
n, die Schnittgerade von ¢ mit der dem Punkt ¢/ durch § zugeordneten Ebene
durch /. Das Bild g’ einer allgemeinen Geraden g ist im hyperbolischen Fall ein Kegel-
schnitt durch die Spurpunkte L, und L, der Leitgeraden des hyperbolischen Netzes N, .
Da N, als Grenzfall von N, aufgefasst werden kann, wobei die getrennten Spurpunkte
L,, L, der Leitgeraden von R, in den Spurpunkt L der Leitgeraden/von 9, zusammen-
geriickt sind und dort das Linienelement (L, »,) bilden, gilt der

Satz 5. Die Bilder g’ aller allgemeinen Geraden g sind bei parabolischer Netzpro-
jektion Kegelschnitte mit dem gemeinsamen Linienelement (L, n,).

Die oben erwdhnte spezielle parabolische Netzprojektion ergibt sich z.B., wenn
eine Ferngerade des Py als Leitgerade / von i, gewihlt und deren Spurpunkt L = U
in 7t durch § die Fernebene des P, zugeordnet wird. Dann ist die Ferngerade » von =
die in x liegende Netzgerade #,, und es gilt daher der

m

Satz 6. Die Bilder g’ aller allgemeinen Geraden g sind bei spezieller parabolischer
Netzprojektion Parabeln mit der gemeinsamen Achsenrichtung U.

Bemerkung: Eine weitere mogliche spezielle parabolische Netzprojektion, die
hier nicht verwendet wird, ergibt sich, wenn die Leitgerade I des Netzes zu m parallel
ist und die Korrelation § dem Fernpunkt U von / die durch / gehende Parallelebene
von 7t zuordnet. :

4. Die hier aufgezeigten Zusammenhinge zwischen spezieller elliptischer bzw.
spezieller parabolischer Netzprojektion und der euklidischen bzw. isotropen Metrik der
Bildebene sollen an anderer Stelle ausfiihrlicher behandelt werden. Hier sollen diese
beiden Projektionen nur benutzt werden, um die Punkte, Geraden und Ebenen von
Tetraedern des P, in r abzubilden. Die bereits bekannten Beziehungen zwischen der
Netzprojektion eines Tetraeders mittels eines Drehnetzes und der M1QUELschen Krers-
figur ([9]) werden hier nochmals zusammengestellt und gleichzeitig durch die He-
ranziehung der speziellen parabolischen Netzprojektion auf die ésofrope Ebene iiber-
tragen, bzw. es werden neue Sitze iiber gewisse Parabelfiguren der euklidischen Ebene
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ausgesprochen. Dazu ist es vorteilhaft, sowohl die euklidischen Kreise als auch die
Parabeln mit einer gemeinsamen Achsenrichtung (in den Bildern lotrecht angenom-
men), die als isotrope Kreise aufgefasst werden konnen, als «Kreise» zu bezeichnen.
— Um im folgenden unwesentliche Fallunterscheidungen im parabolischen Fall zu
vermeiden, wird vorausgesetzt, dass die Kanten des abzubildenden Tetraeders die
Leitgerade / von N nicht treffen. Wenn man ein raumliches kartesisches Koordinaten-
system so annimmt, dass ;& dessen xy-Ebene und die uneigentliche Leitgerade / die
Ferngerade der yz-Ebene sind, bedeutet das, dass keine Tetraederkante parallel zur
yz-Ebene verlduft. Ein solches Tetraeder soll allgemein heissen. Das Bild eines allge-
meinen Tetraeders T des P, ist cine Figur ' in #, die den 4 Ecken, 6 Kanten und 4
Ebenen von I entsprechend aus 6 «Kreisen» und 8 Punkten besteht. Da jede Kante
von ¥ mit zwei Ebenen und zwei Eckpunkten inzidiert, wird jeder «Kreis» von I’
genau 4 Punkte enthalten und durch jeden Punkt von ¥’ werden genau 3 «Kreise»
gehen, da mit jeder Ebene und mit jedem Eckpunkt von T jeweils 3 Kanten inzidieren.
Diese Figur T’ beschreibt der folgende

Satz 7. Wihlt man auf einem «Kreisy k vier Punkte P, (i =1, ..., 4) und zeichnet
durch die Punkte P; und P; einen «Kreis» k;; (i = 12, 23, 34, 41), dann liegen die
vier von P; verschiedenen Schnittpunkte Q; (1 =1, ..., 4) der «Kreise» k;; und k;; auf

etnem «Kreis» k (Figur 1).

Figur 1

Im euklidischen Fall ist diese Figur unter dem Namen MIQUELsche Kretsfigur in
der Literatur bekannt [9].

Die Bezeichnungen in den Sitzen 7 und 9 stimmen der iibersichtlicheren Formu-
lierung wegen nicht mit den iiblichen Bezeichnungen von ¥ iiberein.

5. Aus den Eigenschaften der Netzprojektion, insbesondere aus Satz 1, folgt, dass
es oo! verschiedene Tetraeder mit dem gleichen Bild I’ in 7 gibt. Es sind dies die oo!
Tetraeder, die durch eine Kollineation des P, mit den Leitgeraden von R als Achsen
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auseinander hervorgehen. Ungeachtet dieser in diesem Zusammenhang unwesent-
lichen Vieldeutigkeit gibt es Tetraeder, die bez. & spezielle Lage haben. Auf diese
Sonderlagen von ¥ und die sich daraus ergebenden Sonderfille der MiQUuELschen
«Kreis»-Figur T’ soll ndher eingegangen werden.

Ist z. B. die Ebene § von I parallel zu zz, dann gehen die drei Kanten a, b, ¢ von §

bei spezieller Netzprojektion nach Satz 2 in Geraden von # iiber. Drei « Kreise» von I’
des allgemeinen Falles arten daher in Geraden aus, es ergibt sich also der

Satz 8. Wahit man auf den drei Seiten a’, b, ¢’ eines Dreiecks A’ B'C’ bzw. die
beliebigen Punkte o', ', y', dann schneiden sich die «Kreise» durch A', f',v'; B',y', o
und C’, &', B’ in esnem Punkt D' (Figur 2).

Figur 2

Bemerkung: Der Punkt 4’ ist hier der Fernpunkt von x, da die Ebene des
Dreiecks A BC zur Bildebene parallel ist; 6’ gehort wegen des konformen Abschlusses
von 7 allen drei Geraden des Dreiecks A BC an.

Aus den in Satz 8 gewihlten Bezeichnungen geht der Zusammenhang zwischen
dem Tetraeder T und dessen Bild I’ deutlich hervor.

Da es moglich ist, dass nur eine Kante von T zur Bildebene parallel ist, kann in der
MigueLschen «Kreis»-Figur ein «Kreis» in eine Gerade ausarten. Sind jedoch genau
zwei Kanten von I zu & parallel, dann miissen diese in T einander gegeniiberliegen,
d.h. zueinander windschief sein. Die zugehoérige « Kreis»-Figur I’ ergibt sich daher aus
der des Satzes 7, wenn entweder £ und % oder k,, und kg, oder kyq und k,, in Geraden
entarten. Das entstehende Bild 3’ ldsst sich auch in dem Satz beschreiben:

Satz 9. Auf dem «Kreis» k seien 4 Punkte P; (1 =1, ..., 4) festgelegt. Zeichnet man
durch P; und P; einen «Kreisw k;; (¢] = 12, 34) baw. die Gerade g;; (1] = 23, 41), dann
schneiden die Geraden g,; die «Kreisen k;; ausser in P; in den Punkien Q;(1=1,...,
4) eines «Kreises» k (Figur 3).
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Figur 3

Wenn ein Punkt von T Fernpunkt wird, ergibt sich im allgemeinen Fall nichts
Neues, da das Netzbild eines Fernpunktes i.allg. ein endlicher Punkt von 7 ist. Von
Interesse sind hier nur die Fille, wo zu st parallele Kanten auftreten, d.h. der Fern-
punkt von ¥ auf « liegt. Dabei ist es moglich, dass keine oder nur eine Seite des im
Endlichen liegenden Tetraederdreiecks parallel z ist; dass mindestens zwei Seiten
dieses Dreiecks parallel & sind, kann nicht eintreten, da I in diesem Fall in eine zu
parallele Ebene ausarten wiirde. Im ersten moglichen Fall besteht ¥ aus drei « Kreisen»,
drei Geraden und 8 Punkten. Die entstehende Figur ist die gleiche wie in Satz 8, nur
sind hier die Bedeutungen der Punkte als Bilder von Punkten bzw. Ebenen des
Tetraeders vertauscht. Der zweite mogliche Fall ist ein Sonderfall des ersten, da ein
weiterer « Kreis» in eine Gerade ausartet. Das entstehende Bild I’ lisst sich in Form
des elementargeometrisch sehr leicht zu beweisenden Satzes aussprechen:

Satz 10. Legt man durch die Schwitipunkte zweier «Kreise» je eime Gerade und
schneidet diese mit den beiden « Kreiseny, dann ist die Verbindungsgerade der entstehenden
Schnittpunkte auf dem einen «Kreis» zu der der entsprechenden Punkte auf dem anderen
«Kreis» parallel (Figur 4).

Figur 4
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6. Bei gewisser Lage des Tetraeders T im Raum gilt fiir sein Netzbild I’ der

Satz 11. Liegen die Bildpunkte der 4 Eckpunkte von T auf einem « Kreisy, dann auch
die Bildpunkte der 4 Ebenen von I und umgekehrt. Es ergibt sich somit fiir T' eine Konfi-
guration von 8 Punkten und 8 « Kreiseny, wobes mit jedem « Kreis» 4 Punkte und mit jedem
Punkt 4 «Kreise» tnzidieren.

Beweis (vgl. auch [9]): Wenn die 4 Bildpunkte der Eckpunkte von ¥ auf einem
«Kreis» liegen, dann haben die sie abbildenden Netzgeraden hyperboloidische Lage,
d.h. sie gehéren der gleichen Regelschar an. Nach einem auf M. CHASLES zuriick-
gehenden, in [5] und [6] bewiesenen Satz gilt, dass mit den Verbindungsgeraden ent-

Figur 5

sprechender Punkte zweier Tetraeder stets auch die Schnittgeraden entsprechender
Ebenen dieser Tetraeder Ayperboloidische Lage haben. Da die Verbindungsgeraden der
Eckpunkte zweier Tetraeder mit dem gleichen Bild I’ aber die diese Eckpunkte ab-
bildenden Netzgeraden sind, gilt bei hyperboloidischer Lage dieser Netzgeraden, dass
dann auch die die Ebenen abbildenden Netzgeraden hyperboloidische Lage haben,
d.h. deren Spurpunkte liegen auf einem «Kreis». — Die Umkehrung des Satzes folgt
analog.

Als Sonderfall dieses Satzes ergibt sich aus Satz 8: Wenn die Punkte o', 8’ und »’
auf einer Geraden liegen (der vierte Punkt ¢’ ist dann uneigentlicher Punkt), dann
liegen die Punkte 4’, B’, C' und D’ auf einem «Kreis». D.h. es gilt der

Satz 12. Die vier Um-«Kreiseyr der moglichen Teildreiecke eines vollstindigen
Vierseits schneiden sich in einem Punkt (Figur 5).

W.-D. KL1x, Dresden
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On the Coloring of Signed Graphs’)

A graph G consists of a finite set of points V(G) together with a prescribed subset
of the collection of all lines, i.e., unordered pairs of distinct points. A signed graph S
is obtained from a graph G when each line of G is designated either positive or negative.
An n-coloring of G is a partition of the point set V(G) into # subsets (called color sets)
such that every two points joined by a line are in different color sets. An n-coloring of S
is a partition of V(S) into # subsets such that (1) every two points joined by a negative
line are in different color sets and (2) every two points joined by a positive line are
in the same color set. We say that S has a coloring, or is colorable, if it has an n-coloring
for some #. It follows immediately from these definitions that if a signed graph S has
only negative lines, the problem of coloring S is the same as that of coloring a graph.
If, however, S has some positive lines, it may not be colorable. We characterize
colorable signed graphs, and relate them to complete colorings of graphs.

Colorability

Let S+ be the spanning subgraph obtained by removing all negative lines from S.
By a component of a graph we mean a maximal connected subgraph. The positive
components of S are the components of S+. It follows from this definition that two
distinct points of S are in the same positive component if and only if they are joined
by a path consisting entirely of positive lines (called an all-positive path). Clearly, the
positive components of S partition V(S) into subsets such that each positive line
joins two points in the same subset, and S has exactly one such partitioning.

We now present two equivalent conditions for a signed graph to be colorable. The
equivalence of statements (1) and (3) of the theorem is given in [2].

Theorem 1. The following statements are equivalent for any signed graph S.

(1) S has a coloring.
(2) S has no negative line joining two points in the same positive component.
(3) S has no cycle with exactly one negative line.

1) Work reported here was supported by Grant MH 10834 from the National Institute of Mental Health.
We wish to thank Dr. GARY CHARTRAND for the formulation of Theorem 4.



	Netzprojektion eines Tetraeders

