Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 23 (1968)

Heft: 3

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aufgaben 65

Aufgaben

Aufgabe 549. Werden die Kanten eines regulären Polyeders auf eine beliebige Ebene projiziert, so ist die Summe der Quadrate der Kantenprojektionen stets gleich 2/3 der Summe aller Kantenquadrate.

W. JÄNICHEN, Berlin-Zehlendorf

Lösung: Es sei Q die Summe der Kantenquadrate und Q'_{ε} bzw. Q'_{n} die Summe der Quadrate der Kantenprojektionen auf die Ebene ε bzw. auf eine Normale n zu ε . Dann ist $Q = Q'_{\varepsilon} + Q'_{n}$. Man hat nun nur zu zeigen, dass Q'_{n} von der Lage von n im Raum unabhängig ist (Aussage U). Dann gilt nämlich für ein rechtwinkliges xyz-System

$$Q'_n = Q'_x = Q'_y = Q'_z = (Q'_x + Q'_y + Q'_z)/3 = Q/3$$

und somit $Q'_{\varepsilon} = 2 Q/3$.

1. Würfel: Bildet die Gerade n die Winkel φ_1 , φ_2 , φ_3 mit drei zueinander senkrechten Kanten eines Einheitswürfels, so ist

$$Q'_n = 4 (\cos^2 \varphi_1 + \cos^2 \varphi_2 + \cos^2 \varphi_3) = 4.$$

2. Tetraeder: Die Kanten können hier durch drei paarweise orthogonale Einheitsvektoren a, b, c in der Form $a \pm b$, $b \pm c$, $c \pm a$ dargestellt werden. Ist n der Einheitsvektor der Geraden n, so gilt

$$Q'_n = (a n + b n)^2 + (a n - b n)^2 + \dots = 4 \{(a n)^2 + (b n)^2 + (c n)^2\} = 4 \text{ (Würfel!)}.$$

- 3. Oktaeder: Die Kanten sind parallel zu den 12 Kanten der beiden umbeschriebenen Tetraeder. Deshalb gilt die Aussage U auch hier.
- 4. Dodekaeder: Die Kanten sind parallel zu den Kanten der 5 einbeschriebenen Würfel. (Die 60 Würfelkanten sind die 60 Flächendiagonalen des Dodekaeders, und diese sind parallel zu den Seiten der Fünfecke.)
- 5. Ikosaeder: Je 5 Kanten bilden ein reguläres Fünfeck, dessen Ecken die Endpunkte der von einer Körperecke ausgehenden Kanten sind. Die Ebenen der Fünfecke sind parallel zu denen eines regulären Dodekaeders. Die Aussage U gilt also auch hier.
 - C. BINDSCHEDLER, Küsnacht
- O. Reutter (Ochsenhausen) weist darauf hin, dass die Aussage der Aufgabe richtig bleibt, wenn man «Kanten» durch «Flächen» und 2/3 durch 1/3 ersetzt. Er bemerkt ferner, dass beide Aussagen auch für semireguläre (abgeeckte reguläre) Polyeder gelten. Zum Beweis sei $\{a_i (x_i, y_i, z_i)\}$ eine Menge von endlich vielen Vektoren, die die Bedingungen $\Sigma x_i^2 = \Sigma y_i^2 = \Sigma z_i^2 = \text{konst.}$ (1) und $\Sigma x_i y_i = \Sigma y_i z_i = \Sigma z_i x_i = 0$ (2) erfüllen. Dann gilt, wie man leicht nachrechnet, für einen beliebigen Einheitsvektor n

$$Q_n' = \Sigma | \, \boldsymbol{n} \boldsymbol{a}_i \, |^2 = (1/3) \, \, \Sigma | \, \boldsymbol{a}_i \, |^2, \, \, Q_\varepsilon' = \Sigma | \, \boldsymbol{n} \, imes \, \, \boldsymbol{a}_i \, |^2 = (2/3) \, \, \Sigma | \, \boldsymbol{a}_i \, |^2.$$

Ein semireguläres Polyeder P kann nun als Durchschnitt zweier dualer regulärer Polyeder P_1 und P_2 dargestellt werden. Man kann also die Flächenvektoren von P derart in zwei Untermengen F_1 und F_2 einteilen, dass jedem zu F_1 bzw. F_2 gehörenden Flächenvektor genau ein proportionaler Flächenvektor von P_1 bzw. P_2 zugeordnet ist. Innerhalb jeder der beiden Untermengen sind dann die Proportionalitätsfaktoren identisch. (1) und (2) sind für die Vektormengen F_1 und F_2 richtig, da sie für reguläre Polygone gelten. Also gelten (1) und (2) auch für die Vereinigungsmenge. Analog gibt es für die Kantenvektoren eine Einteilung in drei Untermengen K_1 , K_2 , K_3 .

Eine weitere Lösung (mit Verallgemeinerungen) sandte I. Paasche (München).

66 Aufgaben

Aufgabe 550. n > 1 sei eine gegebene natürliche Zahl. Für welche rationalen Zahlen r hat die Diophantische Gleichung

$$\begin{vmatrix} x_1 & x_2 & \dots & x_n \\ x_2 & x_3 & & x_n & rx_1 \\ \vdots & & & & & & \\ x_n & rx_1 & & rx_{n-2} & rx_{n-1} \end{vmatrix} = 0$$

eine Lösung $(x_1, x_2, ..., x_n) \neq (0, 0, ..., 0)$ mit rationalen Zahlen $x_1, x_2, ..., x_n$? E. Trost, Zürich

Lösung des Aufgabenstellers: Es sei R der Körper der rationalen Zahlen, R[X] der Polynomring über R, $\varphi(X) = X^n - r$ ($r \in R$) und \overline{R} der Restklassenring $R[X]/(\varphi(X))$. Wir betrachten in \overline{R} die Elemente

$$a = x_n + x_{n-1} X + \ldots + x_1 X^{n-1}, b = y_1 + y_2 X + \ldots + y_n X^{n-1}.$$

Die Gleichung a b = 0 in \overline{R} ist äquivalent mit dem linearen Gleichungssystem

$$\begin{vmatrix} x_1 y_1 + x_2 y_2 + \dots + x_n y_n &= 0 \\ x_2 y_1 + x_3 y_2 + \dots + r x_1 y_n &= 0 \\ \dots & \dots & \dots \\ x_n y_1 + r x_1 y_2 + \dots + r x_{n-1} y_n &= 0 \end{vmatrix},$$
(1)

in welchem $y_1, y_2, \ldots y_n$ als Unbekannte betrachtet werden sollen. Die Determinante D von (1) stimmt dann mit der Determinante der Aufgabe überein. Ist $D \neq 0$, so hat (1) nur die Lösung $y_1 = y_2 = \ldots = y_n = 0$. Für D = 0, $a \neq 0$ gibt es nichttriviale Lösungen von (1) und \overline{R} enthält also Nullteiler. Hieraus folgt, dass $\varphi(X)$ in R reduzibel ist, denn für ein irreduzibles Polynom ist \overline{R} ein Körper und enthält keine Nullteiler. Nach einem Satz von Capelli (vgl. etwa N. Tschebotareff, Grundzüge der Galoischen Theorie, p. 294) ist $\varphi(X)$ genau in den folgenden Fällen reduzibel: 1. $r = s^d$, $d \mid n$, d > 1, $s \in R$. 2. $4 \mid n$, r = -4 t^4 , $t \in R$. In diesen Fällen hat also auch die Diophantische Gleichung D = 0 eine nichttriviale rationale Lösung. Bemerkung: Man kann R durch einen beliebigen Zahlkörper ersetzen.

L. Carlitz erhält durch Umformen von D in eine Zirkulante als notwendige und hinreichende Bedingung für D=0 die Gleichung

$$s^{n-1} x_1 + s^{n-2} x_2 + \ldots + x_n = 0, (2)$$

wo s irgendeine (komplexe) Zahl mit $s^n = r$ ist. Wir betrachten das Beispiel n = 4. Setzt man $r = t^2$, $t \in R$, $s^2 = \pm t$, so ergibt sich aus (2) zur Bestimmung der x_i das System

$$\begin{vmatrix} \pm tx_1 + x_3 = 0 \\ + tx_2 + x_4 = 0 \end{vmatrix}.$$

Für $r = -4 t^4$ erhält man das System

$$\begin{vmatrix} 2 t^2 x_1 + 2 t x_2 + x_3 = 0 \\ -2 t^3 x_1 + t x_3 + x_4 = 0 \end{vmatrix}.$$

L. Bernstein weist auf seine Arbeit «The Generalized Pellian Equation» (Trans. Amer. Math. Soc. 127, 76–89 (1967)) hin, in der er gezeigt hat, dass die Norm im Körper $R(2^{1/n})$ als Determinante D geschrieben werden kann. Damit erhält er explizite Lösungen der Gleichung D=0, z.B. für n=p = Primzahl

$$x_{i+1} = (-1)^i {p-1 \choose i} t^i, t \in R, t^p = r, i = 0, 1, ..., p-1.$$

Augfaben 67

Aufgabe 551. Man beweise: Ist $e_n = \sum_{k=1}^n 2^k/k$ als reduzierter Bruch dargestellt und α_n der Exponent von 2 in der Primzahlpotenzzerlegung des Zählers, so strebt α_n mit n gegen $+\infty$.

Waldemar Schöbe, München

1. Lösung: Es ist

$$e_n = \sum_{k=1}^n \int_0^2 x^{k-1} \ dx = \int_0^2 \left(\sum_{k=1}^n x^{k-1} \right) \ dx = \int_0^2 f(x) \ dx$$

mit $f(x) = (x^n - 1)/(x - 1)$ für $x \neq 1$, f(1) = n, also

$$\int_{-1}^{1} f(1+t) dt = \int_{-1}^{1} \left(\sum_{k=1}^{n} {n \choose k} t^{k-1} \right) dt = \sum_{k=1}^{n} {n \choose k} \frac{1-(-1)^{k}}{k} \\
= 2 \sum_{k \leq 1} {n \choose 2 k-1} \frac{1}{2 k-1} .$$

Nun sei $a \ge 3$ eine beliebig grosse natürliche Zahl, $N = \varphi(2^a) - 1 = 2^{a-1} - 1$. Dann ist nach dem kleinen Fermatschen Satz für jede ungerade natürliche Zahl u die Kongruenz $u^N \equiv 1/u \pmod{2^a}$ erfüllt. Weiter gilt wegen $2^{a-1} - 1 \ge a$ für $a \ge 3$ für jede gerade Zahl g die Kongruenz $g^N \equiv 0 \pmod{2^a}$. Mod 2^a hat man somit

$$\sum_{k \ge 1} \binom{n}{2 \ k - 1} \frac{1}{2 \ k - 1} \equiv \sum_{k \ge 1} \binom{n}{2 \ k - 1} (2 \ k - 1)^N - \sum_{k \ge 0} \binom{n}{2 \ k} (2 \ k)^N$$
$$= -\sum_{k=0}^{n} (-1)^k \binom{n}{k} k^N.$$

Die letzte Summe verschwindet aber für n > N, weil die Zahlen 0^N , 1^N , 2^N , ... eine arithmetische Folge N-ter Ordnung bilden (vgl. die Lösung der Aufgabe 438, El. Math. 18, 115 (1963)). Also ist $e_n \equiv 0 \pmod{2^{a+1}}$ für n > N, d.h. $\alpha_n > a$ für alle n > N, w.z.b.w. E. Teuffel, Korntal/Stuttgart

2nd solution: In the 2-adic domain $\Omega(2)$ the series $\log(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} x^k/k$ converges provided $2 \mid x$, $x \in \Omega(2)$. In particular $\log(-1) = -\sum_{k=1}^{\infty} 2^k/k$. Moreover, since $\log(1+x)^2 = 2\log(1+x)$, we get $0 = \log 1 = 2\log(-1)$, so that $\log(-1) = 0$. This is equivalent to the statement

$$e_n \equiv 0 \pmod{2^{\alpha_n}}, \ \alpha_n \rightarrow \infty.$$
 L.CARLITZ, Duke Univ. USA

Aufgabe 537. Ein gegebener Kreis K wird von zwei zueinander orthogonalen Kreisen K_1 , K_2 , die durch einen festen Punkt F seiner Ebene gehen, berührt. Welches ist der geometrische Ort der Ähnlichkeitszentren von K_1 und K_2 ? C. BINDSCHEDLER, Küsnacht

2. Lösung (und Verallgemeinerung): Bezeichnen M, M_i die Mittelpunkte und r, r_i die Radien der Kreise K, K_i (i=1,2), so gilt $|M|M_i \pm M_i$ F|=r. Die Punkte M_i liegen also auf einem Kegelschnitt Q mit den Brennpunkten M, F, der eine Ellipse oder eine Hyperbel ist, je nachdem F innerhalb oder ausserhalb von K liegt. F auf K ergibt triviale Ausartun-

gen. Bezeichnen ferner l_F die zu F gehörige Leitlinie von Q, ε die numerische Exzentrizität und d_i die Abstände $M_i l_F$, dann gilt $r_i = \varepsilon \ d_i$ und $r_1 : r_2 = d_1 : d_2$. Also liegt der äussere Ähnlichkeitspunkt W stets auf der Leitlinie l_F .

Der zu M_1 , M_2 und W gehörende vierte harmonische Punkt H teilt M_1 M_2 innen, der Punkt W aussen im Verhältnis $r_1:r_2$. r_1 und r_2 sind aber gerade die Längen der Seiten M_1 F und M_2 F des Dreiecks M_1 F M_2 . Folglich sind die Geraden F H und F W innere und äussere Winkelhalbierende im Dreieck M_1 F M_2 .

Es sei nun der Schnittwinkel 2α von K_1 und K_2 konstant. (Es ist nicht notwendig, $2 \alpha = \pi/2$ zu fordern!) Dann gilt nach elementaren Ähnlichkeitssätzen, wenn H von l_F den Abstand h hat,

$$FH: h = r_1 \cos \alpha : d_1 = \varepsilon \cos \alpha = \text{const.} = \bar{\varepsilon}.$$

Das bedeutet: H durchläuft einen Kegelschnitt mit dem Brennpunkt F, der Leitlinie l_F und der Exzentrizität $\bar{\epsilon} = \epsilon \cos \alpha$. O. BAIER und W. VINZENZ, München

Berichtigung zur 1. Lösung (El. Math. 22, 137 (1967)): In der Klammer im Nenner der Polargleichung des Kegelschnitts muss dem Minuenden $\cos \varphi$ beigefügt werden.

Nachtrag zur Lösung von Nr. 547: Aus Versehen unterblieb die Erwähnung einer analytischen Lösung von L. Kieffer (Luxemburg).

Neue Aufgaben

Aufgabe 573. Man konstruiere (mit Zirkel und Lineal) a) ein beliebiges rechtwinkliges, b) ein beliebiges nichtgleichseitiges, gleichschenkliges Dreieck aus den Schnittpunkten seiner Mittelsenkrechten, seiner Höhen und seiner Winkelhalbierenden.

K. Kopfermann, Hannover

Aufgabe 574. Sei r der Inkreisradius, s die Summe der (orientierten) Abstände des Mittelpunktes des Feuerbachkreises von den Seiten des Dreiecks.

Man beweise oder widerlege: Jedes nichtgleichseitige Dreieck, für das s=3 r ist, lässt sich aus den Schnittpunkten der Mittelsenkrechten, der Höhen und der Winkelhalbierenden (mit Zirkel und Lineal) konstruieren.

K. Kopfermann, Hannover

Aufgabe 575. Man beweise: Ist P das Produkt von n natürlichen Zahlen mit dem grössten gemeinsamen Teiler D und dem kleinsten gemeinsamen Vielfachen M, so sind die Quotienten $P/(D^{n-1} M)$ und $(D M^{n-1})/P$ ganzzahlig. W. JÄNICHEN, Berlin-Zehlendorf

Aufgabe 576. Eine Ecktransversale, die ein Dreieck in zwei umfanggleiche Teildreiecke zerlegt, werde Umfanghalbierende genannt. Man beweise:

- (1) Die drei Umfanghalbierenden eines Dreiecks $A_1A_2A_3$ schneiden sich in einem Punkt U im Innern des Dreiecks.
- (2) Die Länge der Umfanghalbierenden A_i P_i , $P_i \in A_{i+1}$ A_{i+2} wird durch U im Verhältnis a_i : $(s-a_i)$ geteilt. $(a_i = \overline{A_{i+1}} A_{i+2}; 2s = \sum_k a_k)$.
- (3) Der Punkt U, der Schwerpunkt S und der Inkreismittelpunkt I liegen auf einer Geraden, sofern das Dreieck nicht regulär ist, und es ist $\overline{US} = 2 \overline{SI}$.

O. REUTTER, Ochsenhausen