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60 Kleine Mitteilungen

Insgesamt haben wir also bewiesen, dass fiir alle A € A stets 2» (v + 0) im Nenner
ein unkiirzbares nichttriviales Quadrat enthilt. Also gibt es auf jeder Geraden
A = t|T = const. eine dichte Punktmenge, fiir die (16) irreduzibel ist. Da A in Q dicht
liegt, haben wir eine dichte Menge rationaler A, » und damit auch eine in D’ dichte
Menge rationaler (p, g) gefunden, fiir die (16) tiber den rationalen Zahlen irreduzibel
ist. Fiir diese Koeffizienten hat (16) keine konstruierbaren Nullstellen.

Die Punkte (p, ¢) € D' mit rationalen Komponenten, aus denen sich die zugehorigen
Winkel «, # nicht konstruieren lassen, liegen also in D’ dicht, erst recht simtliche
Punkte (p, g) € D’, aus denen sich die zugehorigen Winkelpaare («, §) = A-1(p, q)
nicht konstruieren lassen.

Insgesamt wissen wir also bisher, dass die Punkte (p, ¢) € D’, aus denen sich die
cosa und cosf konstruieren, wie nicht konstruieren lassen, in D’ dicht liegen. Weiter
liegen die Tripel (p, ¢, R) mit aus p und ¢ konstruierbarem Umkreisradius R in
D’ X R dicht, da die (schlechthin) konstruierbaren Radien R in den reellen Zahlen R
dicht liegen. Diese Voraussetzung ist etwa fiir alle $, ¢ und R mit festem und kon-
struierbaren |§ — m | erfiillt. Also liegen die Tripel (p, ¢, R) derjenigen Dreiecke,
die sich aus p, ¢, R konstruieren, wie nicht konstruieren lassen, in D’ X R dicht.
Bei festem |} — m| gilt das entsprechend fiir die Schnittpunkte w e D”, q.e.d.

K. KoPFERMANN, Hannover
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Kleine Mitteilungen

Area of the Union of Disks

At the Conference on Geometry in Eger in 1953, SzELE set forth a problem, which was
written to him by KNEsER. The problem, which has become well known since then, is the
following. A set of % circular disks is given on the plane. Change the position of the disks
in such a way that their distances from each other decrease. (The term ‘it decreases’ will
always be used in the weak sense, i.e. it means that ‘it does not increase’.) Is it true that
the area covered by the disks decreases ? The obvious conjecture is yes, but this has not
been proved yet, and the answer seems to be rather difficult.

In this note a partial solution of this problem will be presented. Namely it will be
proved (theorem 2) that if the disks are congruent and they can be moved continuously in
such a way that the distance of any two centres decreases continuously, then the area
covered by the disks also decreases. The proof is based on a similar statement about the
perimeter length of the union of disks. )

Let P;(t) be points on the plane for ¢ =1, 2, ..., n and 0 < ¢ < 1. Suppose F(f) is a
continuous function of ¢ and S(F;(¢), P;(f)) is a decreasing function of ¢ for every pair 1, 7,
1 € i < j < n. Denote by U(¢) the union of unit disks with centres Pi(¢), P,(?), ..., Fu(?).

Theorem 1. If p(t) denotes the perimeter length of U(t), then p(¢) is decveasing in [0, 1].
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Denote by Q};(¢) and Q% ;(f) the common points of the circles with centres F;(¢) and
P;(t), provided they exist. Let B,(f) (y € I'(f), a set of indices) denote the points Q% ;(¢)
on the boundary of U(t), and if B, () = Q% ;(¢) then let 4,(f) = P;(¢) and C,(f) = F;(¢). The
union of the segments 4,(¢) B,(t), B,(f) C,(¢) forms some polygons, which are completely
covered by U(#) (see the figure). Denote the sum of the angles of these polygons by o(¢).
Then the perimeter length of U(f) is the following:

pit) =2nm — ((o(t) — 2] & 4,(1) By(t) cy(n) = (2na—oa@) + 3 X 4,0 By()) Cylt).

ye'(t) yeI'(t)

Nr==

===

{

Suppose 0 < #; < ¢, < 1, and the polygons, belonging to ¢, and #,, are formed by the
segments QF ;(¢) P;(¢) with the same indices and they are in the same cyclic order. Then
o(t,) = o(ty), and as S(P;(¢), P;(¢)) decreases, the angle P;(¢t) Qk;(t) P;(f) also decreases,

consequently
D L Ayt) By(t) Colty) > 3 % Aylts) Bylta) Cilta)
ver(t) vel'(ts)
from which it follows that p(¢,) > p(%,).

But as there are only finitely many QF ;(¢) P;(f) segments, only finitely many different
sets of polygons exist. Using the continuity of p(¢), it is easily seen that this implies the
statement of the theorem.

Theorem 2. If a(t) denotes the arvea of U(t), then a(t) is decveasing.

Suppose 0 < ¢, < ¢, < 1. Denote by p(7, t) and a(r, ¢) the perimeter length and the
area, respectively, of the union of the disks of radii » with centres Py(¢), By(f), ..., Pa(t).
It is easily seen that a(r, ¢), as a function of 7, is differentiable and (da(r, £)/d7) = p(7, ¢).
On the other hand a(0, £) = 0 for all ¢, 0 < ¢# < 1, and, according to theorem 1, p(, ¢,) >
p(r, t,) for all », 0 < » < 1. Consequently a(1, ¢,) > a(1, t,), i.e. a(t;) > a(ty), the function
a(t) decreases in [0, 1]. BELA BorLoBAs, Math. Research Institute, Budapest

Uberall maximale Funktionen

In Aufgabe 522 (El. Math. 27, 42 (1966)) wurde die Frage aufgeworfen: Existiert auf
den rationalen bzw. reellen Zahlen eine Funktion, welche iiberall ein lokales strenges
Extremum besitzt ? Im ersten Falle ist die Antwort «ja», im zweiten «nein»; hier wird in
einem allgemeineren Rahmen eine Antwort gegeben.
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Sei (X, ) ein topologischer Raum, (Y, <) eine irreflexiv totalgeordnete Menge und f
eine Abbildung von X nach Y. Man nennt einen Punkt » € X lokales Maximum von f,
wenn eine offene Umgebung U(x) von x existiert, so dass jedes y € U(x) mit y + x die
Eigenschaft f(y) < f(x) hat; f heisse Maximalfunktion, wenn f in jedem Punkt von X ein
lokales Maximum hat. In dieser Note wird die Frage behandelt, wann ein topologischer
Raum eine Maximalfunktion zuldsst.

Definition. (X, I) heisst M-Raum, wenn eine Abbildung V:X - I existiert mit

(1) » e V(x);

(2) fiir kein n-Tupel (» > 2) paarweise verschiedener Punkte x,, ..., x, aus X gilt
%;€V(x;14),1 <i<mnund x, € V(x).

Aus dieser Definition folgt sofort, dass die Machtigkeit eines M-Raumes X nicht grosser
ist als die Méchtigkeit jeder beliebigen Basis von X, da die Funktion V insbesondere
injektiv ist. Ein M-Raum ist immer ein 7T,-Raum. Andererseits zeigt das Beispiel der
reellen Zahlen, dass selbst ein normaler Raum nicht notwendig ein M-Raum ist. Jedoch ist

ein endlicher T-Raum immer ein M-Raum; man setze nur V(x) = 1 U, dann folgt
xeUel

aus x; e V(x; ) fir 1 <i < m, dass », € V(x,) und wegen der T-Eigenschaft x,¢ V(x,) gilt.
Fiir abzdhlbare Raume lidsst sich obige Definition noch vereinfachen, denn es gilt:
Satz 1. Ein hichstens abzihlbaver Raum X ist genau dann M-Raum, wenn eine Funktion
V:X > T existiert mit
(1) »e V(x);
(3) fitr kein Paar verschiedener Punkte x,y aus X gilt x € V(y) und y € V(x).
Beweis. Nach Voraussetzung existiert ein Abschnitt A der natiirlichen Zahlen mit
X.= {#;|1 € A} und eine Funktion V mit (1) und (3). Die durch

V¥(xg) = V(xg), V*(x;40) = V¥, 00 0 in V*(xy)
% +leV*(xk)
definierte Funktion V* erfiillt dann (1) und (2). Denn wire (2) fiir ein #-Tupel (n > 2)
verletzt, so auch fiir ein (» — 1)-Tupel, da sich das Element mit grosstem Index nach
Konstruktion von V* eliminieren ldsst; folglich auch fiir ein 2-Tupel im Widerspruch zu (3).

Einen Zusammenhang zwischen Maximalfunktionen und M-Rdumen beschreibt der

Satz 2. Zu einem topologischen Raum X existiert gemau dann eine irveflexive Total-
ovdnung (Y, <) und eine Maximalfunktion f: X > Y, wenn X ein M-Raum ist.

Beweis. Die Notwendigkeit des Kriteriums ist klar. Sei nun X ein M-Raum. Dann ist
die folgende Relation eine irreflexive Halbordnung auf X:x C y fiir », ¥ € X genau dann,
wenn ein n-Tupel (» > 2) von Punkten x,, ..., ¥, aus X existiert mit x, = x, v, =y,
¥;¥ ¥, ,und x; e V(ix;, ) fir 1 <i <m

Eine solche Halbordnung lasst sich bekanntlich zu einer irreflexiven Totalordnung auf
ganz X ausdehnen?). Der Vollstindigkeit halber wird hier ein Beweis gegeben.

Sei

S = {(X’, <)|] X’C€ X, < «<» Totalordnung und eine Fortsetzung der C-Ordnung}
und sei S halbgeordnet durch: (Xj, <<;) < (X3, <,) genau dann, wenn X; C X; und
<4 X1 = <,.Dann erfiillt (S, <) die Voraussetzung des Zornschen Lemmas, denn S ist
nicht leer und jede Kette besitzt eine obere Schranke, ndmlich ihre Vereinigung, daher
enthdlt S ein maximales Element (X,, <). Es muss X, = X sein, denn fallsein » € X — X,
existierte, liesse sich die Ordnung von X, auf X,y {#} in naheliegender Weise fortsetzen,
was der Maximalitdt von (X,, <) widerspricht. Es sei nun (Y, <) = (X, <) und f die
Identitdt, offensichtlich ist f eine Maximalfunktion.

Die so konstruierte Funktion f ist im allgemeinen nicht die giinstigste, d.h. es gibt
i.allg. noch Maximalfunktionen mit echt griosserem Kern. (Wenn z.B. X ein diskreter
Raum ist, geniigt es, Y einelementig zu wihlen.) Die Vermutung jedoch, dass ein Werte-
bereich existiert, welcher sich in die Wertebereiche aller Maximalfunktionen von X
isomorph einbetten ldsst, wird durch folgendes Beispiel widerlegt: Sei N die Menge der

1) E. SzPILRAJN, Sur Uextension de Uordre partiel, Fund. Math. 76, 386-389 (1930).
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natiirlichen Zahlen und X = {,|71 e N} @ {y;| 7 € N}; eine Basis der Topologie T seien
die Mengen {»;|7 < n}, {#;} U {¥;|4 €N}, {¥;1¢ > n} fir » e N. Damit ist X ein M-

Raum, man setze nur V(x) =xe|;]e%U fiir jedes » € X. Es ist dann x;C x,,,, % C ¥,,

Yi+1 C ¥, fiir jedes i. Jede Maximalfunktion f muss nun die x; auf eine geordnete Menge
vom Typ o, die y; auf eine Menge vom Typ w* abbilden, und es muss f(¥,) < f(y,) sein.
Daher enthilt jeder Wertebereich Mengen vom Typ w* + w oder w + w*, und es ist dann
klar, dass es keinen gibt, der sich in alle anderen isomorph einbetten lisst.

Satz 2 ldasst noch folgende einfache Verallgemeinerung zu:

Satz 3. Zu einem topologischen Raum X existiert genau dann eine irveflexive Totalovdnung
Y und eine Abbildung f: X - Y, welche in jedem Punkt ein lokales Extvemum besitzt, wenn
eine Partition von X in zwei M-Rdume existiert.

Beweis. Die Notwendigkeit des Kriteriums ist wieder trivial; sei nun X = X; @ X,
eine Partition in M-Riume, dann existieren Maximalfunktionen fi:X;,>Y,i=1,2.
Sei Y = Y{* @ Y,, wobei Y;* die inverse Ordnung von Y, ist; setzt man noch y, < ¥,
fiir alle y; € Y; und alle y, € Y,, so hat man durch die f; eine Funktion auf X definiert,
welche in jedem Punkt extremal ist. M. W. RicHTER und J. SPILKER, Freiburg/Br.

Eigenschaften gewisser Scheitelkreise einer Ellipse
beziiglich ihrer Brennpunkte

Sind von einer Ellipse Haupt- und Nebenachse gegeben, so gelangt man bekanntlich
zu den Zentren der Scheitelkriimmungskreise, indem man zwei Halbachsen zu einem
Rechteck erginzt, die auf der Ellipse liegenden Eckpunkte des Rechtecks (Scheitelpunkte
der Ellipse) miteinander verbindet und dann von dem ausserhalb der Ellipse liegenden
Eckpunkt das Lot auf die eingezeichnete Diagonale fillt. Die Schnittpunkte des Lotes mit
der Haupt- und Nebenachse sind die Mittelpunkte der zu den betreffenden Scheitel-
punkten gehorigen Scheitelkriimmungskreise.

Y

Y

<N
D
>
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Es sollen nun jene Kreise betrachtet werden, die aus den Scheitelkriimmungskreisen
durch zentrische Stauchung mit dem Faktor 1/2 beziiglich der betreffenden Scheitel-
punkte als Ahnlichkeitszentren hervorgehen. Die dadurch entstehenden Kreise bezeichnen
wir im folgenden als gestauchte Scheitelkriimmungskreise.

In der Ellipsengleichung #%/a? 4+ y2/b%? = 1 kann ohne Beschrinkung der Allgemeinheit
a > b vorausgesetzt werden. Dabei ist zundchst der Fall a = b Y2 auszuschliessen.

Fiir die gestauchten Hauptscheitelkriimmungskreise gelten die Gleichungen

b2 \12 " bt 1
¥ (o= g )] + o= @
Fiir die gestauchten Nebenscheitelkriimmungskreise gelten die Gleichungen
a? \12 at
2 S — = ——
2ty F (0-55)] = 25 (2)

Wie nun eine elementare Rechnung zeigt, schneiden sich die gestauchten Hauptscheitel-
Rviimmungskreise in den imagindven Brennpunkien dev Ellipse.

Fiihrt man weiterhin eine beliebige der Gleichungen (1) in die zugehdrige Polarform
iiber und setzt darin y = 0, so wird durch die gefundene Gleichung

(Zarx T 2a*+ 0% (2a7F 2a® + b?) = bt (3)

auf der x-Achse eine Punktinvolution induziert. Setzt man in Gleichung (3) ¥ = ¢ und
¥ = —e, so ist die Gleichung erfiillt. Folglich gilt:

Die veellen Brennpunkte Fy und I, der Ellipse sind ein Punktepaar dev duvch Gleichung (3)
gegebenen Involution. Sie liegen invers beziiglich der gestauchten HauptscheitelRviimmungs-
kreise.

Ganz analog ergeben sich aus elementaren Rechnungen mit den Gleichungen (2)
folgende Satze: Die gestauchten Nebenscheitelkviimmungskreise schneiden sich in den veellen
Brennpunkten dev Ellipse. Die imagindven Brennpunkie liegen invers beziiglich dieser Kveise.
Nach diesen Feststellungen kann man die gestauchten Nebenscheitelkriimmungskreise
als Elemente eines elliptischen Kreisbiischels ansehen, die simtlich die beiden gestauchten
Hauptscheitelkriimmungskreise orthogonal schneiden. Dieses Kreisbiischel schneidet auf
der y-Achse eine elliptische Punktinvolution mit den imagindren Brennpunkten F; und F;
als Fixpunkte aus. Beziiglich der reellen Brennpunkte der Ellipse ist diese Punktinvolution
eine Rechtwinkelinvolution.

Entsprechend hierzu koénnen die gestauchten Hauptscheitelkriimmungskreise als
Elemente des ergidnzenden hyperbolischen Kreisbiischels angesehen werden. Die Nullkreise
dieses Biischels fallen in die reellen Brennpunkte der Ellipse.

In dem zunidchst ausgeschlossenen Fall a = b 1/5 decken sich die beiden gestauchten
Nebenscheitelkrimmungskreise. Der doppelt zdhlende Kreis schneidet die x-Achse in den
reellen Brennpunkten und die y-Achse in den reellen Vertretern der imaginiren Brenn-
punkte der Ellipse.

Mit diesen Ausfithrungen ist gezeigt: Identifiziert man die vier Grundpunkte sich er-
ganzender Kreisbiischel mit den Bremnpunkiten einev konfokalen Ellipsenschar, so stellen die
gestauchten Scheitelkviimmungskreise zu jedev Ellipse dieser Schar zwei Kreispaare aus den
evginzenden Kreisbiischeln dar.

Analoge Uberlegungen lassen sich fiir die Hyperbel durchfiihren. Im Sonderfall der
Parabel fillt der eigentliche Brennpunkt in den Mittelpunkt des gestauchten Scheitel-
kriilmmungskreises. Fiir eine Schar konfokaler Parabeln bildet die Gesamtheit der ge-
stauchten Scheitelkriimmungskreise eine Schar konzentrischer Kreise. Auch in diesem
Sonderfall sind die oben abgeleiteten Lagebeziehungen zwischen den Brennpunkten der
Parabelschar und den Triagerpunkten der Kreisbiischel erfiillt. = E. SCHRODER, Dresden
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