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Insgesamt haben wir also bewiesen, dass fur alle A e A stets 2 v (v 4= 0) im Nenner
em unkurzbares nichttnviales Quadrat enthalt Also gibt es auf jeder Geraden
A t/r — const eme dichte Punktmenge, fur die (16) irreduzibel ist Da Am Q dicht
hegt, haben wir eme dichte Menge rationaler A, v und damit auch eme m D' dichte
Menge rationaler (p, q) gefunden, fur die (16) uber den rationalen Zahlen irreduzibel
ist Fur diese Koeffizienten hat (16) keine konstruierbaren Nullstellen

Die Punkte (p,q)sDf mit rationalen Komponenten, aus denen sich die zugehörigen
Winkel a, ß nicht konstruieren lassen, liegen also in D' dicht, erst recht sämtliche
Punkte (p, q) e D', aus denen sich die zugehörigen Winkelpaare (a, ß) A~1(p, q)

nicht konstruieren lassen

Insgesamt wissen wir also bisher, dass die Punkte (p, q) e D', aus denen sich die
cosa und cos/? konstruieren, wie nicht konstruieren lassen, m D' dicht liegen Weiter
liegen die Tripel (p, q, R) mit aus p und q konstruierbarem Umkreisradius R m
D' xR dicht, da die (schlechthin) konstruierbaren Radien R m den reellen Zahlen R
dicht liegen Diese Voraussetzung ist etwa fur alle p, q und R mit festem und
konstruierbaren 11) — m | erfüllt Also liegen die Tripel (p, q, R) derjenigen Dreiecke,
die sich aus p, q, R konstruieren, wie nicht konstruieren lassen, m D' x R dicht
Bei festem | f) — rrt | gilt das entsprechend fur die Schnittpunkte tt) e D", qed

K Kopfermann, Hannover
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Kleine Mitteilungen

Area of the Union of Disks

At the Conference on Geometry in Eger in 1953, Szele set forth a problem, which was
written to him by Kneser The problem, which has become well known smce then, is the
following A set of n circular disks is given on the plane Change the position of the disks
m such a way that their distances from each other decrease (The term 'it decreases* will
always be used in the weak sense, i e it means that 'it does not mcrease' Is it true that
the area covered by the disks decreases The obvious conjeeture is yes, but this has not
been proved yet, and the answer seems to be rather difficult

In this note a partial Solution of this problem will be presented Namely it will be
proved (theorem 2) that if the disks are congruent and they can be moved contmuously m
such a way that the distance of any two centres decreases contmuously, then the area
covered by the disks also decreases The proof is based on a similar statement about the
penmeter length of the umon of disks

Let Pt(t) be points on the plane for % 1, 2, n and 0 < t < 1 Suppose Pt(t) is a
contmuous function of t and S(P,(t), Pj(t)) is a decreasmg function of t for every pair i, ;,
1 < i < 1 < n Denote by U(t) the umon of unit disks with centres Px(t), P2(t), Pn(t)

Theorem 1. If p(t) denotes the perimeter length of U(t), then p(t) is decreasmg m [0, 1],
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Denote by Q],j(t) and Q2j(t) the common points of the circles with centres Pt(t) and
Pj(t), provided they exist. Let B}(t) (y er(t), a set of mdices) denote the points Q!f,j(t)
on the boundary of U(t), and if By(t) Q*j(t) then let Av(t) Pt(t) and CY(t) P3(t). The
umon of the segments Ay(t) By(t), By(t) Cy(t) forms some polygons, which are completely
covered by U(t) (see the figure). Denote the sum of the angles of these polygons by a(t).
Then the perimeter length of U(t) is the following

P(t) =^2nn~ l(o(t) - 2J < AY(t)By(t)Cy(t)\ (2 n n - a(t)) + £ < Ay(t) By(t)Cy(t)
\ yerit) } yer(t)

F.t)

o
By(t

Suppose 0 < tx < t2 < 1, and the polygons, belongmg to tx and t2, are formed by the
segments Q$,j(t) Pt(t) with the same mdices and they are in the same cyclic order. Then
a(tx) a(t2), and as S(Pt(t), Pj(t)) decreases, the angle Pt(t) Q*j(t) Pj(t) also decreases,
consequently

verm
> E

yer(t2)
^Ay(t2)By(t2)Cy(t2),

from which it follows that p(tx) > p(t2).
But as there are only finitely many Q*,j(t) Pt(t) segments, only finitely many different

sets of polygons exist. Usmg the contmuity of p(t), it is easily seen that this implies the
Statement of the theorem.

Theorem 2. // a(t) denotes the area of U(t), then a(t) is decreasmg
Suppose 0 < tx < t2 < 1. Denote by p(r, t) and a(r, t) the perimeter length and the

area, respectively, of the umon of the disks of radn r with centres Px(t), P2(t), Pn(t).
It is easily seen that a(r, t), as a function of r, is differentiable and (ba(r, t)/dr) p(r, t).
On the other hand a(0, t) 0 for all t, 0 < t < 1, and, according to theorem 1, p(r, tx) >
p(r, t2) for all r, 0 < r < 1. Consequently a(l, tt) > a(l, t2), i.e. a(tt) > a(t2), the function
a(t) decreases m [0, 1]. Bela Bollobäs, Math Research Institute, Budapest

Überall maximale Funktionen

In Aufgabe 522 (El. Math. 21, 42 (1966)) wurde die Frage aufgeworfen: Existiert auf
den rationalen bzw. reellen Zahlen eme Funktion, welche überall em lokales strenges
Extremum besitzt Im ersten Falle ist die Antwort «ja», im zweiten «nein», hier wird m
einem allgemeineren Rahmen eme Antwort gegeben.
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Sei (X, %) em topologischer Raum, (Y, <) eme irreflexiv totalgeordnete Menge und /
eme Abbildung von X nach Y Man nennt einen Punkt x e X lokales Maximum von /,
wenn eme offene Umgebung U(x) von x existiert, so dass jedes y e U(x) mit y =j= x die
Eigenschaft f(y) < f(x) hat, / heisse Maximaifunktion, wenn / in jedem Punkt von X em
lokales Maximum hat In dieser Note wird die Frage behandelt, wann em topologischer
Raum eme Maximalfunktion zulasst

Definition. (X, X) heisst M-Raum, wenn eme Abbildung V X -> % existiert mit
(l)xeV(x),
(2) fur kein n-Tupel (n > 2) paarweise verschiedener Punkte xlf xn aus X gilt

xt e V(xt + 1), 1 < i < n und xn e V(xx)
Aus dieser Definition folgt sofort, dass die Mächtigkeit eines M-Raumes X nicht grosser

ist als die Mächtigkeit jeder beliebigen Basis von X, da die Funktion V insbesondere
mjektiv ist Em M-Raum ist immer em X0-Raum Andererseits zeigt das Beispiel der
reellen Zahlen, dass selbst em normaler Raum nicht notwendig em M-Raum ist Jedoch ist
em endlicher X0-Raum immer em M-Raum, man setze nur V(x) f\ U, dann folgt

xeUe%
aus xt e V(xi + 1) fur 1 < i < n, dass xx e V(xn) und wegen der T0-Eigenschaft xn$ V(xt) gilt

Fur abzahlbare Räume lasst sich obige Definition noch vereinfachen, denn es gilt
Satz 1. Em höchstens abzahlbarer Raum X ist genau dann M-Raum, wenn eine Funktion

V X -> % existiert mit
(1) xeV(x),
(3) fur kein Paar verschiedener Punkte x, y aus X gilt x e V(y) und y e V(x)
Beweis Nach Voraussetzung existiert em Abschnitt A der natürlichen Zahlen mit

X {xt 11 e A} und eme Funktion V mit (1) und (3) Die durch

V*(x0) V(x0), V*(xt + 1) V(xt + 1) n D V*(xk)
k<,t

*t+ieV*(Xk)

definierte Funktion V* erfüllt dann (1) und (2) Denn wäre (2) fur em n-Tupel (n > 2)

verletzt, so auch fur em (n — 1)-Tupel, da sich das Element mit grosstem Index nach
Konstruktion von V* eliminieren lasst, folglich auch fur em 2-1 upel im Widerspruch zu (3)

Emen Zusammenhang zwischen Maximaifunktionen und M-Raumen beschreibt der
Satz 2. Zu einem topologischen Raum X existiert genau dann eine irreflexive

Totalordnung (Y, <) und eine Maximalfunktion f X -> Y, wenn X em M-Raum ist
Beweis Die Notwendigkeit des Kriteriums ist klar Sei nun X em M-Raum Dann ist

die folgende Relation eme irreflexive Halbordnung auf X x cy fur x, y e X genau dann,
wenn em n-Tupel (n > 2) von Punkten xlt xn aus X existiert mit xx x, xn y,
xt #* xi+1 und xt e V(xl + 1) fur 1 < i < n

Eme solche Halbordnung lasst sich bekanntlich zu einer irreflexiven Totalordnung auf
ganz X ausdehnenx) Der Vollständigkeit halber wird hier em Beweis gegeben

Sei
S {(_Y', <) | X' C X, < «<» Totalordnung und eme Fortsetzung der c-Ordnung}

und sei S halbgeordnet durch (X't, < i) -< (X'%, < 2) genau dann, wenn X{ C X'2 und
<21 X'x <x Dann erfüllt (S, -<) die Voraussetzung des Zornschen Lemmas, denn S ist
nicht leer und jede Kette besitzt eine obere Schranke, namhch ihre Vereinigung, daher
enthalt 5 em maximales Element (X0, <) Es muss X0 — X sein, denn falls em x e X — X0
existierte, hesse sich die Ordnung von X0 auf _Y0 y {x} m nahehegender Weise fortsetzen,
was der Maximahtat von (X0, <) widerspricht Es sei nun (Y, <) (X, <) und / die
Identität, offensichtlich ist / eme Maximaifunktion

Die so konstruierte Funktion / ist im allgemeinen nicht die gunstigste, d h es gibt
l allg noch Maximalfunktionen mit echt grosserem Kern (Wenn z B lein diskreter
Raum ist, genügt es, Y einelementig zu wählen Die Vermutung jedoch, dass em
Wertebereich existiert, welcher sich m die Wertebereiche aller Maximaifunktionen von X
isomorph einbetten lasst, wird durch folgendes Beispiel widerlegt Sei N die Menge der

*) E Szpilrajn, Sur Vextenston de Vordre parttel, Fund Math 16, 386-389 (1930)
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natürlichen Zahlen und X {xt\ i e N} © {yt 11 e N}, eine Basis der Topologie X seien
die Mengen {xt\ i < n), {x0} \j {yt \i e iV}, {yt | > n) fur w e iV Damit ist X em M-
Raum, man setze nur V(x) f] U fur jedes x e X Es ist dann x c x lt x0 c y0,

xeü€%
yt + i n y% für jedes i Jede Maximaifunktion / muss nun die xt auf eme geordnete Menge
vom Typ co, die yt auf eme Menge vom Typ co* abbilden, und es muss f(x0) < f(y0) sein
Daher enthalt jeder Wertebereich Mengen vom Typ co* -f co oder co + co*, und es ist dann
klar, dass es keinen gibt, der sich m alle anderen isomorph einbetten lasst

Satz 2 lasst noch folgende einfache Verallgemeinerung zu
Satz 3. Zu einem topologischen Raum X existiert genau dann eine irreflexive Totalordnung

Y und eine Abbildung f X -> Y, welche m jedem Punkt em lokales Extremum besitzt, wenn
eine Partition von X m zwei M-Räume existiert

Beweis Die Notwendigkeit des Kriteriums ist wieder trivial, sei nun X Xx © X2
eme Partition in M-Räume, dann existieren Maximalfunktionen ft Xt -> Yt, i 1, 2
Sei Y Yx* © Y2, wobei Yx* die inverse Ordnung von Yx ist, setzt man noch yx < y2
fur alle yx e Yx und alle y2 e Y2, so hat man durch die ft eme Funktion auf X definiert,
welche in jedem Punkt extremal ist M W Richter und J Spilker, Freiburg/Br

Eigenschaften gewisser Scheitelkreise einer Ellipse
bezuglich ihrer Brennpunkte

Smd von einer Ellipse Haupt- und Nebenachse gegeben, so gelangt man bekanntlich
zu den Zentren der Scheitelkrummungskreise, indem man zwei Halbachsen zu einem
Rechteck ergänzt, die auf der Ellipse liegenden Eckpunkte des Rechtecks (Scheitelpunkte
der Ellipse) miteinander verbindet und dann von dem ausserhalb der Ellipse liegenden
Eckpunkt das Lot auf die eingezeichnete Diagonale fallt Die Schnittpunkte des Lotes mit
der Haupt- und Nebenachse smd die Mittelpunkte der zu den betreffenden Scheitelpunkten

gehörigen Scheitelkrummungskreise
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Es sollen nun jene Kreise betrachtet werden, die aus den Scheitelkrummungskreisen
durch zentrische Stauchung mit dem Faktor 1/2 bezüglich der betreffenden Scheitelpunkte

als Ähnhchkeitszentren hervorgehen Die dadurch entstehenden Kreise bezeichnen
wir im folgenden als gestauchte Scheitelkrummungskreise

In der Elhpsengleichung x2/a2 + y2/b2 — 1 kann ohne Beschrankung der Allgemeinheit
a > b vorausgesetzt werden Dabei ist zunächst der Fall a b ]J2 auszuschhessen

Fur die gestauchten Hauptscheitelkrummungskreise gelten die Gleichungen

[•*(—£)]' + >-:&• <"

Für die gestauchten Nebenscheitelkrummungskreise gelten die Gleichungen

-+["('-f9]'-Ä- <»

Wie nun eme elementare Rechnung zeigt, schneiden sich die gestauchten
Hauptscheitelkrummungskreise m den imaginären Brennpunkten der Ellipse

Fuhrt man weiterhin eme beliebige der Gleichungen (1) in die zugehörige Polarform
uber und setzt dann y 0, so wird durch die gefundene Gleichung

(2ax^f 2a2 ±b2) (2ax~T 2a2 ±b2) b*> (3)

auf der x-Achse eme Punktinvolution induziert Setzt man m Gleichung (3) x e und
x — e, so ist die Gleichung erfüllt Folglich gilt

Die reellen Brennpunkte Fx und F2 der Ellipse sind em Punktepaar der durch Gleichung (3)
gegebenen Involution Sie hegen invers bezüglich der gestauchten Hauptscheitelkrummungskreise

Ganz analog ergeben sich aus elementaren Rechnungen mit den Gleichungen (2)
folgende Satze Die gestauchten Nebenscheitelkrummungskreise schneiden sich m den reellen
Brennpunkten der Ellipse Die imaginären Brennpunkte hegen invers bezüglich dieser Kreise.
Nach diesen Feststellungen kann man die gestauchten Nebenscheitelkrummungskreise
als Elemente eines elliptischen Kreisbuscheis ansehen, die sämtlich die beiden gestauchten
Hauptscheitelkrummungskreise orthogonal schneiden Dieses Kreisbuschel schneidet auf
der y-Achse eme elliptische Punktinvolution mit den imaginären Brennpunkten Fz und _P4

als Fixpunkte aus Bezüglich der reellen Brennpunkte der Ellipse ist diese Punktinvolution
eme Rechtwmkelmvolution

Entsprechend hierzu können die gestauchten Hauptscheitelkrummungskreise als
Elemente des ergänzenden hyperbolischen Kreisbuscheis angesehen werden Die Nullkreise
dieses Buscheis fallen m die reellen Brennpunkte der Ellipse

In dem zunächst ausgeschlossenen Fall a b )p2 decken sich die beiden gestauchten
Nebenscheitelkrummungskreise Der doppelt zahlende Kreis schneidet die x-Achse m den
reellen Brennpunkten und die y-Achse m den reellen Vertretern der imaginären
Brennpunkte der Ellipse

Mit diesen Ausfuhrungen ist gezeigt Identifiziert man die vier Grundpunkte sich
ergänzender Kreisbuschel mit den Brennpunkten einer konfokalen Elhpsenschar, so stellen die
gestauchten Scheitelkrummungskreise zu jeder Ellipse dieser Schar zwei Kreispaare aus den
ergänzenden Kretsbuscheln dar.

Analoge Überlegungen lassen sich fur die Hyperbel durchfuhren Im Sonderfall der
Parabel fallt der eigenthche Brennpunkt m den Mittelpunkt des gestauchten
Scheitelkrummungskreises Fur eine Schar konfokaler Parabeln bildet die Gesamtheit der
gestauchten Scheitelkrummungskreise eme Schar konzentrischer Kreise. Auch m diesem
Sonderfall smd die oben abgeleiteten Lagebeziehungen zwischen den Brennpunkten der
Parabelschar und den Tragerpunkten der Kreisbuschel erfüllt E. Schröder, Dresden
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