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Uber Drehflichenumrisse in Perspektive
und schiefer Axonometrie

Es sei ein Zentralriss (Perspektive) oder Parallelriss durch seine Bildebene I7
und durch sein eigentliches oder uneigentliches Projektionszentrum O vorgegeben.
@ sei eine abzubildende Drehfldche; ihre Achse heisse a.

Der aus O an @ gelegte Tangentialkegel bzw. -zylinder ¥ beriihrt @ lings des sog.
wahren Umyrisses u von @ — der i.allg. eine Raumkurve ist — und schneidet /7 in dem
von uns gesuchten sog. scheinbaren Umriss u' von @. Im Gegensatz zu den iiblichen
Konstruktionsmethoden, nach denen man zuerst die auf @ liegende Kurve # und
hierauf ihr Bild #! ermittelt, soll hier ein Weg gezeigt werden, bei dem man den wahren
Umriss # nicht beniitzt.

Wir gehen davon aus, dass #! durch Kollineation bzw. Affinitit aus jedem be-
liebigen (nicht durch O gehenden) ebenen Schnitt von ¥ gewonnen werden kann und
beniitzen dann die Tatsache, dass sich insbesondere der Schnitt #* von ¥ mit einer
beliebigen zu a normalen Ebene ¢ leicht konstruieren ldsst. Es liegt nahe, € als neue
Bildebene und «* als Hilfsumriss von @ in ¢ zu deuten?).

Das Verfahren ist vor allem fiir die Bediirfnisse der Architekturperspektive ge-
dacht, kann jedoch auch in der schiefen Axonometrie eingesetzt werden. In der
Perspektive ist es stets verwendbar, da sich immer eine geeignete zu a4 normale Ebene
¢ finden lisst, die nicht Sehebene ist. Bei einem Parallelriss kann es moglich sein, dass
es keine derartige Ebene gibt. Denkt man sich den Parallelriss als schiefe Axono-
metrie, so wird man naheliegenderweise die Drehfldchenachse in eine der Koordinaten-
achsen legen. Da dann aber die zu ihr normale Koordinatenebene gewiss keine Seh-
ebene ist, ist bei solchen Anordnungen das Vertahren auch in schiefer Axonometrie
stets verwendbar. Eine Verwendung bei Normalrissen — insbesondere in normaler
Axonometrie — wire moglich, doch besteht dort kein Grund, von den bewéhrten
Verfahren abzugehen.

1) In diesem Zusammenhang sei auf den Aufsatz von F. HOHENBERG, Ein einfacher Beweis des Satzes
von Pohlke, El. Math. 70 (1955) hingewiesen, in dem ein schiefaxonometrischer Kugelumriss affin aus einem
frontalaxonometrischen Hilfsumriss gewonnen wurde.
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1. Bemerkungen zum Hilfsumriss u®in &

1.1. Da die Parallelkreise p; (+ = 1, 2, ...) von @.parallel zu ¢ liegen, erscheinen sie
bei Zentral- wie auch bei Parallelprojektion auf ¢ als Kreise p¢ (Figur 1a). Bilder
ihrer auf a liegenden Mittelpunkte M, sind die auf a° liegenden Mittelpunkte M
der p;. u° ist dann offenbar Hiillkurve der Kreise p¢. Dies reicht bereits fiir eine
Schnellkonstruktion von #° aus, wenn #® einfach ist, insbesondere also, wenn #® keine
Spitzen besitzt.

1.2. Fiir hohere Anspriiche konstruieren wir #° punkt- und tangentenweise mit
Hilfe der bekannten Kegelmethode?) (Figur 1b). Wir bedenken dazu, dass die
Tangentialebenen an @ lings eines fixen Parallelkreises p einen Drehkegel (-zylinder)
» mit auf a liegender Spitze S umhiillen. p*, S¢ seien die Bilder von #, S in &.

Figur 1

Ist U ein auf p liegender Punkt des wahren Umrisses #, so beriihrt die in U an @
gelegte Tangentialebene 7 die Kurven %, p sowie die Flichen ¥, » in U und geht
durch O und S. 7 erscheint daher in ¢ als Tangente 7° aus S°® an $°. Der Beriithrpunkt
U* von 1° mit $° ist nach dem Gesagten auch Berithrpunkt von 7° mit #°. Somit ist
7%, U® ein Linienelement von #°. Die zweite Tangente aus S® an ° liefert ein weiteres
Linienelement 7°, U®,

Verbindet man U® mit dem Mittelpunkt M*® von 4%, so erhilt man die Kurven-
normale #° von #° in U®. Man kann demnach miihelos die Evolute ¢ von #° als Hiill-
kurve der Geraden #° zeichnen und gewinnt z.B. Spitzen oder Spitzpunkte von ¢
aus der bekannten Tatsache, dass sie auf ¢ liegen miissen.

1.3. Da 7%, 7° den scheinbaren Umriss von % in ¢ bilden, benétigt man fiir ihre
Konstruktion nicht #°, sondern nur das Bild irgendeines Parallelkreises von %. Man
kommt so zu folgender modifizierter Konstruktion von #* (Figur 1c):

Fiir eine Serie von Parallelkreisen p, (+ = 1, 2, ...) seien M, die Mitten, %, die zu-
gehorigen Tangentialkegel, S, deren Spitzen und a, die Schnittkreise der »; mit einer
Normalebene « zu a. Liegen dann die Bilder af, SF, M vor, so findet man die Umriss-
erzeugenden 75, 7; von x, als Tangenten aus Sf an 4§ und die Umrisspunkte U}, (7;
auf ihnen als Fusspunkte der aus M gefillten Normalen.

%) Vgl. etwa E, MULLER und E. Krurpa, Lehrbuch der darstellenden Geometrie, 5. Aufl. (Springer, Wien
1948), S. 183,
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1.4. Werden in der Anordnung 1.3. die S unzuginglich, so schneidet man die #;
ausser mit o noch mit einer zweiten Normalebene § zu a nach Kreisen b,. ¢, 75 sind
dann gemeinsame Tangenten an 4, und b, (Figur 1d).

Je nach Gestalt des Umrisses #® wird man eine der in 1.1. bis 1.4. angefiihrten
Konstruktionen verwenden.

2. Umrisskonstruktion in schiefer Axonometrie

Ug, #°, y°, 2 seien die schiefaxonometrischen Bilder des Ursprungs und der Achsen
und 4%, B®, C* die der Achseneinheitspunkte eines rechtwinkligen cartesischen Achsen-
kreuzes (Figur 2). Die Achse a der Drehflache @ liege in der x-Achse. @ sei dadurch
bestimmt, dass wir den in der xz-Ebene liegenden Meridian m von @ im xz-Einschneide-
riss3) €* als m* vorgeben. Als Hilfsebene ¢ wihlen wir die yz-Ebene. ¢ erscheint im
yz-Einschneideriss E° bis auf den MafBstab unverzerrt als £°. »*® wird sich daher leicht
konstruieren lassen.

Aus den bekannten Eigenschaften des Einschneideverfahrens folgt, dass £° aus
dem axonometrischen Bild ¢ vermoge einer perspektiven Affinitdt A hervorgeht.
A ist durch die entsprechenden Dreiecke Uy B* C¥, U2 B® C° festgelegt und besitzt
die Einschneidestrahlen (| x%) als Affinitdtsstrahlen. Konstruieren wir #°° und fiihren
u®? vermoge A~ in 4 iiber, so ist #° bereits der gesuchte Umriss #° von @. Da ndmlich
u, u®, w’ auf demselben Sehstrahlenzylinder ¥ liegen, muss #°* = »° sein.

Wir betrachten nun die Konstruktion der von einem Parallelkreis  rithrenden
Umrisspunkte U, US. p sei durch seinen Mittelpunkt M und seinen Schnittpunkt P
mit m festgelegt und durch sein Bild p* in €* vorgegeben. Wir gehen zuerst von der
zu z* parallelen Strecke M* P* mit Hilfe des Einschneideverfahrens zu M* P* =
Mes Pe5(|| z*) und hierauf vermoge U zu M®® P¢° in E° iiber. Der Bildkreis p*° ist
dann durch Mitte M*® und Peripheriepunkt P¢° bestimmt. (Lauft P auf m, so be-
schreiben P?, P¢? die Kurven m*, m®°.) Da in Figur 2 die Spitze des @ léngs # beriithren-

3) Hinsichtlich des Einschneideverfahrens vgl. etwa F. HoHENBERG, Konstruktive Geomelrie wn der
Technik, 3. Aufl. (Springer, Wien—-New York 1966), S. 81f.
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den Kegels » unzuginglich ist, wird » mit der zu ¢ parallelen Ebene f nach dem
Kreis b geschnitten. Der scheinbare Umriss von x in & wird dann von einem Paar
gemeinsamer Tangenten #°, #° an $°® und b gebildet. Die aus M*° auf #9, #° ge-
fiallten Normalen bedeuten gemiss 1. Tangenten der Evolute ¢ von #°°. Die auf
#°, #° liegenden Normalenfusspunkte sind die Umrisspunkte U¢®, U*® auf $°°. Sie
werden in Figur 2 mit Hilfe der Geraden ¢° der Affinitit Q! unterworfen und liefern
so Us, U

Vergleicht man den Verlauf von #°° und e, so kann man ziemlich genau die Lage
der Spitzen von #*° abschitzen und durch geeignete Wahl des Parallelkreises graphisch
ermitteln. In Figur 2 liefert der Parallelkreis mit dem Mittelpunkt NV die Spitzen von
#°% mit den Spitzentangenten ¢, 7¢%. Vermoge A ! erhiilt man aus ihnen Spitzen und
Spitzentangenten von #°.

Kommt $°° in eine Lage, in der seine beiden Berithrpunkte U¢®, U*® mit %°° in
einem Punkt S¢® auf a°? zusammenfallen, dann ist offenbar wegen der vierpunktigen
Beriithrung von $°° und #°° der Punkt S°° ein Scheitel von #°® und 4 der zugehérige
Scheitelkriitmmungskreis. Sein Mittelpunkt ist eine Spitze von e. Diese Situation
tritt genau dann ein, wenn das Bild S®® der Spitze S des @ lings p beriihrenden
Kegels auf $°? zu liegen kommt. Da ein solcher Kegel einen Sehstrahl als Erzeugende
besitzt, sind alle derartigen Kegel zueinander kongruent. Wir legen einen solchen
Kegel durch den in ¢ liegenden Parallelkreis  von @. In ° bedeuten dann die Geraden
s*%, s*® die Bilder seiner in der xz-Ebene liegenden Erzeugenden. Besitzt also m®°
Tangenten der Richtungen s°° s°° so schneiden diese 4°® in Scheiteln von %, In
Figur 2 existiert eine Tangente der Richtung s*° in 7°° und liefert den Scheitel S¢°.

3. Umrisskonstruktion in Perspektive

Wir behandeln diese Konstruktion fiir den allgemeinsten Fall, dass die Achse a
der Drehfliche @ beliebig gegen die Bildebene /7 geneigt ist. Die Perspektive sei durch
Hauptpunkt H und Bildweite d = H 0" in Figur 3 festgelegt. a° sei perspektives Bild,
A? Fluchtpunkt und 4 Bildspurpunkt von 4. ¢ und ¢/, seien Bildspur und Fluchtspur
einer zu 2 normalen Ebene ¢, wobei wir ohne Einschrinkung der Allgemeinheit e
durch A legen?). @ sei durch das Bild m° jenes Meridians m vorgegeben, dessen Ebene
ebenfalls die Bildspur e hat. M, sei Drehsehnenfluchtpunkt (Messpunkt) fiir eine der
beiden moglichen Drehungen von ¢ nach II. Das unverzerrte Punktfeld der mit /7
vereinigten Drehlage von ¢ bezeichnen wir mit &°. Bekanntlich besteht zwischen den
Punktfeldern &° und ¢° eine perspektive Kollineation R mit Achse ¢, Gegenachse ¢ und
Zentrum M,. In der Drehlage &® werden wir nun den Hilfsumriss »* von @ als »*°
darstellen. Vermoge R ~! erhalten wir dann aus ihm den gesuchten Umriss #° von @
als u® = u®°.

Legt man durch einen Punkt P° von m° eine Parallele zu ¢ (Bild einer Haupt-
geraden von &), so schneidet diese a° im Bild M* des Mittelpunktes des durch P
gehenden Parallelkreises p von @. Bezeichnen wir die aus O auf ¢ projizierten Punkte
mit dem Index %, so gilt P°= P¢° und M*®= M*°. Vermoge R gehen M*®°, P*° in
M0, P*?iiber und es ist der Bildkreis $°® von $ durch Mitte M*° und Peripheriepunkt

4) Verschiebt man ¢ parallel, so erhilt man &dhnliche Schnitte des aus O an @ gelegten Tangential-
kegels . Durch die Wahl von ¢ kann man daher die Grosse des Hilfsumrisses beeinflussen.
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Pe% bestimmt. In gleicher Weise transformieren wir den Punkt S%¢ nach S¢°, wobei S
den Schnittpunkt der Tangente von m in P mit a — also die Spitze des @ lings p
beriihrenden Kegels » — bedeute. Gemdss 1. liefern dann die aus S*° an p° gelegten
Tangenten zwei Linienelemente U®°, #° und (—J_“’, #29 des Hilfsumrisses #°°. Vermoge
R -1 erhilt man aus ihnen die Linienelemente U°, # und U°, # von u°.

Figur 3

Figur 3 zeigt die Schnellkonstruktion von #°. #*° wird zuerst als Hiillkurve der
Kreise $°° gewonnen. Hierauf werden die Schnittpunkte von #*® mit einem System
zu e paralleler Geraden 1°, 2°, 3°, ... der Kollineation R ~! unterworfen5). (Da 4*® und
a° von den Kollineationsstrahlen sehr schleifend geschnitten werden, werden 1°, 2°, ...
nicht vermége ihrer Schnittpunkte mit a¢?, sondern vermoge jener mit einer giinstigen
Hilfsgeraden ° transformiert). Den Scheitel von #® gewinnt man durch die bereits in
2. beschriebene Uberlegung.

Im selben Arbeitsgang mit der Umrisskonstruktion kénnen auch Parallelkreise
und Meridiane von @ dargestellt werden. Dass die Parallelkreisbilder %, %; (Ellipsen)
in Figur 3 vermoge R ! aus den Kreisen £2°, ££° hervorgehen, ist einleuchtend. Fiir die
Meridiandarstellung ist nur zu bedenken, dass eine fixe Meridianebene die Parallel-
kreisebenen nach parallelen Durchmessern der Parallelkreise schneidet. Man miisste
also nur eine solche Schar paralleler Durchmesser in ¢° abbilden, mit den Parallel-
kreisbildern schneiden und das durch diese Schnittpunkte bestimmte Meridianbild
vermodge R ! transformieren.

Beriihrt ein Meridianbild #¢° ein Parallelkreisbild $°, so ist offenbar die von den
Tangenten an m und p im Schnittpunkt V' von m und p aufgespannte Tangential-
ebene an @ eine Sehebene, also V ein Punkt des wahren Umrisses #. Berithrpunkte von
m*® mit Parallelkreisbildern liefern demnach vermoge R™! die Umrisspunkte von m°,

5) Wenn ¢f, von € geschnitten wird, hat #¢0 Fernpunkte. In einem solchen Fall wird man von der in 1.4.
angegebenen Konstruktion ausgehen und «€ evtl. tangentenweise ermitteln.
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also die Beriihrpunkte von m° mit #°. Beriihrende Parallelkreisbilder sind aber leicht
zu finden, da die Tangenten an alle Kreise $¢° in ihren Schnittpunkten mit m®®
dieselbe Richtung haben. Figur 3 zeigt nach dieser Methode die Umrisspunkt-
konstruktion fiir den gegebenen Meridian m; die erwdhnte Tangentenrichtung ist in
diesem Fall normal zu e. Man sucht also jenen Punkt 74? von m¢% auf, dessen Tangente
normal zu e ist, unterwirft ihn der Kollineation R~! und erhilt den Umrisspunkt V*

von m°.
JoseF P. TscHUPIK, Graz

Netzprojektion eines Tetraeders

Bei einer Netzprojektion des Py auf eine Bildebene werden als Abbildungsmittel
die oo? Geraden eines Strahlnetzes benutzt. Durch spezielle Wahl der Leitgeraden
dieses abbildenden Netzes kann erreicht werden, dass die Bilder von Raumgeraden
entweder Kreise oder Parabeln mit fester Achsenrichtung sind; es handelt sich dann
um eine spezielle elliptische bzw. eine spezielle parabolische Netzprojektion. Die be-
kannten — z.B. in [9] dargestellten — Beziehungen zwischen der elliptischen Netz-
projektion eines Tetraeders und der MiQUELschen Kreisfigur werden durch Heran-
ziehung einer speziellen parabolischen Netzprojektion zu' Aussagen iiber gewisse
Parabelfiguren der Ebene erweitert. Dies erscheint aus zwei Griinden mitteilenswert :
Einmal wird ein weiteres Beispiel dafiir gegeben, wie Aussagen {iber ebene Figuren
durch rdumliche Betrachtungen gewonnen werden kénnen. Zum anderen werden
durch das gleiche Prinzip, namlich verschiedene Netzprojektionen, gleichberechtigt
nebeneinander stehende Sachverhalte in der Bildebene erhalten, die sich durch rein
planimetrische Uberlegungen nicht ohne weiteres ineinander iiberfithren zu lassen
scheinen. — In den ersten drei Abschnitten werden einige benétigte Eigenschaften der
Netzprojektion bereitgestellt.

1. Die Netzprojektion [1-4] ist eine auf J. STEINER zuriickgehende Abbildung des
dreidimensionalen projektiven Raumes P auf eine Bildebene 7, bei der als Abbildungs-
mittel die Geraden eines Strahlnetzes N, also einer linearen Strahlkongruenz verwendet
werden. Je nach der Art des abbildenden Netzes soll auch die Netzprojektion Ayper-
bolisch, elliptisch oder parabolisch heissen; die Bildebene 7z enthalte keine Leitgerade
von N. Das Bild P’ bzw. ¢’ eines Punktes P bzw. einer Ebene ¢ wird erklirt als der
Schnittpunkt von 7 mit der mit P bzw. ¢ inzidierenden Netzgeraden n, bzw. »,. Das
Bild g’ einer Geraden g ist die Gesamtheit der Spurpunkte der die Gerade g treffenden
Netzgeraden. Da diese Netzgeraden einen Regulus R, bilden, ist g’ i.allg. ein Kegel-
schnitt durch die beiden Spurpunkte der Leitgeraden von N in 7z, die im parabolischen
Fall durch ein Linienelement zu ersetzen sind.

Satz 1. Jeder Punkt von  ist gleichzeitig Bildpunkt der oo auf der durch thn gehen-
den Netzgeraden liegenden Punkte und der oo! durch diese Netzgerade gehenden Ebenen.
Jeder durch die Spurpunkte der Leitgeraden von N gehende Kegelschnitt von x ist Bild
der ool-Geraden, die zu dem N angehorenden Regulus durch diesen Kegelschnitt konjugiert
sind.



	Über Drehflächenumrisse in Perspektive und schiefer Axonometrie

