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Aufgaben

Aufgabe 549. Werden die Kanten eines reguliren Polyeders auf eine beliebige Ebene
projiziert, so ist die Summe der Quadrate der Kantenprojektionen stets gleich 2/3 der
Summe aller Kantenquadrate. W. JANICHEN, Berlin-Zehlendorf

Liosung: Es sei Q die Summe der Kantenquadrate und Q; bzw. Q; die Summe der
Quadrate der Kantenprojektionen auf die Ebene ¢ bzw. auf eine Normale % zu . Dann ist
Q = Q; + Q;.- Man hat nun nur zu zeigen, dass Q; von der Lage von » im Raum unabhingig
ist (Aussage U). Dann gilt ndmlich fiir ein rechtwinkliges xyz-System

Q=0:=0,=0.= (0, + 0, + Q)/3=0/3
und somit Q; = 2 Q/3.

1. Wiirfel: Bildet die Gerade » die Winkel ¢,, @,, ¢, mit drei zueinander senkrechten
Kanten eines Einheitswiirfels, so ist

Q, = 4 (cos?g, + cos?g, + cos?ey) = 4.

2. Tetraeder : Die Kanten kénnen hier durch drei paarweise orthogonale Einheitsvek-

toren a, b, cinder Form a + b, b 4 ¢, ¢ + a dargestellt werden. Ist n der Einheitsvektor
der Geraden #, so gilt

Qr=(an+bn)24+ (an—bdn)2+ ... =4{(an)?+ (bn)?+ (cn)? =4 (Wirfel!).

3. Oktaeder: Die Kanten sind parallel zu den 12 Kanten der beiden umbeschriebenen
Tetraeder. Deshalb gilt die Aussage U auch hier.

4. Dodekaeder : Die Kanten sind parallel zu den Kanten der 5 einbeschriebenen Wiirfel.
(Die 60 Wiirfelkanten sind die 60 Flichendiagonalen des Dodekaeders, und diese sind
parallel zu den Seiten der Fiinfecke.)

5. Ikosaeder: Je 5 Kanten bilden ein reguldres Fiinfeck, dessen Ecken die Endpunkte
der von einer Korperecke ausgehenden Kanten sind. Die Ebenen der Fiinfecke sind parallel
zu denen eines reguliren Dodekaeders. Die Aussage U gilt also auch hier.

C. BINDSCHEDLER, Kiisnacht

O. ReEUTTER (Ochsenhausen) weist darauf hin, dass die Aussage der Aufgabe richtig
bleibt, wenn man « Kanten» durch «Flichen» und 2/3 durch 1/3 ersetzt. Er bemerkt ferner,
dass beide Aussagen auch fiir semiregulire (abgeeckte regulidre) Polyeder gelten. Zum Be-
weis sei {a; (¥;, ¥;, 2;)} eine Menge von endlich vielen Vektoren, die die Bedingungen
Zx? = 2y? = Xz? = konst. (1) und Zx;y; = Xy, z; = Xz; x; = 0 (2) erfiillen. Dann gilt, wie
man leicht nachrechnet, fiir einen beliebigen Einheitsvektor n

Q, = Zina,|* = (1/3) Z|a;], Qi = Z|n x a;]* = (2/3) Z|a,".

Ein semiregulires Polyeder P kann nun als Durchschnitt zweier dualer reguldrer Polyeder
P, und P, dargestellt werden. Man kann also die Flichenvektoren von P derart in zwei
Untermengen F, und F, einteilen, dass jedem zu F; bzw. F, gehérenden Flichenvektor
genau ein proportionaler Flichenvektor von P; bzw. P, zugeordnet ist. Innerhalb jeder
der beiden Untermengen sind dann die Proportionalitdtsfaktoren identisch. (1) und (2)
sind fiir die Vektormengen F, und F, richtig, da sie fiir reguldre Polygone gelten. Also gel-
ten (1) und (2) auch fiir die Vereinigungsmenge. Analog gibt es fiir die Kantenvektoren
eine Einteilung in drei Untermengen K,, K,, Kj.
Eine weitere Losung (mit Verallgemeinerungen) sandte I. PAascHE (Miinchen).
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Aufgabe 550. » > 1 sei eine gegebene natiirliche Zahl. Fiir welche rationalen Zahlen #»
hat die Diophantische Gleichung

By g svvicenvssnnis %,
Xy X %, | _
¥, YXp—g VAn—y
eine Losung (v, #,, ..., #,) # (0, 0, ..., 0) mit rationalen Zahlen x,, #,, ..., #,?

E.TrosT, Ziirich

Lésung des Aufgabenstellers: Es sei R der Korper der rationalen Zahlen, R[X] der
Polynomring iiber R, ¢(X) = X» — 7 (r € R) und R der Restklassenring R[X]/(p(X)). Wir
betrachten in R die Elemente

a=%+ xp 3 X+ ...+ 5 XL b=y, + ¥, X+ ...+ y, X" L
Die Gleichung a b = 0 in R ist 4quivalent mit dem linearen Gleichungssystem

X1Y1+ XY+ oo+ 2,0, = 0
XoY1+ ¥gYe+ ...+ ¥y, =0 (1)

-----------------------------

in welchem y,, ¥,, ... ¥, als Unbekannte betrachtet werden sollen. Die Determinante D von
(1) stimmt dann mit der Determinante der Aufgabe iiberein. Ist D =+ 0, so hat (1) nur die
Losung y, =y, = ... =9, = 0. Fiir D = 0, a + 0 gibt es nichttriviale Lésungen von (1)
und R enthilt also Nullteiler. Hieraus folgt, dass ¢(X) in R reduzibel ist, denn fiir ein
irreduzibles Polynom ist R ein Koérper und enthilt keine Nullteiler. Nach einem Satz von
CapeLLI (vgl. etwa N. Tschebotareff, Grundziige der Galoischen Theorie, p. 294) ist p(X)
genau in den folgenden Fillen reduzibel: 1. » = s4, d|n,d > 1,s e R. 2. 4|n, v = — 4 14,
t € R. In diesen Fillen hat also auch die Diophantische Gleichung D = 0 eine nichttriviale
rationale Losung. Bemerkung: Man kann R durch einen beliebigen Zahlkérper ersetzen,

L. CarLirz erhilt durch Umformen von D in eine Zirkulante als notwendige und hin-
reichende Bedingung fiir D = 0 die Gleichung

"l 4" 24 ..+ 2, =0, (2)

wo s irgendeine (komplexe) Zahl mit s# = # ist. Wir betrachten das Beispiel » = 4. Setzt
manr = #%, ¢t € R, s? = 4 ¢, so ergibt sich aus (2) zur Bestimmung der #; das System

:‘_{: txl + xs = O
:t txz + x4 = 0 '
Fiir r = — 4 #4 erhdlt man das System

thxl—-}- 2tx2+x3=0
*2t8x1+txs+x4 =O

L. BERNSTEIN weist auf seine Arbeit «The Generalized Pellian Equation» (Trans.
Amer. Math. Soc. 727, 76-89 (1967)) hin, in der er gezeigt hat, dass die Norm im Kérper
R(2'/n) als Determinante D geschrieben werden kann, Damit erhilt er explizite Losungen
der Gleichung D = 0, z.B. fiir # = $ = Primzahl

Fpy = (— 1)¢ (P;—l) #teR t=7i=01,.. p—1
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"
Aufgabe 551. Man beweise: Ist e, = 3 2k/k als reduzierter Bruch dargestelit und «,
k=1

der Exponent von 2 in der Primzahlpotenzzerlegung des Zahlers, so strebt «, mit » gegen
+ oo. WALDEMAR ScHOBE, Miinchen

1. Losung: Esist

2 2 2
e, =k§6/ 2L oy = 6/ (kéx"ﬂ) dy = d/ f(x) dx

mit f(x) = (v — 1)/(x — 1) fiir ¥ *+ 1, f(1) = =, also

1

1/ . "
w [ruenas [(Z()m) a- S0
zzkzg(an— 1) 2k1——1 .

Nun sei a = 3 eine beliebig grosse natiirliche Zahl, N = ¢(29) — 1 = 2¢=1 — 1, Dann ist
nach dem kleinen Fermatschen Satz fiir jede ungerade natiirliche Zahl #» die Kongruenz
uN = 1/u (mod 2°) erfiillt. Weiter gilt wegen 221 — 1 = q filra = 3 fiir jede gerade Zahl g
die Kongruenz gN¥ = 0 (mod 2%). Mod 2¢ hat man somit

2 (2 e 1) z—klj > (2 N 1) 2k —1)N — Z(an) (2 R)N

k=1 k=1 kS0

n

~ )t (:) BN

k=0

I

Die letzte Summe verschwindet aber fiir # > N, weil die Zahlen 0N, 1N, 2N, eine arith-

metische Folge N-ter Ordnung bilden (vgl. die Losung der Aufgabe 438, El. Math. 78, 115

(1963)). Also ist e, = 0 (mod 2%+1) fiir » > N, d.h. o, > a fiirallen > N, w.z.b.w.
E.TevurrEL, Korntal/Stuttgart

00
2nd solution: In the 2-adic domain Q(2) the series log (1 + x) = X'(— 1)*! *¥/k con-
k=1
[ee]
verges provided 2|x, x € 2(2). In particular log(— 1) = — X' 2k/k. Moreover, since
k=1

log (1 + #)2 = 21og(1 + #), we get 0 = logl = 2log(— 1), so that log(— 1) = 0. This is
equivalent to the statement

e, = 0 (mod 2%#), &, > oo.

n

L.Carritrz, Duke Univ. USA

Aufgabe 537. Ein gegebener Kreis K wird von zwei zueinander orthogonalen Kreisen
K,, K,, die durch einen festen Punkt F seiner Ebene gehen, beriihrt. Welches ist der geo-
metrische Ort der Ahnlichkeitszentren von K, und K,? C.BINDSCHEDLER, Kiisnacht

2. Losung (und Verallgemeinerung): Bezeichnen M, M, die Mittelpunkte und 7, #; die
Radien der Kreise K, K, (i = 1, 2), so gilt |M M; 4+ M, F| = r. Die Punkte M, liegen also
auf einem Kegelschnitt Q mit den Brennpunkten M, F, der eine Ellipse oder eine Hyperbel
ist, je nachdem F innerhalb oder ausserhalb von K liegt. F auf K ergibt triviale Ausartun-
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gen. Bezeichnen ferner /p die zu F gehorige Leitlinie von Q, e die numerische Exzentrizitit
und d; die Abstande M,l;, dann gilt 7, = e d; und 7»,:7, = d,:d,. Also liegt der dussere
Ahnlichkeitspunkt W stets auf der Leitlinie /.

Der zu M,, M, und W gehérende vierte harmonische Punkt H teilt M, M, innen, der
Punkt W aussen im Verhdltnis 7,:7,. »; und 7, sind aber gerade die Lingen der Seiten
M, F und M, F des Dreiecks M, F M,. Folglich sind die Geraden F H und F W innere
und dussere Winkelhalbierende im Dreieck M, F M,.

Es sei nun der Schnittwinkel 2 « von K, und K, konstant. (Es ist nicht notwendig,

2 a = n/2 zu fordern!) Dann gilt nach elementaren Ahnlichkeitssitzen, wenn H von I den
Abstand 7 hat,
FH:h =7, cosa:d, = € cosa = const. = &.

Das bedeutet: H durchlduft einen Kegelschnitt mit dem Brennpunkt F, der Leitlinie /g
und der Exzentrizitit ¢ = ¢ cosa. O.Ba1eEr und W.ViInNzeENZ, Miinchen

Beyvichtigung zur 1. Losung (EL. Math. 22, 137 (1967)): In der Klammer im Nenner der
Polargleichung des Kegelschnitts muss dem Minuenden cos ¢ beigefiigt werden.

Nachtrag zur Losung von Nr. 547: Aus Versehen unterblieb die Erwidhnung einer
analytischen Losung von L. KiErFrer (Luxemburg).

Neue Aufgaben

Aufgabe 573. Man konstruiere (mit Zirkel und Lineal) a) ein beliebiges rechtwinkliges,

b) ein beliebiges nichtgleichseitiges, gleichschenkliges Dreieck aus den Schnittpunkten
seiner Mittelsenkrechten, seiner Hohen und seiner Winkelhalbierenden.

K. KorFERMANN, Hannover

Aufgabe 574. Sei » der Inkreisradius, s die Summe der (orientierten) Abstdnde des
Mittelpunktes des Feuerbachkreises von den Seiten des Dreiecks.

Man beweise oder widerlege: Jedes nichtgleichseitige Dreieck, fiir das s = 3 7 ist, ldsst
sich aus den Schnittpunkten der Mittelsenkrechten, der Héhen und der Winkelhalbieren-
den (mit Zirkel und Lineal) konstruieren. K.KorFERMANN, Hannover

Aufgabe 575. Man beweise: Ist P das Produkt von # natiirlichen Zahlen mit dem
grossten gemeinsamen Teiler D und dem kleinsten gemeinsamen Vielfachen M, so sind die
Quotienten P/(Dn—1 M) und (D Mn-1)/P ganzzahlig. W. JANICHEN, Berlin-Zehlendorf

Aufgabe 576. Eine Ecktransversale, die ein Dreieck in zwei umfanggleiche Teildrei-

ecke zerlegt, werde Umfanghalbierende genannt. Man beweise:

(1) Die drei Umfanghalbierenden eines Dreiecks 44,4, schneiden sich in einem Punkt U
im Innern des Dreiecks. ‘

(2) Die Linge der Umfanghalbierenden 4; P;, P, e 4; ; A; 4 , wird durch U im Ver-
héltnis a;: (s — a,) geteilt. (ai =A; 3 Apgg 25 = %’ak).

(3) Der Punkt U, der Schwerpunkt S und der Inkreismittelpunkt I liegen auf einer Ge-
raden, sofern das Dreieck nicht regulir ist, und es ist US = 2 S 1.
O. REUTTER, Ochsenhausen
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